

объединенный институт ядерных исследований дубна

2066/84

P2-84-50

А.И.Титов

многокварковые системы в ядрах

Направлено в Оргкомитет Всесоюзного совещания по ядерной спектроскопии и структуре ядра /Алма-Ата, 1984/

1. ВВЕДЕНИЕ

Атомное ядро является системой взаимодействующих нуклонов, а сами нуклоны - бесцветными трехкварковыми кластерами. Поэтому в ядрах и ядерных процессах могут проявляться необычные много-кварковые объекты и, в первую очередь, 6,-9,-12-кварковые системы. Естественно ожидать, что в основных и слабовозбужденных состояниях ядер (Е ■ МА, где м- масса нуклона, А - атомный вес ядра) они составляют небольшие примеси к основному нуклонному каналу в полной волновой функции ядра

$$\psi_{A} = \psi_{A}(N) + c\psi_{A}(q), \qquad \qquad /1/$$

т.е. $|c(E = AM)|^2 \ll 1$. Вероятность таких примесей качественно можно оценить как вероятность флуктуации К-нуклонов оказаться в малом объеме V_{ξ}

$$\beta_{k}^{A} = {A \choose k} \left(\frac{V_{\mathcal{E}}}{V_{0}} \right)^{k-1} = \frac{A}{k + 1} \left(\frac{r_{\mathcal{E}}}{r_{0}} \right)^{k-1}. \tag{2}$$

Здесь $\mathbf{f}_0=1,2$ фм — средний радиус нуклон-нуклонного взаимодействия в ядре, а параметр $\mathbf{f}_{\mathcal{E}}(\mathbf{f}_{\mathcal{E}}=0.7$ фм) — порядка радиуса кора NN-сил. Последний, естественно, связан с радиусом конфайнмента. Идея ядерных флуктуаций /или "флуктонов"/ оказалась полезной для выявления основных закономерностей ядерных реакций при высоких энергиях /см., например, 2,3,4 /. Однако природу флуктонов можно понять лишь на кварковом уровне, вводя концепцию о многокварковых системах /МКС/. Уже первые расчеты многокварковых мешков 5,6 показали, что их массы значительно превышают массы соответствующих ядер, т.е. $\mathbf{E}_{\lambda} = \mathbf{M}_{\Lambda} + \Delta \lambda$, где "кварк-ядерное" расщепление $\Delta_{\lambda} > 0,2$ ГэВ. Таким образом, эти состояния МГС являются специфическими и должны проявляться как резонансы в соответствующих амплитудах рассеяния. В этой области энергий полная волновая функция имеет вид

$$|\psi = c\psi_{A}(q), \qquad (3)$$

где $|c(\mathbf{E} = \mathbf{E}_{\lambda})|^2 = 1$. В настоящее время есть указания на резонансное поведение фаз $^{1}\mathbf{D}_{2}$ и $^{3}\mathbf{F}_{3}$ в NN - рассеянии в указанной области полной энергии системы: $\mathbf{E}_{\lambda} = 2,2$ ГэВ 77 . Таким образом, основные состояния ядер могут иметь небольшие примеси МКС,

а чистые МКС могут проявляться со значительной вероятностью при энергиях выше массы соответствующих ядер на 0,2 ГэВ и более как дибарионы, трибарионы и т.д.

В §2 кратко обсуждаются экспериментальные указания на существование МКС; в §3 сформулирована система связи нуклонного и кваркового каналов и на ее основе рассчитаны примеси шестикварковых систем в дейтроне; в §4 рассмотрено проявление шестикварковых (\mathbf{q}^6) - состояний в формфакторах 2 D и 3 He; в §5 - проявление \mathbf{q}^6 - состояний в глубоконеупругом μ A-рассеянии; в §6 сформулированы основные выводы.

§2. ЭКСПЕРИМЕНТАЛЬНЫЕ УКАЗАНИЯ НА СУЩЕСТВОВАНИЕ МКС

2.1. Кумулятивные процессы

В настоящее время кумулятивные реакции хорошо изучены /см., например, обзоры $^{/8,9}$ /. Их общей чертой является то, что они происходят далеко за пределами двухчастичной кинематики /падающий адрон плюс нуклон ядра/. На рис.1 приведены экспериментальные данные сечений кумулятивного рождения мезонов в реакциях P /8,9 F3B/c/ $+A \rightarrow c + \dots, c = \pi^{\pm}, K^{\pm}$ как функций масштабной переменной \mathbf{x} , которая имеет смысл отношения наблюдаемого импульса частицы \mathbf{c} к максимально возможному импульсу в \mathbf{p} -соударениях. Из рис. 1 видно, что процесс наблюдается при \mathbf{x} вплоть до 3 и более. Значит, падающий протон взаимодействует \mathbf{c} МКС массы $\mathbf{M}_{\mathbf{k}} = \mathbf{k}$ M ($\mathbf{k} \ge 3$). В то же время большой переданный импульс в реакции

