

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

28/12-84

2035/84

P2-84-40

В.И.Саврин, В.В.Санадзе, Н.Б.Скачков

ОПИСАНИЕ РАСПАДОВ СОСТАВНЫХ МЕЗОНОВ НА ОСНОВЕ КОВАРИАНТНОЙ ГАМИЛЬТОНОВОЙ ФОРМУЛИРОВКИ ТЕОРИИ ПОЛЯ

1. ВВЕДЕНИЕ

Описанию распадов мезонов в рамках релятивистских кварковых моделей посвящено немало работ ^{/1-5/}. Основными объектами, из которых конструируются в рамках этих моделей матричные элементы того или иного распада, являются: 1/ волновая функция связанного состояния двух кварков, описывающая вершину перехода мезона в кварк-антикварковую пару и 2/ амплитуда процесса перехода кварка и антикварка в конечные состояния - адроны, лептоны, фотоны.

В подходах, основанных на применении уравнения Бете-Солпитера, волновая функция находится как решение этого уравнения, а амплитуда определяется на основе фейнмановских диаграмм. Однако практическое использование этого формализма осложняется трудностями нахождения решений уравнения Бете-Солпитера. К тому же сама волновая функция этого двухчастичного уравнения содержит дополнительную, по сравнению с нерелятивистским формализмом, зависимость от относительного времени, что затрудняет ее вероятностную интерпретацию, формулировку граничных условий и т.п.

Поэтому в большинстве работ авторы переходят к одновременной волновой функции кварк-антикварковой системы, подчиняющейся уже трехмерным уравнениям квазипотенциального типа⁶. Ядро уравнения строится по разработанной процедуре⁶ из фейнмановских матричных элементов амплитуды рассеяния, продолженных соответствующим образом; в квазипотенциальном подходе амплитуда перехода кварка и антикварка в конечное состояние тоже должна представлять собой фейнмановскую амплитуду, продолженную за энергетическую поверхность.

Процедура продолжения за энергетическую поверхность может быть определзна различными способами ^{/7/}. Поэтому представляет интерес использование такого подхода, в котором закон продолжения за энергетическую поверхность не носил бы рецептурного характера, а был бы заложен в самом формализме. Таким свойством обладает квазипотенциальный подход, основанный на шпурионной диаграммной технике, которая возникает в ковариантной гамильтоновой формулировке квантовой теории поля ^{/8/}.

В настоящей работе в рамках ковариантной гамильтоновой формулировки квантовой теории поля получены выражения для процессов распада псевдоскалярного мезона на 2y-кванта, а также распада $\pi^{\pm} \rightarrow \mu^{\pm} \vec{v}$. В следующем разделе приведены элементы шпурионной диаграммной техники, необходимые для получения квазипотенциального уравнения и расчета матричных элементов. В третьем разделе на основе этой техники выведены формулы, описывающие распады парапозитрония и π -мезона на 2y-кванта, а в четвертом аналогичным образом описан распад $\pi^{\pm} \rightarrow \mu^{\pm} \vec{v}$.

2. ЭЛЕМЕНТЫ КОВАРИАНТНОЙ ГАМИЛЬТОНОВОЙ ФОРМУЛИРОВКИ КВАНТОВОЙ ТЕОРИИ ПОЛЯ

Основное отличие гамильтоновой формулировки квантовой теории поля, предложенной В.Г.Кадышевским ^{/8/}, от фейнмановской состоит в следующем.В фейнмановской формулировке импульсы частиц в промежуточных состояниях /виртуальные частицы/ лежат вне массовой поверхности и для каждой вершины выполняется закон сохранения энергии-импульса. В подходе Кадышевского импульсы всех частиц /в том числе и виртуальных/ принадлежат массовой поверхности, но каждая вершина находится вне "энергетической" поверхности, а именно: в каждую вершину входит дополнительная линия шпуриона-квазичастицы, переносящей 4-импульс $\lambda r_j / \lambda_{\mu}$ - единичный времениподобный вектор: $\lambda^2 = \lambda_{\mu} \lambda^{\mu} = 1$, r_j - скалярный параметр/. Внутренней шпурионной линии отвечает пропагатор

$$g(r_j) = \frac{1}{2\pi(r_j - i\epsilon)}$$
 /2.1/

Каждой внутренней линии, соответствующей виртуальной спинорной частице с 4-импульсом k; и массой m, отвечает пропагатор

$$S_{\alpha\beta}^{(+)}(k_{j},m) = \theta(k_{j}^{\circ})(\gamma \cdot k_{j}+m)_{\alpha\beta}\delta(k_{j}^{2}-m^{2}), \qquad (2.2)$$

