

P2-84-122

1984

С.Дренска, С.Щ. Мавродиев, А.Н.Сисакян

СЕЧЕНИЯ ИНКЛЮЗИВНЫХ АДРОН-АДРОННЫХ ПРОЦЕССОВ ПРИ БОЛЬШИХ Р_Т И ВОЗМОЖНЫЙ РОСТ ЧИСЛА ТИПОВ КВАРКОВ

Направлено на Международный семинар "Кварки-84" /Тбилиси, май, 1984/ и Международный семинар по квантовой теории поля и физике высоких энергий /Протвино, июль, 1984/. §1. Как известно, в рамках теории возмущений квантовой хромодинамики успешно описывается вклад взаимодействий кварков и глюонов в процессы глубоконеупругого лептон-адронного рассеяния и в⁺ в⁻ аннигиляции. В то же время рассмотрение соответствующих задач в адрон-адронных взаимодействиях с большими поперечными импульсами сталкивается с рядом трудностей. В частности, требует выяснения характер асимптотики сечений образования адронов и струй в этих реакциях, их связь с нарушением масштабной инвариантности в глубоконеупругих лептон-адронных процессах.

 $B^{/1,2/}$ были впервые сформулированы правила кваркового счета аномальных размерностей в КХД, определяющие логарифмические поправки к точечноподобным степенным асимптотикам сечений процессов с большими p_{T} . Эти правила получены в ведущем логарифмическом приближении КХД в области не слишком малых $x_{T} = 2p_{T}/\sqrt{s}$.

Как видно из табл.1, где приведена информация об экспериментах ^{/8-10/}, выполненных на ускорителях ISR и коллайдере SPS /ЦЕРН/, существенной является также область относительно малых \mathbf{x}_{T} , где переменная \mathbf{x}_{T} изменяется в интервале 0,5.10⁻² $\leq \mathbf{x}_{T} \leq 0,54$, а при $\sqrt{s} = 540$ ГэВ и $\theta = 90^{\circ}: 0,17 \cdot 10^{-2} \leq \mathbf{x}_{T} \leq 0,5 \cdot 10^{-2}$ В ^{/11/}, однако было показано, что при определенных условиях можно расширить область применимости квантовохромодинамической формулы для

сечения
$$\frac{2}{2} E \frac{d\sigma}{d^{3}p} \sim p_{T}^{-n}$$
 eff

Целью настоящей работы является описание данных для инклюзивных адрон-адронных сечений при вышеуказанных энергиях и различных углах. Как будет видно из изложенного ниже, расширение объема рассматриваемого экспериментального материала приводит к интересному заключению о числе типов кварков.

§2. Напомним кратко вывод формулы для сечения инклюзивной реакции $AB \rightarrow CX$ в главном логарифмическом приближении квантовой хромодинамики при помощи правил кваркового счета аномальных размерностей при $\theta = 90^{\circ/1, 2/}$ и для произвольного угла, а также способ $^{/13/}$ ее модификации в области малых x_{m} .