(q² ≈ 2 /ГэВ/с² / означает, что МКС распределена в малом объеме радиуса г ≤ 1 Фм. Другой особенностью кумулятивных реакций является универсальность х -зависимости

 $E_c \frac{d\sigma}{d\vec{p}_c} = \exp{(-x/<x>)}$ /4/ $d\vec{p}_c$ с константой < x> $\approx 0,14$. Третье - это "объемная зависимость" сечений $E_c \frac{d\sigma}{d\vec{p}_c} = A^n$, $n \approx 1$. Это говорит о том, что МКС не"трубка" в ядерной материи /в этом случае была бы зависимость $A^{2/3}$, а кла-

Рис. 1. Инвариантные сечения образования кумулятивных мезонов $-\pi^{\pm}$, $\star - K^{+}$, $\blacksquare - K^{-}$ в рА – столкновениях.

Осъединенный инспитут яксримх исследований БИБЛИЮТЕНА

Рис. 2. Отношение инвариантных сечений: $\Delta - \sigma^{Pb}/\sigma^{D}(pA \to \pi + ...)$, $\nabla \sigma^{Pb}/\sigma^{Al}(pA \to \pi + ...)$.

стерного типа объемное образование из сильно сжатых нуклонов, которое существует в ядре независимо от того, в какой реакции оно участвует. И, наконец, индивидуальные свойства ядра проявляются в небольших отклонениях от тривиальной \mathbb{A}^1 —зависимости. Это видно из рис. 2, где отложены отношения сечений для различных ядер, деленных на соответствующие атомные веса. В частности, ясно, что поскольку в дейтроне

не может быть более чем \mathbf{q}^6 -системы, а в других ядрах могут быть еще МКС из 9-12 кварков, то дейтронное сечение в кинематической области $\mathbf{x} > 2$ обратится в нуль, а другие будут здесь еще отличны от нуля. Это дает резкий подъем в отношениях этих последних сечений к дейтронному в области $\mathbf{x} > 1$, что видно из рис.2.

2.2. Упругое и глубоконеупругое рассеяние лептонов

Механизм электромагнитного рассеяния лептонов хорошо известен, поэтому исследование процессов $\mathbf{x} > 1$ может дать очень важную информацию о МКС. К настоящему времени здесь имеются данные SLAC по глубоконеупругому рассеянию электронов на $^2\mathrm{D}^{10/10}$ и $^{3,4}\mathrm{He}^{11/1}$ и предварительные данные по $(\mu\mu)$ на ядре $^{12}\mathrm{C}$ /до $\mathbf{x} \le 1,4/12$. Кстати, предсказания поведения структурной функции $^{12}\mathrm{C}$ в области $\mathbf{x}=1$ были сделаны в $^{13/1}$ на основе зависимости /4/, полученной из адронных реакций. Для мюонного глубоконеупругого рассеяния также было обнаружено небольшое отклонение от $^{12}\mathrm{C}$ зависимости в отношении структурных функций нуклонов ядер железа и дейтрона /ЕМС-эффект/ $^{14/1}$.

Что касается формфакторов ядер, то, например, идея о \mathbf{q}^6 -примессях в дейтроне, объясняющая поведение его формфактора при больших $\mathbf{q}^2 \geq 2$ /ГэВ/с/ 2^{15} , довольно привлекательна. \mathbf{q}^9 -примеси также, видимо, нужны при описании формфакторов 3,4 He 16 . Шести-кварковые компоненты в дейтронной волновой функции потребовались и при описании импульсного распределения нуклонов, полученных в реакции дейтрон-ядерного столкновения с выходом протонов под малыми углами 17 .

Итак, мы заключаем, что в ядрах ожидается существование многокварковых систем, наличие которых не зависит от того, в какой реакции участвует само ядро. Их масса $M_k = k M$, а размеры - порядка радиуса кора NN-сил, так что эти системы лучше всего изучать в процессах с большой передачей импульса. Интересно установить специфику распределений кварк-партонных функций МКС, их Q^2 -зависимость, внутреннюю структуру, роль МКС в понимании ядерных сил /QCD для МКС при малых и больших размерах/. Возможно, что анализ особенностей в поведении этих систем окажется также полезным в изучении фундаментальных свойств элементарных частиц.

63. ДВУХКАНАЛЬНАЯ МОДЕЛЬ

3.1. В атомных ядрах нуклонная компонента является доминирующей. Она определяется нуклон-нуклонным взаимодействием $V_{NN'}$ Задача ставится таким образом, что к известной ядерной волновой функции с размороженными трехкварковыми кластерами-нуклонами добавляется еще многокварковая, соответствующая распределению кварков внутри единого объема /многокваркового мешка/, которая формируется микроскопическим кварковым взаимодействием $V_{qq'}$, известным из физики элементарных частиц.