вид которого явно указывает на то, что импульс частицы и в промежуточном состоянии принадлежит массовому гиперболоиду

$$(k_{j}^{\circ})^{2} - k_{j}^{2} = m^{2}$$
. /2.3/

Вершине перехода мезона с импульсом P в кварк с импульсом \mathbf{k}_1 , антикварк с импульсом \mathbf{k}_2 и шпурион с импульсом λr сопоставим обобщенную вершинную функцию $\Gamma(\mathbf{k}_1, \mathbf{k}_2 | \mathbf{P}, \lambda r)$, которую ^{/9/} определим с помощью соотношения

$$\langle \mathbf{k}_{1}, \mathbf{q}_{1}; \mathbf{k}_{2}, \mathbf{q}_{2} | \mathbf{R}(\lambda r) | \mathbf{P}, \mathbf{M}, \mathbf{J}, \mathbf{Q} \rangle = (2\pi)^{4} \frac{\Gamma_{m_{j}}^{J}(\mathbf{k}_{1}, \mathbf{k}_{2} | \mathbf{P}, \lambda r)}{\sqrt{2\mathbf{k}_{1}^{\circ} 2\mathbf{k}_{2}^{\circ} 2\mathbf{P}^{\circ}}} \times \\ \times \delta(\mathbf{P} - \mathbf{k}_{1} - \mathbf{k}_{2} + \lambda r).$$

Здесь Р, М, J, m_j и Q - соответственно импульс, масса, спин, проекция спина и заряд нуклона, а \mathbf{k}_1 , \mathbf{k}_2 и \mathbf{q}_1 , \mathbf{q}_2 - импульсы и заряды составляющих кварка и антикварка. Оператор эволюции системы $\mathbf{R}(\lambda r)$ определен вне энергетической поверхности, но при r = 0 он связан с физической S матрицей соотношением S = 1' + + iR(0). Согласно ^{/8} R(λr) удовлетворяет операторному уравнению

$$R(\lambda r) = -H(\lambda r) - \int H(\lambda r - \lambda r') R(\lambda r') \frac{dr'}{2\pi (r' - i\epsilon)} . \qquad (2.5)$$

Через $H(\lambda_r)$ в /2.5/ обозначен фурье-образ плотности гамильтониана теории.

Заметим, что определенные с помощью соотношения /2.4/ обобщенные вершинные функции не являются объектами, рассчитываемыми методами теории возмущений. Их вид может быть найден на основе динамических уравнений. Чтобы получить такое уравнение для $\Gamma(\mathbf{k}_1, \mathbf{k}_2 | \mathbf{P}, \lambda r)$, заключим /2.5/ в те же обкладки, что и оператор $\mathbf{R}(\lambda r)$ в /2.4/. Далее, применив стандартную методику получения квазипотенциального уравнения, изложенную в /10/, находим

$$\begin{split} \Gamma_{\alpha\beta}\left(\mathbf{k}_{1},\mathbf{k}_{2} \mid \mathbf{P},\lambda r\right) &= \frac{1}{(2\pi)^{8}} \int d\mathbf{k}_{1}' d\mathbf{k}_{2}' \frac{dr'}{r'-i\epsilon} V_{\alpha\beta}^{\mu\nu}\left(\mathbf{k}_{1},\mathbf{k}_{2} \mid \mathbf{k}_{1}',\mathbf{k}_{2}'\right) \times \\ &\times S_{\nu\sigma}^{(+)}(\mathbf{k}_{1}',\mathbf{m}) S_{\kappa\mu}^{(+)}\left(\mathbf{k}_{2}',-\mathbf{m}\right) \Gamma^{\sigma\kappa}(\mathbf{k}_{1}',\mathbf{k}_{2}' \mid \mathbf{P},\lambda r) \delta^{(4)}(\mathbf{P}-\mathbf{k}_{1}'-\mathbf{k}_{2}'+\lambda r) \,. \end{split}$$