1

Таблица 1

гле

3

N expt	0/'i	Процесс АВ → С	√ в ГэВ	Р _{Т min} ГэВ	р _{Т max} ГэВ	$\frac{\mathtt{x}\mathtt{T}\mathtt{min}}{\sin\theta}$	xT max sin 0	θ	число точен Мі
1	1	$pp \rightarrow \pi^{\circ}$	540	1.52	4.42	0.56E-2	0.016	90	14
2	2	$\overrightarrow{pp} \rightarrow \pi$	540	0.45	I.35	0.17E-2	0.50E-2	90	IO
	3	$p\overline{p} \rightarrow p + \overline{p}$	540	I.55	I.35	I.20E-2	0.50E-2	90	9
3	4	pp → p	44.6	I.I5	3.10	0.73E-I	0.20	45	7
	5		52.8	I.15	2.60	0.62E-I	0.14	45	6
	6		52.8	I.35	3.40	0.58E-I	0.15	62	5
	7		52.8	0.82	4.75	0.3IE-I	0.18	89	IO
	8		63.0	0.82	2.35	0.26E-I	0.74E-I	89	7
4	9	pp→ π ^o	53.I	3.7I	12.70	0.14	0.48	90	16
•	IO		62.4	3.72	13.70	0.12	0.44	90	21
5	II	$pp \rightarrow \pi^{o}$	45.I	0.50	6.65	0.28E-I	0.37	53	31
	12		45.I	0.70	8.02	0.3IE-I	0.36	90	37
	13		53.2	0.69	7.19	0.33E-I	0.34	53	33
	14		53.2	I.28	7.8I	0.48E-I	0.29	90	33
	15		62.9	0.70	6.42	0.22E-I	0.20	90	29
6	16	$pp \rightarrow \pi^{\circ}$	53.0	5.25	14.30	0.20	0.54	90	15
	17		63.0	5.25	14.60	0.17	0.46	90	15
7	18	pp → jet	45.0	6.40	II.00	0.28	0.49	90	15
	19		63.0	6.66	12.90	0.21	0.4I	90	15
8	20	$pp \rightarrow \pi^{\circ}$	52.7	3.05	II.00	0.12	0.42	90	23
	21		62.8	3.05	13.50	0.97E-I	0.43	90	26

Общее число точек М = 358

Инклюзивное сечение образования адрона С с большим поперечным импульсом в картине жесткого соударения адронов **А, В** имеет вид /14/:

$$E \frac{d\sigma^{AB \rightarrow CX}}{d^{3}p}(s, p_{T}, \theta) = \sum_{a,b,c} \int_{x \min a}^{1} dx_{a} \int_{b}^{1} dx_{b} f_{a/A}(x_{a}, Q^{2}) f_{b/B}(x_{b}, Q^{2}) \times D_{c/C}(x_{c}, Q^{2}) / x_{c} \times \frac{1}{\pi} (\frac{d\sigma}{dt})_{ab \rightarrow cx} ,$$
 (1/

$$x_{a}^{min} = \frac{x_{1}}{1 - x_{2}}, x_{b} = \frac{x_{a}x_{2}}{x_{a} - x_{1}}; x_{1} = -\frac{u}{s}, x_{2} = -\frac{t}{s}, x_{c} = \frac{x_{2}}{x_{b}} + \frac{x_{1}}{x_{a}};$$

 \hat{s}, \hat{t} и \hat{u} являются мандельстамовскими инвариантами для элементарных подпроцессов - $\hat{s} = x_a x_b s$, $\hat{t} = \frac{x_a t}{x_c}$, $\hat{u} = \frac{x_b u}{x_c}$. Суммирование производится по всем подпроцессам, а

$$\frac{(\frac{d\hat{\sigma}}{d\hat{t}})_{ab \to cd}}{\hat{d\hat{t}}} = \frac{\pi \alpha_{g}^{2}(Q^{2})}{\hat{s}^{2}} \Sigma_{ab \to cd} (x_{a}, x_{b}, \hat{\theta})$$

- борновское приближение жесткого рассеяния кварков и глюонов. Величина $\Sigma_{ab \rightarrow cd}$ дает угловую зависимость сечения подпроцесса⁽²⁾,

$$a_{s}(Q^{2}) = \frac{12\pi}{(33-2n_{f})\ln Q^{2}/\Lambda^{2}}$$
 /2/

- эффективная константа сильной связи, n_f - число типов /ароматов/ кварков, Λ - квантовохромодинамический масштаб.

Отметим, что функции распределения и фрагментации кварков и глюонов определяются /12/ решением эволюционных уравнений /15/ с граничными условиями, определенными правилами кваркового счета /16/.