Взаимное влияние этих двух каналов определяется кварк-нуклонным взаимодействием, которое строится исходя из определенных модельных предположений. Задание такого взаимодействия позволяет сформулировать систему уравнений связанных каналов, с помощью которых можно, в принципе, рассчитать вероятность примеси много-кварковых состояний, импульсное распределение кварков в ядрах, ширины МКС в NN-рассеянии и т.д. В качестве конкретной задачи рассмотрим пример двух взаимодействующих нуклонов, которые на малых расстояниях могут образовывать составную \mathbf{q}^{6} —систему 18 . В этом случае волновая функция уравнения /1/ имеет вид:

$$\psi = A \left(\Phi_1 \Phi_2 \phi(\mathbf{r}) \right) + \sum_{\lambda} c_{\lambda} \psi_{\lambda}.$$
 (5/

Здесь ψ_λ -собственные функции \mathbf{q}^6 -системы /в конкретной модели - гауссовские функции с радиусом $\mathbf{q}\mathbf{q}$ -взаимодействия порядка 0,5 Фм/, \mathbf{A} - оператор антисимметризации кварков, принадлежащих разным кластерным функциям $\mathbf{\Phi}_1$ и $\mathbf{\Phi}_2$. Амплитуды \mathbf{q}^6 -состояния \mathbf{c}_λ и функции относительного движения нуклонов $\phi(\mathbf{r})$ определяются как решения системы связанных уравнений

$$\left[-\frac{\hbar^2}{2m} - \frac{d^2}{dr^2} + U + \epsilon\right] \phi(r) = -\sum_{\lambda} c_{\lambda} \mathcal{L}_{\lambda}(r)$$
 /6/

$$-c_{\lambda}(E_{\lambda}-E)=\int d\mathbf{r} \ \phi(\mathbf{r}) \ \mathfrak{D}_{\lambda}^{*}(\mathbf{r}). \tag{77}$$

Здесь $\epsilon = E - 2M$ и m - приведенная масса нуклонов. Взаимодействие между каналами определяется функцией

$$\mathfrak{T}_{\lambda} = (\mathbf{E}_{\lambda} - \mathbf{E}) < \Phi_{1} \Phi_{2} | \psi_{\lambda} > + < \Phi_{1} \Phi_{2} | V_{qN} | \psi_{\lambda} >.$$

В случае ортогональных каналов \mathfrak{D}_{λ} определяется только вторым слагаемым, обусловленным взаимодействием V_{qN} . Это взаимодействие определяется как разность кваркового взаимодействия q^6 системы $V_{qq} = \sum\limits_{i,j=1}^6 V_{ij}$ и феноменологического NN-взаимодействия в области вне кора:

$$U(r) = \theta(r - r_a)[V(r) + \sum_{i,j=1}^{3} V_{ij} + \sum_{i,j=1}^{6} V_{ij}]V_{qN} = V_{qq} - U.$$
 /9/

Взаимодействие каналов \mathfrak{D}_{λ} сосредоточено на поверхности \mathfrak{q}^6 -системы и может быть представлено как $\mathfrak{D}_{\lambda}(\mathfrak{r})=\eta_{\lambda}\delta(\mathfrak{r}-\mathfrak{r}_a)$. Отметим, что обычная "ядерная физика" основана на уравнении для нуклонного канала /6/ с правой частью, равной нулю.

3.2. Оценки примесей q^6 -системы в дейтроне и ширин дибарионных резонансов

При оценке q^6 -примесей в дейтроне используем тот факт, что эти примеси в основных состояниях ядер малы, то есть $|c_1|^2 << 1$. Тогда правая часть уравнения /6/ пренебрежимо мала, система /6/, /7/ расщепляется и для расчета амплитуд ${f c}_{_{\lambda}}$ мы приходим к выражению $c_{\lambda} = -\int d\mathbf{r} \, \phi(\mathbf{r}) \, \mathcal{L}_{\lambda}(\mathbf{r}) / (\mathbf{E}_{\lambda} - \mathbf{E})$. Теперь уже $\phi(\mathbf{r})$ - есть обычная функция дейтрона, которая определяется заданием феноменологического "реалистического" потенциала V_{NN} . В конкретных расчетах были использованы потенциалы Рейда с твердым кором, Ломона-Фешбаха и Хюльтена. Для шестикварковой конфигурации с кварками в.s -оболочке было получено: $e_{\lambda}(s^6) = -0.37$ /Хюльтен/; - 0.147 /Рейд/; - 0,132 /Фешбах-Ломон/, в то время как для s^4p^2 -конфигурации: $c_{\lambda} = 0.26$ /Хюльтен/, 0.21 /Рейд/, 0.18 /Фешбах-Ломон/. Видно, что величина и знак \mathbf{c}_{λ} зависят от конфигурации. Суммарная вероятность двух конфигураций $c^2 = c^2(s^6) + c^2(s^4p^2)$ равна $6,6.10^{-2}$, что, в общем, согласуется с обработкой данных по упругому ed-рассеянию и теоретическим оценкам, полученным в других работах $^{/5,19,20/}$.