Будем искать решение /2.6/ с наперед заданной спинорной структурой. С учетом псевдоскалярности *т*-мезона положим

$$\Gamma_{\alpha\beta}(\mathbf{k}_{1},\mathbf{k}_{2}|\mathbf{P},\lambda r) = (y_{5})_{\alpha\beta} \Gamma(\mathbf{k}_{1},\mathbf{k}_{2}|\mathbf{P},\lambda r). \qquad (2.7)$$

Для дальнейших расчетов удобно выбрать 4-вектор λ , направленный вдоль импульса составной частицы $\lambda^{\mu} = P^{\mu}/M$. Тогда, как это было показано в ^{/10/}, вершинная функция $\Gamma(\mathbf{k}_1, \mathbf{k}_2 | \mathbf{P}, \lambda r)$ становится зависимой лишь от одного скалярного аргумента, в качестве которого удобно выбрать величину $\Delta_{\mathbf{k},\mathbf{m}\lambda}^{\circ}$, являющуюся временной компонентой 4-импульса $\Delta_{\mathbf{k},\mathbf{m}\lambda}^{\mu} \equiv (\Lambda_{\mathbf{p}}^{-1}\mathbf{k})^{\mu}$. Таким образом, имеем

$$\Gamma(k_1, k_2 | P, \lambda_r) = \Gamma(\Delta_{k,m\lambda}^{\circ}).$$
 (2.8/

Тогда уравнение /2.6/ можно представить в виде

$$\Gamma(\Delta_{\mathbf{k}}^{\circ}) = \frac{1}{(2\pi)^{3}} \int \frac{\mathrm{d}^{\circ} \Delta_{\mathbf{k}}^{\circ}}{2\Delta_{\mathbf{k}}^{\circ}} \Gamma(\Delta_{\mathbf{k}}^{\circ}) \frac{\mathrm{Sp}\{y^{5}(\hat{\mathbf{k}}^{\circ}-\mathbf{m})y^{5}(\hat{\mathbf{k}}+\mathbf{m})\}}{2\Delta_{\mathbf{k}}^{\circ} \{\mathbf{M}-2\Delta_{\mathbf{k}}^{\circ}+i\epsilon\}} V(\vec{\Delta}_{\mathbf{k}}^{\circ}; \vec{\Delta}_{\mathbf{k}}^{\circ}), /2.9/$$

где введены обозначения $\vec{\Delta}_{k} \equiv \vec{\Delta}_{k} = -\vec{\Delta}_{k}$. Определим волновую функцию следующим образом ^{/9/}:

$$\Phi(\Delta_{\mathbf{k}}^{\circ}) = \frac{\Gamma(\Delta_{\mathbf{k}}^{\circ})}{2\Delta_{\mathbf{k}}^{\circ}[\mathbf{M} - 2\Delta_{\mathbf{k}}^{\circ} + i\epsilon]}.$$
 /2.10/

Из /2.9/ для волновой функции /2.10/ следует уравнение /11/

$$(\Delta_{\mathbf{k}}^{\circ})^{2} (\mathbf{M} - 2\Delta_{\mathbf{k}}^{\circ}) \Phi(\Delta_{\mathbf{k}}^{\circ}) = \frac{1}{(2\pi)^{3}} \int \frac{d^{3} \vec{\Delta}_{\mathbf{k}}}{2\Delta_{\mathbf{k}}^{\circ}} 4(2\Delta_{\mathbf{k}}^{\circ} \cdot 2\Delta_{\mathbf{k}}^{\circ})(2\Delta_{\mathbf{k}}^{\circ} \Delta_{\mathbf{k}}^{\circ} - \mathbf{m}^{2}) \times$$

$$\times \nabla(\vec{\Delta}_{\mathbf{k}}, \vec{\Delta}_{\mathbf{k}}^{\circ}) \Phi(\Delta_{\mathbf{k}}^{\circ}).$$

$$/2.11/$$

*Здесь Λ^{-1} есть чисто лоренцевское преобразование в систему покоя связанного состояния, т.е. $\Lambda_p^{-1}P = (M, \vec{0})$.