Если определить эффективную степень

$$n_{eff} (s, x_{T}, \theta) = \lim_{s_{1} \to s_{2} \to s} \frac{\ln \frac{\sigma(s_{1}, p_{T_{1}}, \theta)}{\sigma(s_{2}, p_{T_{2}}, \theta)}}{\ln(s_{2}/s_{1})},$$

где $\sigma(\mathbf{s}, \mathbf{p}_T, \theta) = E \frac{d\sigma}{d^3 \mathbf{p}}(\mathbf{s}, \mathbf{p}_T, \theta)$ является следствием интеграла /1/ в области $\mathbf{x}_T \ge 0, 2$, то в результате для сечения получим /1, 2, 11/

$$\sigma(\mathbf{s}, \mathbf{p}_{T}, \theta) = \operatorname{const}(\mathbf{p}_{T}/\mathbf{p}_{T_{0}})$$

где

$$n_{\text{eff}}(\mathbf{s}, \mathbf{x}_{T}, \theta) = 4 - 2\left[2 - 2r \ln \frac{2\mathbf{x}_{T}}{\sin \theta} + hd(\mathbf{n}, \frac{\mathbf{x}_{T}}{\sin \theta}) + \frac{14}{2\pi}\right]$$

+ c $\ln \frac{\mathbf{x}_{T}}{\sin \theta}$ + d]/ ln(Q²/ Λ^{2}),

где с и d - параметры приближения /1/, $r = \frac{16}{33 - 2n_f}$ h - число адронов в реакции, d(n, xm) - функция аномальных размерностей:

$$d(n, x_{T}) = -r \left[\frac{3}{4} + \frac{1}{2n(n+1)} - \sum_{i=1}^{n} \frac{1}{i} + \frac{1}{n} + \ln(1 - x_{T})\right], \qquad /5/-$$

п - удвоенное число невзаимодействующих кварков/кварков - спектаторов/.

				таслица z		
Процесс	h	n	Процесс	h	п	
ππ → jet	2	4	<i>π</i> p → <i>π</i>	3	8	
πp → jet	2	6	$pp \rightarrow \pi$	3	10	
pp → jet	2	8	pp → p	3	12	
ππ → π	3	6				

В табл.2 приведены значения h и n для различных процессов. В $^{/11'}$ было показано, что /3/ согласуется с измеренными сечениями при x $_{\rm T} \geq 0,2$ и θ = 90°, а область $10^{-2} \leq$ x $_{\rm T} \leq 0,6, \ \theta$ = 90°, можно описать, если вместо /3/ рассматривать следующую формулу:

 $\sigma (\mathbf{s}, \mathbf{p}_{T}, \theta) = \mathbf{a} \cdot \exp(-\mathbf{b} \cdot \mathbf{m} \cdot \chi_{\mathbf{p}_{T}} \cdot \mathbf{n}_{eff} (\mathbf{s}, \mathbf{x}_{T}, \theta)) ,$ $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d} - \text{ неизвестные параметры, быстрота } \chi_{\mathbf{p}_{T}} = \ln(\sqrt{1 + \frac{\mathbf{p}_{T}^{2}}{\mathbf{m}^{2}} + \frac{\mathbf{p}_{T}}{\mathbf{m}}}),$

a m = m(s) - масштаб, определяющий область перехода сечения с экспоненциального на степенной режим, n_{eff} (s, x_T , θ) определено /4,5/.

В /18/ было показано, что m² пропорционально полному сечению соответствующего процесса.

§3. Значения неизвестных параметров в формуле /6/ находим, решая переопределенную нелинейную алгебраическую систему уравнений *

= $\sum \left(\frac{\sigma_1^{expt} - \sigma_1^{th}}{\Lambda_{t-1}}\right)^2$, где вес Δ_1^- сумма статистической и систематической ошибок.Отметим, что критерии цели этого метода позволяют выбирать из многих функций с одинаковым χ^2 "лучшую".

$$\sigma_{i}^{expt} (s_{i}, p_{T_{j}}, \theta_{k}) = a_{i} \sigma_{i}^{th} (s_{i}, p_{T_{j}}, \theta_{k}), \qquad /7/$$