Специфика решения системы уравнений /6/ и /7/ в области непрерывного спектра $\epsilon>0$ состоит в том, что вблизи резонанса $\mathbb{E} \simeq \mathbb{E}_\lambda$ малость величин $(\mathbf{E}-\mathbf{E}_\lambda)$ в левой части уравнения /7/ должна компенсироваться большим /вообще говоря, комплексным/ \mathbf{c}_λ . Поэтому нельзя пренебрегать правой частью уравнения /6/. Тем неменее, с помощью аппроксимации $\mathfrak{D}_\lambda=\eta_\lambda\delta(\mathbf{r}-\mathbf{r}_a)$, система уравнений /6/, /7/ может быть решена в общем случае, а именно:

$$\phi_1 = \chi_1 + 2 m c_{\lambda} \eta_{\lambda} G_1^{(+)} (r_a, r_a)$$
 /10/

$$c_{\lambda} = -\frac{\eta_{\lambda}^{*} \chi_{1}(r_{a})}{(E_{\lambda} - E) + 2m |\eta_{\lambda}| G_{1}^{(+)}(r_{a}, r_{a})}.$$
 /11/

Здесь

/8/

$$G_{\ell}^{(+)}(\mathbf{r}_{a}, \mathbf{r}_{a}) = -\sqrt{\frac{\pi}{2}} \frac{1}{k} \chi_{\ell}^{(+)}(\mathbf{r}_{b}) \chi_{\ell}(\mathbf{r}_{c}); \quad \chi_{\ell} = \sqrt{\frac{2}{\pi}} \sin(k\mathbf{r} + \delta_{\ell} - \frac{\pi\ell}{2}),$$

$$(\chi^{(+)}(\mathbf{r}) = \exp(i(k\mathbf{r} + \delta_{\ell} - \pi\ell/2),$$

$$\phi = \frac{i}{\sqrt{2\pi}} e^{-i\delta_{\ell}} [e^{-ik\mathbf{r}_{c}} - S_{R}e^{2i\delta_{\ell}}e^{ik\mathbf{r}_{c}}], \quad \mathbf{r} \to \infty,$$

$$(\chi^{(+)}(\mathbf{r}) = \exp(i(k\mathbf{r} + \delta_{\ell} - \pi\ell/2),$$

$$(\chi^{(+)}(\mathbf{$$

а резонансная часть матрицы рассеяния имеет вид:

$$S_{R} = 1 - 2i \frac{m\pi}{hk} c_{\lambda} \eta_{\lambda} \chi_{\ell}(r_{a}) = \frac{(E_{\lambda} - E) - \delta E + i\Gamma_{\lambda}/2}{(E_{\lambda} - E) - \delta E - i\Gamma_{\lambda}/2},$$
/13/

где ширина резонанса

$$\Gamma_{\lambda} = a \frac{m \pi}{k} |\eta_{\lambda}|^2 \chi_{\ell}^2 (r_a). \tag{14}$$

Оценки ширины приводят к величинам $^{/18/}$ $\Gamma(s^6)=29$ МэВ, $\Gamma(s^4p^2)=9,3$ МэВ, которые меньше экспериментальных значений: $\Gamma_{\rm exp}=50$ –150 МэВ. Однако следует отметить, что теория предсказывает большую плотность дибарионных состояний $^{/21/}$. Тогда вполне возможно, что наблюдаемая $\Gamma_{\rm exp}=$ есть, в некотором смысле, усредненная самим экспериментом или его обработкой величина.

Таким образом, можно заключить, что в основном состоянии дейтрона примесь \mathbf{q}^6 -состояний имеет отрицательный знак и величину порядка нескольких процентов. В случае NN-рассеяния при $\mathbf{E} = \mathbf{E}_{\lambda}$ двухнуклонная система может переходить в "чистое" \mathbf{q}^6 -состояние /дибарион/.

§4. ФОРМФАКТОРЫ ЛЕГЧАЙШИХ ЯДЕР

4.1. Формфактор дейтрона

Шестикварковые примеси локализованы в центральной области дейтрона, поэтому естественно ожидать их значительный вклад в формфактор при больших переданных импульсах. Волновая функция дейтрона в форме /5/ приводит к следующему выражению для формфактора:

$$\mathbf{F} = \mathbf{F}_{N} + 2\mathbf{c}_{\lambda}\mathbf{F}_{int} + \mathbf{c}_{\lambda}\mathbf{F}_{a6}.$$
 /15/

Рис. 3. Зарядовый /а/ и квадрупольный /б/ формфакторы дейтрона, рассчитанные с использованием RSC-функций; сплошная кривая — обычный "прямой" формфактор, пунктирная — обменный формфактор.