Рассмотрим два модельных квазипотенциала. Вершину виртуального перехода парапозитрония как связанного состояния в электронпозитронную пару будем искать как решение уравнения /2.9/ с потенциалом однофотонного обмена. А для вершины перехода *m*-мезона в виртуальные кварк и антикварк используем потенциал одноглюонного обмена.

В терминах вектора $\Delta_{\mathbf{k},\mathbf{m}\lambda}$ для квазипотенциала электромагнитного взаимодействия /однофотонный обмен/ имеем выражение /10,12/

$$V_0^{K3\beta} = \frac{4\pi a}{q^2} = -\frac{2\pi a}{(-M + \Delta_k^o + \Delta_k^o + |\vec{\Delta}_k - \vec{\Delta}_k \cdot |)(|\vec{\Delta}_k - \vec{\Delta}_k \cdot |)} / 2.12/$$

а для квазипотенциала, отвечающего в КХД одноглюонному обмену, соответственно

$$V_{0}^{KX\Pi} = \frac{\alpha_{g}(Q^{2})}{Q^{2}} = \frac{(4\pi)^{2}}{\beta_{0}(-M + \Delta_{k}^{o} + \Delta_{k}^{o} + |\vec{\Delta}_{k} - \vec{\Delta}_{k'}|) |\vec{\Delta}_{k} - \vec{\Delta}_{k'}| \ln \{\frac{1}{\Lambda^{2}}(-M + \Delta_{k}^{o} + \Delta_{k}^{o} - \vec{\Delta}_{k'}|) |\vec{\Delta}_{k} - \vec{\Delta}_{k'}| |\vec{\Delta}_{k} - \vec{\Delta}_{k'}|) |\vec{\Delta}_{k} - \vec{\Delta}_{k'}| |\vec{\Delta}_{k'} - \vec{\Delta}_$$

где $\beta_0 = 11 - 2/3 N_f$, N_f - число ароматов, а Λ - свободный масштабный параметр теории.

Для уравнения /2.11/ с квазипотенциалами /2.12/ и /2.13/ находим в качестве приближенного решения следующие релятивистские волновые функции ^{/11,12/}: для КХД взаимодействия

$$\phi^{\text{KX}\Pi}(\chi_{p}) = \frac{C_{0}\chi_{p}}{(ch\chi_{p} - M/2m)[\chi_{p}^{2} + \arccos M/2m]}, \qquad (2.14)$$

для электромагнитного взаимодействия

$$\phi^{\text{K9g}}(\chi_{p}) = \frac{C_0 \text{sh}\chi_p}{(\text{ch}\chi_p - M_{e^+e^-}/2m_e)^2}.$$
 /2.15/

В /2.14/ и /2.15/ введена параметризация $|\vec{p}| = m \operatorname{sh}_{\chi_p}$, $p^\circ = m \operatorname{ch}_{\chi_p}$, а переход от волновой функции $\Phi(\Delta_k^\circ)$ к функции $\phi(\chi_p)$ осуществляется с помощью соотношения

$$\Phi(\Delta_{\mathbf{k}}^{\circ}) = \frac{4\pi}{\mathrm{msh}\chi_{\mathrm{p}}} \phi(\chi_{\mathrm{p}}). \qquad (2.16)$$

Волновые функции /2.14/ и /2.15/ удовлетворяют следующему условию нормировки /11/:

$$\int ch_X |\phi(\chi)|^2 d\chi = \frac{\pi M}{2m}$$
 /2.17/

Здесь М - масса составного объекта, а 🕮 - масса составляющих.