где индексы i, j, k пробегают область изменения s, p_{T} и θ . При решении системы /7/ было найдено, что

m(s) =
$$\frac{m_0 \cdot n}{\ln s/\Lambda^2}$$
, $Q^2 = \frac{p_T^2}{1 - 4p_T^2/s}$

а при значениях параметров

Λ = 0.097 ГэВ, $m_0 = 2,65+0.05$ ГэВ, $a = 38,2+6,1 \text{ MB}/\Gamma 3B^2$ $b = 0,85+0,01 \ \Gamma 3B^{-1}$, c = 3,61+0,07, $n_r = 10+0,2-2,2.$

величина $\chi^2/df = \frac{245}{358-6}$. Ошибка параметра Λ не указана, так как

было установлено, что его значение может меняться в интервале 0,5< А < 1.10-3 ГэВ, при достаточно хорошем качестве описания /что естественно в первом логарифмическом приближении/. Это значение получено из требования независимости параметров.

На рис.1-7 представлено описание экспериментальных данных для различных процессов при различных энергиях и углах рассеяния.

Качество описания различных процессов при различных энергиях и углах видно из табл.3, где приведены также нормировочные коэффициенты. При рассмотрении данных только в интервале энергий ISR. x^2/df остается таким же, но n, = 4 + 2,1 - 0,1.

§4. Рассмотрение модификаций формулы для сечения инклюзивных реакций $\mathbf{E} \frac{d\sigma}{d^3\mathbf{p}}(\mathbf{s},\mathbf{p}_{T},\theta)$ /см. формулу /6// показывает, что с ее помощью может быть проведено описание экспериментальных данных в широком интервале энергий $40 < \sqrt{s} < 540$ и доступных углов θ . При этом интересно отметить следующий факт. Если рассматривать экспериментальные данные при энергиях ISR /5-11/ в результате анализа данных с помощью формулы /6/, то оказывается, что число типов кварков равно $n_f = 4 + 2,1$, а при включении также данных экспериментов на коллайдере SPS '3,4', число типов кварков растет $Ao n_f = 10 + \frac{0,2}{2,2}$.

Особенно интересно это в связи с работами /19/, посвященными проблемам существования цветных скалярных кварков. В них,

^{*}При этом используется метод авторегуляризованных итерационных процессов гаусс-ньютоновского типа /17/ - программный комплекс COMPIL в библиотеке стандартных программ ОИЯИ для компьютера CDC-6500 /C401, 421 / для минимизации выражения x² =

Таблица 3

N expt ^{/8-10/i}		<u>√</u> в ГэВ	θ	число точек	χ^2/M_i	нормировочные коэффициенты		
I	I	540	90	14	0.13	1.34 ± 0.10		
2	2	540	90	IO	0.15	1.91 ± 0.16		
	3	540	90	9	0.92	0.94 ± 0.08		
3	4	44.6	45	7	0.57	I.60 ± 0.16		
	5	52.8	45	6	0.63	I.38 ± 0.15		
	6	52.8	62.5	5	0.36	I.0I ± 0.12		
	7	52.8	89	IO	II.32	0.94 ± 0.08		
	8	63.0	89	7	0.85	0.74 ± 0.08		
4	9	53.I	90	16	1.92	0.90 ± 0.06		
	IO	62.4	90	21	0.24	0.97 <u>+</u> 0.06		
5	II	45.I	53	31	0.71	I.06 ± 0.05		
	12	45.I	90	37	0.69	I.06 ± 0.05		
	13	53.2	53	33	0.29	I.25 ± 0.06		
	14	53.2	90	33	0.43	0.82 ± 0.04		
	15	62,9	53	29	0.40	0.69 ± 0.04		
6	16	53.0	90	15	0.65	I.03 ± 0.08		
	17	63.0	90	15	1.21	0.88 ± 0.07		
7	18	45.0	90	5	I.36	1.07 ± 0.14		
	19	63.0	90	6	3.41	I.56 ± 0.18		
8	20	52.7	90	23	0.61	I.07 ± 0.06		
	21	62.8	90	26	0.76	0.93 ± 0.05		

в частности, при рассмотрении процесса в⁺е⁻-аннигиляции было найдено, что масштаб масс новых адронов, являющихся связанными состояниями скалярных частиц, при отличном от нуля конденсате $<\phi^+\phi^->$ может составлять величину порядка 110 ÷ 100 ГэВ.