Рис.4. Вклад обменных формфакторов в сечение ed -рассеяния без учета q 6 -конфигураций.

Первое слагаемое F_N включает в себя эффекты антисимметризации по кваркам, принадлежащим разным нуклонам. Анализ, проведенный в работе $^{/22}$ /, показал, что для реалистических NN-потенциалов вклад этого эффекта мал и не превышает 10% при переданных импульсах вплоть до $\mathbf{q}^2=8$ /ГэВ/с /рис.3/. Вклад интерференции второе слагаемое в /15/, также мал. Так, расчет для потенциала Рейда с мягким кором дает эффект порядка 20% /рис.4/, который пренебрежимо мал в сравнении с вкладом шестикварковой компоненты — третье слагаемое в /15/. Формфактор $F_{\mathbf{q}6}$ рассчитанный на основе модели релятивистского гармонического осциллятора, имеет вид:

$$F_{q^6}(q^2) = \frac{1}{(1 + \frac{q^2}{2m_6^2})^5} e^{-\frac{5q^2}{4\Omega} \frac{1}{1 + \frac{q^2}{2m_6^2}}}$$
/16/

с параметрами $\Omega=1$ /ГэВ/с/ 2 , $m_6=1,2$ ГэВ/с . На рис.5 приведен расчет формфактора /15/ и сравнение его с экспериментом.Величина \mathbf{q}^6 -примеси выбрана: $\mathbf{c}_{\lambda}^2=0,07$. В результате мы приходим к выводам, что из-за малости вклада интерференционного слагаемого нельзя определить знак \mathbf{q}^6 -амплитуды. Эффекты антисиммет-

Рис.5. Зарядовый формфактор дейтрона. Пунктирная кривая — релятивистский расчет без учета q 6 —примеси, Сплошная линия — с учетом q 6—примеси, но без учета интерференции, штрих—пунктирная — с учетом интерференции.

Рис. 6. Формфактор ядра 3 He, рассичтанный с реалистическим трехтельным ядерным формфактором / грих-пунктир/. Сплошная линия расчет с учетом 6 -примеси, штрих-пунктир - учет 6 и 9 -примесей.

ризации малы. Основной вклад в формфактор при больших переданных импульсах дают шестикварковые компоненты.

4.2. Формфактор ³ Не

Вклад шестикварковых примесей в формфактор 3 Не на основе подхода, близкого по духу к рассмотреному выше, был исследован в работе $^{/23/}$. Основные результаты проведенного исследования сводятся к следующему: 1/ интерференция нуклонного и шестикваркового каналов весьма существенна. 2/ Учет \mathbf{q}^6 -примесей приводит в целом к улучшению согласия с экспериментом во всей области измеренных переданных импульсов, вплоть до $\mathbf{q}^2 \le 1$, 4/ ГэВ/с/ 2 по сравнению с чисто ядерными моделями – рис. 6. Расчет предсказывает появление второго минимума в формфакторе $\mathbf{F}(^3$ Не), который обусловлен интерференцией нуклонного и кваркового каналов при $\mathbf{q}^2 = 2$ -2,3 /ГэВ/с/ 2 .

В целом можно заключить, что при теоретическом анализе ядерных формфакторов при больших переданных импульсах учет много-кварковых состояний в ядрах является необходимым.

§5. ШЕСТИКВАРКОВЫЕ ПРИМЕСИ В ГЛУБОКОНЕУПРУГОМ РАССЕЯНИИ

Для определенности рассмотрим реакцию неупругого рассеяния мюонов ядрами μ $\mathbf{A} \to \mu'$ + ..., когда конечные состояния мишени не фиксируются. И в этом случае предположение о существовании в ядре дополнительной многокварковой фазы /для простоты ограничимся лишь \mathbf{q}^6 -фазой/ приводит к тому, что в сечении появляется дополнительное слагаемое, обусловленное вкладом МКС. Напомним, что сечение глубоконеупругого рассеяния зависит от двух независимых переменных, и, для рассеяния под малыми углами, вклад от нуклонной компоненты имеет вид:

$$\frac{d^{2}\sigma}{dQ^{2}dx} = A \frac{4\pi a^{2}}{Q^{4}} \frac{F_{2}^{N}(x)}{x}.$$
 /17/