3. РАСПАДЫ "°-МЕЗОНА И ПАРАПОЗИТРОНИЯ (е.е.) НА 2у-КВАНТА

В рамках гамильтоновой формулировки квантовой теории поля в матричный элемент процесса $\pi^{\circ} \rightarrow 2\gamma$ дают вклад четыре диаграммы, изображенные на рис.1. Надо отметить, что наряду с рассматриваемыми диаграммами в данном порядке по константе связи можно нарисовать диаграммы, в которых шпурионные линии направлены иным образом. Число таких топологически возможных диаграмм равно 24. Однако в вершинах всех остальных диаграмм, кроме изображенных на рис.1, будет нарушаться закон сохранения электрического заряда, поэтому они вклада не дают. Матричный элемент диаграммы 1а имеет вид

$$\begin{split} \mathbf{M}_{\nu\mu}^{a}(\mathbf{P};\mathbf{q},\mathbf{q}_{2}) &= \frac{1}{(2\pi)^{2}} \int \Gamma_{\alpha\beta}(\mathbf{P};\mathbf{k}_{1},\mathbf{k}_{2}) \, \mathrm{d}^{4}\mathbf{k}_{2} \, \mathrm{S}_{\beta\gamma}^{(+)}(\mathbf{k}_{2},-\mathbf{m}) \, \frac{\mathrm{d}r_{2}}{r_{2}-\mathrm{i}\epsilon} \times \\ &\times \delta^{4}(\mathbf{P}+\lambda r_{2}-\mathbf{k}_{1}-\mathbf{k}_{2}) \, \gamma_{\nu} \, \mathrm{d}^{4}\mathbf{k}_{3} \, \mathrm{S}_{\gamma\sigma}^{(+)}(\mathbf{k}_{3},\mathbf{m}) \, \frac{\mathrm{d}r_{1}}{r_{1}-\mathrm{i}\epsilon} \gamma^{\mu} \mathrm{d}^{4}\mathbf{k}_{1} \, \mathrm{S}_{\sigma\alpha}^{(+)}(\mathbf{k}_{1},\mathbf{m}) \times \ /3.1/\\ &\times \delta^{4}(\mathbf{k}_{1}+\lambda r_{1}-\mathbf{k}_{3}-\lambda r_{2}-\mathbf{q}_{1}) \, \delta^{4}(\mathbf{k}_{3}+\mathbf{k}_{2}-\lambda r_{1}-\mathbf{q}_{2}) \, . \end{split}$$

Представим, как и раньше, спиновую структуру вершинной функции согласно /2.7/ и произведем интегрирование по переменным k_1 и k_3 с помощью δ^4 -функций, присутствующих в /3.1/, а по переменным r_1 и r_2 - с использованием δ -функций, входящих в пропагатор спинорных частиц /см./2.2//. В итоге получим

$$M_{\nu\mu}^{a}(P; q_{1}, q_{2}) = \frac{1}{(2\pi)^{2}} \int \frac{d^{3}\vec{k}_{2}}{2k_{2}^{o}} \frac{\Gamma(P; k_{1}, k_{2})}{r_{2}^{+}|r_{2}^{+}-r_{2}^{-}|} \frac{1}{r_{1}^{+}|r_{1}^{+}-r_{1}^{-}|} \times Sp \{\gamma_{5}(\hat{k} - m)\gamma^{\nu}(\hat{\lambda}r_{1}^{+} + \hat{q}_{2}^{-}\hat{k}_{2}^{+} + m)\gamma^{\mu}(\hat{P} + \hat{\lambda}r_{2}^{+} - \hat{k}_{2}^{+} + m)\}.$$
(3.2/

Рис.1

Здесь

$$r_{1}^{\pm} = -\lambda (q_{2} - k_{2}) \pm \sqrt{[\lambda (q_{2} - k_{2})]^{2} + q_{2} (q_{2} - 2k_{2})},$$

$$r_{2}^{\pm} = -\lambda (P - k_{2}) \pm \sqrt{[\lambda (P - k_{2})]^{2} - M^{2} + 2Pk_{2}}.$$
(3.3)