В частности, в ^{/20,21/} предположение о принадлежности скалярных кварков к высшим мультиплетам цветной **SU(3)** с группы приводит к большим сечениям инклюзивного образования струй скалярных кварков, которые могут наблюдаться уже при достижимых энергиях в адронных соударениях.

Рис.1. Описание инклюзивных процессов $^{/3,4'}$ pp $\rightarrow \pi^{\circ}, \pi, p + \overline{p}$ при $\sqrt{s} = 540$ ГэВ и $\theta = 90^{\circ}$.

Рис.2. Описание процесса /5/ $pp \rightarrow p$ при $\sqrt{s} = 44,6$; 52,8 и 63 ГэВ и $\theta = 45^{\circ}$, 62,5° и 89°.

Рис.3. Процесс /6/ pp $\rightarrow \pi^{\circ}$ при $\sqrt{s} = 53,1$ и 62,4 и $\theta = 90^{\circ}$.

Рис.4. Процесс^{/7/} pp $\rightarrow \pi^{\circ}$ при $\sqrt{s} = 45,1$; 53,2 и 62,9 ГэВ и $\theta = 53^{\circ}$ и 90°.

Рис.5. Процесс $^{/8/}$ pp $\rightarrow \pi^{\circ}$ при $\sqrt{8} = 53$ и 63 ГэВ и $\theta = 90^{\circ}$.

Рис.6. Процесс $^{/9}$ pp \rightarrow jet при $\sqrt{8} = 45$ и 53 ГэВ и $\theta = 90^{\circ}$.

Рис.7. Процесс /10/ pp $\rightarrow \pi^{\circ}$ при $\sqrt{8} = 52,7$ и 62,8 ГэВ и $\theta = 90^{\circ}$.

Авторы благодарны В.А.Мещерякову и А.Н.Тавхелидзе за интерес к работе. Мы признательны И.С.Авалиани, В.А.Матвееву, М.Д.Матееву, В.Г.Кадышевскому, А.Н.Квинихидзе и Л.А.Слепченко за многочисленные конструктивные обсуждения.

ЛИТЕРАТУРА

- 1. Matveev V.A., Slepchenko L.A., Tavkhelidze A.N. Phys.Lett., 1981, B100, p. 75.
- Avaliani I.S., Matveev V.A., Slepchenko L.A. JINR, E2-82-282, Dubna, 1982; Nucl.Phys., 1983, B223, p. 81-103.
- 3. Banner M. et al. Phys.Lett., 1982, 115B, No 1, p. 59.
- 4. Banner M. et al. Phys.Lett., 1983, 122B, No 3,4, p. 322.
- 5. Alper B. et al. Nucl. Phys., 1975, B87, p. 19-40.
- 6. Angelis A.L.S. et al. Phys.Lett., 1978, 79B, No 4,5, p. 505.
- 7. Eggert K. et al. Nucl. Phys., 1975, B98, p. 49.
- 8. Clark A.G. Phys.Lett., 1978, 74B, No 3, p. 267.
- 9. Akesson T. et al. Phys.Lett., 1983, 123B, No 1,2, p. 133.
- Kourkoumelis C. et al. Z.Physik C, Particles and Fields, 1980, No 5, p. 95-104.