Здесь нуклонная масштабная переменная $\mathbf{x} = \mathbf{Q}^2/2\mathbf{M}_{\nu}$ / \mathbf{M} - масса нуклона, \mathbf{Q}^2 - квадрат переданного четырехимпульса, $\nu = \mathbf{E}_{\mu} - \mathbf{E}_{\mu'}$ переданная энергия/ в системе координат, где нуклон движется со скоростью, близкой к световой, имеет смысл отношения импульта кварка, принадлежащего нуклону и импульсу самого нуклона. $\mathbf{F}_2^N(\mathbf{x})$ - структурная функция нуклона, характеризующая импульсное распределение кварков-"партонов" в нуклоне /определена в интервале $0 \le \mathbf{x} \le 1$, причем максимальное значение $\mathbf{x} = 1$ соответствует упругому μ N-рассеянию/. Вклад в сечение от \mathbf{q}^6 -фазы пропорционален эффективному числу \mathbf{q}^6 -систем в ядре. Это число в тяжелых ядрах растет линейно с ростом \mathbf{A} : $\mathbf{\beta}_2^{\mathbf{A}} = \mathbf{A} \cdot \mathbf{P} (\mathbf{q}^6)$, где $\mathbf{P}_{\mathbf{q}}(\mathbf{q}^6)$ - приведенная вероятность \mathbf{q}^6 -примеси в двухнуклонной системе со средним объемом \mathbf{V}_0 /в газовом приближении /2/ $\mathbf{P}_{\mathbf{A}}(\mathbf{q}^6) = \frac{1}{2} \frac{\mathbf{V}_3}{\mathbf{V}_0}$. Поскольку масса \mathbf{q}^6 -системы больше \mathbf{M} , ($\mathbf{M}_{\mathbf{q}}$ \mathbf{g}^2 $\mathbf{2}$ \mathbf{M}), то ее структурная функция зависит от своей масштабной переменной, а соответствующий вклад в полное сечение определяется как

$$\frac{d^2\sigma}{dQ^2dx} = AP_A(q^6) \frac{4\pi\alpha^2}{Q^4} \frac{F_2^A(x_f)}{\hat{x}_f}.$$
 /18/

Из условия $0 \le x_f \le 1$ и соотношения $x = 2x_f$ следует, что этот вклад будет отличен от нуля в области $0 \le x \le 2$. Полное сечение глубоконеупругого μA рассеяния имеет вид

$$x \frac{d^2 \sigma}{dQ^2 dx} = \frac{4 \pi \alpha^2}{Q^4} \cdot F^{A}(x), \qquad (19)$$

где ядерная структурная функция определена следующим образом:

$$F_2^A(x) = (1 - P_A) F_2^N(x) + P_A F_2^f(x) + F_A^n(x).$$
 /20/

Последнее слагаемое в /20/ - вклад в структурную функцию мезонных обменных токов. Мезонные поля дают вклад в области относи-

тельно малых х. Действительно, из соотношения $x_{\pi}=Q^2/2m_{\pi}\nu\leq 1$ следует: $x=Q^2/2M\nu=m_{\pi}/M$ $x_{\pi}\leq 0,15$. Однако предел $x\simeq 0,15$ несколько размыт из-за импульсного распределения мезонов в ядре. Эффективное число мезонов в ядре - δn_A^{π} можно рассчитать с помощью современных моделей ядра $^{/25/}$. Это число зависит от значения параметра $\rho_{\rm c}$ - "критической ядерной плотности", который определяет фазовый переход ядерного вещества из нуклонной фазы в мезонный конденсат. По современным оценкам, величина ho_c в несколько раз превышает нормальную ядерную плотность. Тем не менее, теория предсказывает некоторое усиление пионных полей в тяжелых ядрах по сравнению с легкими, которое может быть реальным кандидатом на объяснение наблюдаемого усиления структурной функции железа относительно структурной функции дейтрона в области малых $^{x/24,26}$. В конкретных расчетах параметры в F и f выбирались так, чтобы описать дейтронные данные. При расчете было использовано дополнительное условие $\langle xq^{I}(x)\rangle = \langle xq^{A}(x)\rangle$, которое означает сохранение импульса, переносимого кварками, и приводит к тому, что из-за присутствия мезонных полей в тяжелых ядрах соответствующие распределения кварков в нуклонах и шестикварковых системах несколько перенормируются /24/. Этот эффект, обнаруженный ЕМС-коллаборацией /14/, проявляется в различии FD и \mathbb{R}^A при 0,2 < x < 1 и приводит к минимуму отношения $\mathbb{R} = 2\sigma^{\mathbb{F}} \mathscr{S} A \sigma^{\mathbb{D}}$ при ж = 0,7 и подъему R при ж = 0,1 /рис.7/. Подъем в области

Рис.7. Расчет и сравнение с экспериментом отношения $R=2\sigma^{Fe}/56\,\sigma^D$. Кривые: "0" – учет только q^6 —состояний, 1,2 — учет q^6 —состояний и мезонных полей. 1 — $\rho_c/\rho_0=3,9$, 2 — $\rho_c/\rho_0=4,2$, $P_A=2P_D$. Пунктир — $\rho_c/\rho_0=3,9$ $P_A=2,3$ P_D .

Рис. 8. Расчет и сравнение с экспериментом структурных функций тяжелого ядра /сплошная кривая/ и дейтрона /пунктир/.