Вычислим в /3.2/ след и направим вектор λ вдоль импульса мезона $\lambda^{\mu} = P^{\mu}/M$. Тогда, пользуясь соотношением /2.10/, находим

$$\mathbf{M}_{\mu\nu}^{a}(\mathbf{P},\mathbf{q}_{1},\mathbf{q}_{2}) = \frac{8s_{q}am}{(2\pi)^{3/2}M_{\pi}} \int \frac{d^{3}\vec{\Delta_{k}}}{2\Delta_{k}^{\circ}} 2\Delta_{k}^{\circ} \Phi(\Delta_{k}^{\circ}) \epsilon_{\nu\mu\rho\sigma} (\mathbf{q}_{2}^{\circ})_{\rho}(\mathbf{q}_{1}^{\circ})_{\sigma} \times (3.4)$$

$$\times \frac{1}{2\sqrt{m^2 + (\vec{q}_1 - \vec{\Delta}_k)^2} [-(q_1^\circ - \vec{\Delta}_k^\circ) + \sqrt{m^2 + (\vec{q}_1^\circ - \vec{\Delta}_k^\circ)^2}]} + (q_1 \to q_2).$$

Здесь $q'_{\mu} = \Lambda^{-1}(q_{\mu}), \Lambda^{-1}P = (M, 0).$ Рассчитав аналогичным образом матричные элементы диаграмм 16. 1в и 1г. получим

$$M = M^{a} + M^{b} + M^{B} + M^{\Gamma} = M^{B} + M^{\Gamma} = 2M^{\Gamma}$$
(3.5)

Другими словами, матричные элементы диаграмм 1а и 16 взаимно сокращают друг друга, а - диаграмм 1в и 1г - совпадают.

С другой стороны, амплитуда аннигиляции ло-мезона в два фотона может быть представлена стандартным образом в следующем виде:

$$M_{\pi^{0} \to 2\gamma} = F_{\pi^{0} \to 2\gamma} e_{1}^{\mu} e_{2}^{\nu} \epsilon_{\mu\nu\rho\sigma} q_{1}^{\rho} P^{\sigma}, \qquad (3.6)$$

где $\mathbb{F}_{\pi^{\circ} \to 2\gamma}$ является постоянной распада $\pi^{\circ} \to 2\gamma$. Сравнивая /3.6/ с /3.4/ и учитывая /3.5/, для постоянной распада $\pi^{\circ} \to 2\gamma$ находим

$$F_{\pi^{\circ} \to 2\gamma} = \frac{8m_{q}s_{q}a}{\sqrt{2\pi}} \int_{0}^{\infty} \frac{d^{3}|\vec{\Delta}_{k}|}{2\Delta^{\circ}} \Phi(\Delta_{k}^{\circ}) \int_{-1}^{+1} \frac{d\cos(\vec{q}', \vec{\Delta}_{k})d\phi}{2\sqrt{m^{2} + (\vec{q}_{1}' - \vec{\Delta}_{k})^{2}} [-(q_{1}^{\circ}' - \Delta_{k} + \sqrt{m^{2} + (\vec{q}' - \vec{\Delta}_{k})^{2}}]}$$

После интегрирования в /3.7/ по сферическим углам окончательно получим

$$F_{\pi^{\circ} \to 2\gamma} = \frac{8m_{q} s_{q} \alpha}{M_{\pi}} \sqrt{2\pi} \int \frac{d|\vec{k}|}{2k^{\circ}} \Phi(k^{\circ}) \frac{1}{2|\vec{k}| |\vec{q}_{1}|} \{ \ln |\frac{|\vec{k}| - k^{\circ}}{|\vec{k}| + k^{\circ}} + \frac{1}{|\vec{k}| - k^{\circ}} \} + \ln |\frac{z_{1} + (q_{1}^{\circ} - k^{\circ})}{z_{1} - (q_{1}^{\circ} - k^{\circ})} - \ln |\frac{z_{2} + (q_{1}^{\circ} - k^{\circ})}{z_{2} - (q_{1}^{\circ} - k^{\circ})} |\} + (q_{1} \to q_{2}),$$
(3.8/

где мы ввели обозначения

$$z_{1} = \sqrt{(k^{\circ})^{2} + (q_{1}^{\circ})^{2} - 2q_{1}^{\circ}|\vec{k}_{1}|}; \quad z_{g} = \sqrt{(k^{\circ})^{2} + (q_{1}^{\circ})^{2} + 2q_{1}^{\circ}|\vec{k}_{1}|}. \quad /3.9/$$

Расчет распада парапозитрония (е_е_) - 2у полностью аналогичен расчету рассмотренного процесса. В этом случае также будут доминировать диаграммы, изображенные на рис.1. Для получения константы распада $F_{(e_+e_-) \to 2\gamma}$ достаточно в /3.8/ заменить m_q на массу электрона, M_{π} на массу связанного состояния (e_+e_-), а в качестве волновой функции Ф(k°) выбрать волновую функцию /2.15/.

4. РАСПАД "-МЕЗОНА НА МООН И НЕИТРИНО

Диаграмма распада $\pi^{\pm} \rightarrow \mu^{\pm} \tilde{\nu}$ представлена на рис.2. Записывая матричный элемент этого процесса, заметим, что вершину четырех-

фермионного взаимодействия надо представить как произведение слабого V-А тока на аксиальный слабый адронный ток /в адронный ток войдет только аксиальная часть тока из-за псевдоскалярности # мезона/. С учетом вышесказанного. следуя разделу 2, находим

$$\begin{split} \mathbf{M} &= \int d\mathbf{k}_{1} d\mathbf{k}_{2} dr \left(\hat{\mathbf{O}}_{a\beta} \Gamma^{\circ}(\mathbf{P}; \mathbf{k}_{1}, \mathbf{k}_{2}; \lambda r) \mathbf{S}_{\beta\sigma}^{(+)} \left(\mathbf{k}_{1}, \mathbf{m} \right) \left(\gamma_{\mu} \gamma_{5} \right)_{\sigma\kappa} \times \\ &\times \mathbf{S}_{\kappa a}^{+} \left(\mathbf{k}_{2}, -\mathbf{m} \right) \frac{1}{2\pi (r - i\epsilon)} \widetilde{\mathbf{u}}_{\rho}^{\mu} \left(\vec{\mathbf{q}}_{1} \right) \left(y^{\mu} (\mathbf{1} + \gamma_{5}) \right)_{\rho\rho}, \mathbf{u}_{\rho}^{\tilde{\nu}} \left(\vec{\mathbf{q}}_{2} \right) \times \end{split}$$

$$\end{split}$$

$$\times \delta \left(\mathbf{P} - \mathbf{k}_{1} - \mathbf{k}_{2} + \lambda r \right) \delta \left(\mathbf{k}_{1} + \mathbf{k}_{2} - \lambda r - \mathbf{q}_{1} - \mathbf{q}_{2} \right) .$$

Здесь, как и раньще, мы выделили спиновую структуру адронной вершины, а \bar{u}^{μ} и u^{ν} - биспиноры соответственно мюона и антинейтрино. Аналогично процедуре, которая была описана во втором разделе, перейдем в /4.1/ к инвариантным переменным $\Delta^{\mu}_{k,m\lambda}$. При этом имеем

$$M = \int \frac{d^{3}\Delta_{k}}{2\Delta_{k}^{o}} \Phi(\Delta_{k}^{o}) \operatorname{Sp} \{\gamma_{5}(\widehat{\Delta}_{k} + m) \gamma_{\mu} \gamma_{5}(\widehat{\Delta}_{P} - \widehat{\Delta}_{k} + \widehat{\lambda}r - m) \} \times / 4.2 / \times \overline{u}^{\mu}(q_{1}) \gamma^{\mu}(1 + \gamma_{5}) u^{\nu}(\overline{q}_{2}) \delta(P - q_{1} - q_{2}) u_{\pi}(P).$$

После расчета следа в /4.2/ мы приходим к окончательному выражению для матричного элемента:

$$M = {}^{\prime}G_{A} \frac{\sqrt{2\pi m}}{M} \int \frac{d^{3}\vec{\Delta}_{k}}{2k^{\circ}} \Phi(k^{\circ}) P^{\mu} \bar{u}_{\rho}^{\mu}(\vec{q}_{1}) \gamma_{\mu}(1 + \gamma_{5}) u_{\rho}^{\vec{\nu}}, (\vec{q}_{2}) u_{\pi}(P) .$$
 (4.3/

С другой стороны, тот же матричный элемент можно представить стандартным образом:

$$\mathbf{M} = \mathbf{Gf}_{\pi \to \mu \overline{\nu}} \ \overline{\mathbf{u}}^{\mu}(\mathbf{q}_{1}) \ \widehat{\mathbf{P}}(1 + \gamma_{5}) \mathbf{u}^{\overline{\nu}}(\mathbf{q}_{2}) \mathbf{u}_{\pi}(\mathbf{P}) \ . \tag{4.4}$$