больших \mathbf{x} (\mathbf{x} =1) вызван увеличением приведенной вероятности $P\left(q^{6}\right)$ в тяжелых ядрах, по сравнению с дейтроном $P_{A}\left(q^{6}\right)$ \mathbf{x} \mathbf{x} \mathbf{z} \mathbf{z} $\mathbf{P}_{D}\left(q^{6}\right)$ ($\mathbf{A}>>1$) \mathbf{z} . На рис. 8 приведен расчет и сравнение с экспериментом структурных функций при \mathbf{z} \mathbf{z} \mathbf{z} \mathbf{z} \mathbf{z} \mathbf{z} . Поведение \mathbf{z} \mathbf{z} при \mathbf{z} $\mathbf{z$

§6. ЗАКЛЮЧЕНИЕ

Вопрос о существовании многокварковой фазы в ядерном веществе является одним из наиболее актуальных вопросов современной ядерной физики и физики элементарных частиц. Мы рассматриваем его в аспекте проявления примесей многокварковых систем /МКС/ в основных состояниях ядер и возможного существования "чистых" /резонансного типа/ многокварковых состояний, например, дибарионов, которые тоже находятся в области сравнительно небольших энергий. Однако, в принципе, возможна и такая ситуация, когда все ядерное вещество переходит в кварк-глюонную плазму. Для этого, конечно, нужны специальные условия: сильное сжатие ядер в ядроядерных столкновениях и "закачка" в ядерный объем большой энергии. Основу теоретического рассмотрения очерченного нами круга задач должен составлять, по-видимому, релятивистский подход, учитывающий связь адронных и многокварковых каналов, где сосуществование и взаимодействие двух /или большего числа/ фаз происходит в динамике. Здесь мы делаем первый шаг на пути решения этой проблемы, а именно: формулируем нерелятивистский подход, учитывающий связь двух каналов - многокваркового и нуклон-нуклонного. Взаимодействие в последнем задается реалистическими нуклон-нуклонными силами, при этом область действия кора исключается /в ней картина парного NN-взаимодействия заменяется представлением о многокварковом взаимодействии/. В рамках этого подхода можно рассчитать как вероятность многокварковой примеси в ядрах, так и ширины многокварковых резонансов в NN -рассеянии. Его достоинство состоит в том, что он не требует пересмотра основных положений традиционной ядерной физики. Действительно. многокварковые компоненты сконцентрированы в малых пространственных областях и при низких энергиях их действие в нуклонном канале можно имитировать, вводя кор NN -сил. Поэтому выводы традиционных ядерных моделей, предполагающих наличие лишь нуклонных каналов при исследовании основных и возбужденных состояний ядер и ядерных реакций с небольшой ($q^2 << 1 \, \Gamma 3B^2/c^2$) передачей импульса, остаются без изменений. При больших переданных импульсах />> 1 ГэВ $^2/c^2/$ основной вклад дает область малых расстояний, т.е. область многокварковых состояний /при этом может оказаться весьма важным проявление их структурных особенностей/. В частности, импульсные распределения кварков в таких системах оказываются весьма специфическими, зависят от числа кварков и

переданного импульса. Предположение о наличии многокварковых систем в ядрах сейчас является необходимым для понимания лептонядерных и адрон-ядерных процессов при больших передачах импульса в области, запрещенной кинематикой для соответствующих процессов на свободных нуклонах. В ряде случаев этот вклад является определяющим, что было показано на конкретных примерах учета МКС при расчетах электромагнитных формфакторов, поляризационных характеристик и структурных функций ядер.

Интересной задачей дальнейшего теоретического исследования является построение релятивистской теории многокварковых систем и расчет на ее основе конкретных ядерных процессов.

Важной экспериментальной задачей в настоящее время представляется измерение структурной функции дейтрона ${\bf F}_2$, ${\bf F}_3$ в области $1<{\bf x}<2$ в широком интервале ${\bf Q}^2$.

В заключение приношу благодарность В.В.Бурову, С.М.Доркину, Л.П.Каптарю, В.К.Лукьянову и Б.Л.Резнику за плодотворные обсуждения и сотрудничество.

ЛИТЕРАТУРА

- 1. Блохинцев Д.И. ЖЭТФ, 1957, 33, с.1295.
- Балдин А.М. Краткие сообщения по физике, 1971, 1, с.35; 3ЧАЯ, 1977, 8, с.429.
- 3. Буров В.В., Лукьянов В.К., Титов А.И. В кн.: Труды международной конференции по избранным вопросам структуры ядра. ОИЯИ, Д-9920, Дубна, 1976, т.2, с.432; Лукьянов В.К., Титов А.И. ЭЧАЯ, 1979, 10, с.815.
- 4. Ефремов А.В. ЯФ, 1976, 24, с.1208; ЭЧАЯ, 1982, 13, с.613.
- Matveev V.A., Sorba P. Nuovo Cim.Lett., 1977, 20, p.145;
 Matveev V.A. In: CERN-JINR School of Physics, Hondo /Fin-land/, 1981, Proc.Geneva, 1982, p.306.
- 6. Aerts A.T., Mulders R.J., de Swart J.J. Phys.Rev., 1978, D17, p.260; Макаров М.М. УФН, 1982, 136, c.185.
- Kamae T. In: Proc. of the Ninth Int. Conf. of High Energy Physics and Nuclear Structure. Versailles, France, 1981, p. 25.
- 8. Лексин Г.А. В кн.: Труды XVIII Международной конференции по физике высоких энергий, Тбилиси, 1976. ОИЯИ, Д1,2-10400, Дубна, 1977, т.1, А6-3.
- 9. Baldin A.M. Preprint JINR, E2-83-415, Dubna, 1983.
- 10. Schutz W.P. et al. Phys.Rev.Lett., 1977, 38, p.295.
- Day D. et al. Phys.Rev.Lett., 1979, 43, p.1143; Rock S.et al. Phys.Rev., 1983, C26, p.1592.
- 12. Савин И.А. В кн.: Труды Межд.семинара по проблемам физики высоких энергий. ОИЯИ, Д1,2-81-728, Дубна, 1981, с.223.
- 13. Baldin A.M. JINR, E1-80-545, Dubna, 1981.
- 14. Aubert J.J. Phys.Lett., 1983, 123B, p.275.

- 15. Arnold R.G. et al. Phys.Rev.Lett., 1975, 35, p.776; Arnold R.G. et al. Contributed paper at the Ninth Int. Conf. on High Energy Physics and Nucl.Structure, Versailles, France, 1981, p.94.
- Mc.Carthy J.S., Sick I., Whitney R.R. Phys.Rev., 1977, C15, p.1396; Bernheim M. et al. Nuovo Cim.Lett., 1972, 5, p.431; Arnold R.G. et al. Phys.Rev.Lett., 1978, 40, p.1429.
- 17. Ableev V.G. et al. Nucl. Phys., 1983, A393, p.491.
- 18. Доркин С.М., Лукьянов В.К., Титов А.И. ОИЯИ, Р2-82-913, Дубна, 1982.
- Smirnov Yu.F., Tchuvilsky Yu.M. J.Phys.G: Nucl.Phys., 1978,
 L1.
- Dubovik V.M., Obukhovsky I.T. Z.Phys.A: Atoms and Nuclei, 1981, 299, p.342.
- 21. Доркин С.М., Резник Б.Л., Титов А.И. ЯФ, 1982, 36,с.1244.
- Burov V.V. et al. Z. Phys.A: Atoms and Nuclei, 1982,306, p.1491.
- 23. Буров В.В., Лукьянов В.К., Титов А.И. ОИЯИ, Р2-83-749, Дубна, 1983.
- 24. Titov A.I. JINR, E2-83-460, Dubna, 1983.
- 25. Бунатян Г.Г. ЯФ, 1980, 31, с.1186; Бунатян Г.Г., Мишустин И.Н., ЯФ, 1982, 36, с.1121.
- Ericson M., Thomas A.W. Phys.Lett., 1983, 128B, p.112;
 Llewellyn Smith G.H. Phys.Lett., 1983, 128B, p.107.
- 27. Lukyanov V.K., Titov A.I. In: Proc.Int.Conf. on Extreme states in Nuclear Systems. Dresden, 1980, vol.2, p.60, Quark-Nuclear-Exotic; Гриднев К.А. и др. Изв.АН КазССР, сер.физ-мат., 1979, т.2, с.74.

Титов А.И. Многокварковые системы в ядрах

P2-84-50

Обсуждаются экспериментальные указания на существование многокварковых систем /МКС/ в ядрах. Сформулирована теория связи адронного и кваркового каналов в ядрах и на ее основе рассчитаны амплитуды шестикварковых состояний в дейтроне и их ширины. Проведен анализ влияния МКС на формфакторы дейтрона и гелия-3. Исследована роль МКС в процессах глубоконеупругого рассеяния лептонов, в частности, А-зависимость структурной функции и ее поведение при больших значениях масштабной переменной х. Приведены сравнения с соответствующими экспериментальными данными.

Работа выполнена в Лаборатории теоретической физики ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1984

Перевод Г.Г.Сандуковской

Titov A.I. Multiquark Systems in Nuclei P2-84-50

The experimental revelations of multiquark configurations (MQS) in nuclei is discussed. The coupled channel model for multiquark and nucleon-nucleon channels in nuclei is developed and the estimations of the probability for the six-quark admixture in a deuteron and of the widths of six-quark resonances are done. The manifestation of the MQS in the elastic and deep-inelastic lepton-nuclei scattering is analysed.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1984