Здесь $f_{\pi \to \mu \tilde{\nu}}$ - константа распада π -мезона на мюон и антинейтрино. Сравнивая /4.3/ и /4.4/, для константы распада находим следующее выражение:

$$f_{\pi \to \mu \bar{\nu}} = \frac{2m\sqrt{2\pi}G_{A}}{GM} \int |\vec{\Delta}_{k}|^{2} \frac{d|\vec{\Delta}_{k}|}{2\Delta_{k}^{\circ}} \Phi(\Delta_{k}^{\circ}). \qquad (4.5)$$

5. ЗАКЛЮЧЕНИЕ

В настоящей работе на основе гамильтоновой формулировки квантовой теории поля мы рассмотрели распады таких связанных систем, как парапозитроний (e_+e_-) и π° -мезон, на 2y-кванта, а также распад $\pi^{\pm} \rightarrow \mu^{\pm} \vec{\nu}$. Для нахождения вероятности перехода составной части системы в его составляющие мы использовали волновые функции связанного состояния. Последние являются решениями динамического уравнения, возникающего в гамильтоновой формулировке квантовой теории поля и совпадающего по форме с трехмерным квазипотенциальным уравнением, полученным в рамках одновременного подхода к проблеме описания связанных систем.

Авторы благодарны В.Калиссу за участие в работе в ее начальной стадии, а также А.Н.Сисакяну, Г.Ю.Тюменкову и О.Ю.Шевченко за интерес к работе и полезные обсуждения.

ЛИТЕРАТУРА

- 1. Матвеев В.А., Струтинский Б.В., Тавхелидзе А.Н. ОИЯИ, P2-2527, Дубна, 1965.
- 2. Van Royen R., Wesskopf V.F. Nuovo Cimento, 1967, 50A,p.617.
- Savrin V.I., Skachkov N.B. Lett.Nuovo Cim., 1980, 29, No.11, p.363-369.
- 4. Bergstrom Y. et al. Phys.Lett., 1979, 82B, p.419.
- 5. Козлов Г.А. и др. ОИЯИ, Р2-83-129, Дубна, 1983.
- 6. Logunov A.A., Tavkhelidze A.N. Nuovo Cimento, 1963,29,p.380.
- 7. Фаустов Р.Н. ЭЧАЯ, 1972, т.3, с.238.
- 8. Кадышевский В.Г. ЖЭТФ, 1968, 46, № 2, с.654-662; № 3, c.c. 872, 883; Kadyshevsky V.G. Nucl.Phys., 1968, B6, No.12, p.125-148.
- 9. Скачков Н.Б. Соловцов И.Л. Т№, 1980, 43, № 3, с.330-342.
- Kadyshevsky V.G., Mateev M.D. Nuovo Cimento, 1968, 55A, No.2, p.275-300.
- 11. Саврин В.И., Скачков Н.Б., Тюменков Г.Ю. ТМФ, 1983, № 2, с. 173-182.
- 12. Крючков С.В. и др. ОИЯИ, Р2-84-10, Дубна, 1984.

Рукопись поступила в издательский отдел 24 января 1984 года Саврин В.И., Санадзе В.В., Скачков Н.Б. Р2-84-40 Описание распадов составных мезонов на основе ковариантной гамильтоновой формулировки теории поля

В рамках ковариантной гамильтоновой формулировки квантовой теории поля описаны распады псевдоскалярного мезона и парапозитрония на два фотона, а также распад * • µv. Мезоны рассматривались как связанное состояние спинорных кварка и антикварка.

Работа выполнена в Лаборатории теоретической физики ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1984

Перевод авторов

Savrin V.I. Sanadze V.V., Skachkov N.B. Description of Composite Meson Decay in the Hamiltonian Formulation of Field Theory

P2-84-40

On the basis of a covariant hamiltonian formulation of quantum field theory the decay of pseudoscalar mesons and decay $\pi \rightarrow \mu \vec{\nu}$ are described. The mesons were considered as bound systems of a spinor quark and a antiquark.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1984

8