- Drenska S., Mavrodiev S.Cht., Sissakian A.N. JINR, E2-83-587, Dubna, 1983.
- 12. Авалиани И.С., Матвеев В.А., Слепченко Л.А. ОИЯИ, Р2-83-456, Дубна, 1983.
- Mavrodiev S.Cht., JINR, E2-7920, Dubna, 1974; Fizika, 1977, 9, p. 117.
- 14. Berman S., Bjorken J., Kogut J. Phys.Rev., 1971, D4, p.3388.
- 15. Altarelli G., Parisi G. Nucl. Phys., 1977, B126, p. 298.
- 16. Matveev V.A., Muradyan R.M., Tavkhelidze A.N. Lett.Nuovo Cim., 1973, 7, p. 719; Prodoky, P. J. Tavkhelidze A.N. Lett.Nuovo Cim.,
- Brodsky B.J., Farrar G. Phys.Rev.Lett., 1973, 31, p. 1153.
- 17. Александров Л. ЖВМ и МФ, 1971, т. 11, №1, с. 36; ОИЯИ, Р5-5511, Дубна, 1970, Б1-5-9966, Дубна, 1976.
- Drenska S., Mavrodiev S.Cht., JINR, E2-844, Dubna, 1979; JINR, E2-81-146, Dubna, 1981; Дренска С., Мавродиев С.Щ., Сисакян А.Н. ОИЯИ, Д2-82-280, Дубна, 1982.
- 19. Тавхелидзе А.Н. Препринт ИЯИ АН СССР, Р-0267, М., 1982; Chetyrkin K.G. et al. Phys.Lett., 1982, v. 117B, p. 252.
- 20. Gluck M., Reya E. Phys.Rev.Lett., 1982, 48, p. 662-666.
- 21. Авалиани И.С., Матвеев В.А., Слепченко Л.А. ОИЯИ, Р2-83-457, Дубна, 1983; Матвеев В.А., Слепченко Л.А. ОИЯИ, Р2-83-465, Дубна, 1983.

Рукопись поступила в издательский отдел 24 февраля 1984 года.

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги,

если они не были заказаны ранее.

	Труды VI Всесоюзного совещания по ускорителям заря- женных частиц. Дубна, 1978 /2 тома/	7	p.	40	ĸ.
	Труды VII Всесоюзного совещания по ускорителям заря- женных частиц, Дубна, 1980 /2 тома/	8	p.	00	к.
Д11-80-13	Труды рабочего совещания по систенам и методам аналитических вымислений на ЗВМ и их применению в теоретической физике, Дубна, 1979	3	р.	50	к.
Д4-80-271	Труды Международной конференции по проблемам нескольких тел в ядерной физике. Дубна, 1979.	3	p.	00	к.
д4-80-385	Труды Международной школы по структуре ядра. Алушта, 1980.	5	p.	00	к.
A2-81-543	Труды VI Международного совещания по пробленан кван- товой теории поля. Алушта, 1981	2	p.	50	к.
A10,11-81-622	Труди Международного совещания по проблемам математи- ческого моделирования в ядерно-физических исследова- ниях. Дубна, 1980	2	p.	50	к.
A1,2-81-728	Труды VI Международного семинара по проблемам физики высоких энергий. Дубна, 1981.	3	p.	60	к.
A17-81-758	Труды II Международного симпозиума по избранным проблемам статистической механики. Дубна, 1981.	5	р.	40	к.
Д1,2-82-27	Труды Международного симпозиума по поляризационным явлениям в физике высоких энергий. Дубна, 1981.	3	p.	20	к.
P18-82-117	Труды IV совещания по использованию новых ядерно- физических методов для решения научно-технических и народнохозяйственных задач. Дубна, 1981.	3	p.	80	к.
Д2-82-568	Труды совещания по исследованиям в области релятивистской ядерной физики. Дубна, 1982.	1	p.	75	к.
д9-82-664	Труды совещания по коллективным методам ускорения. Дубна, 1982.	3	p.	30	к.
A3,4-82-704	Труды IV Международной школы по нейтронной физике. Дубна, 1982.	5	р.	00	к.
Д2,4-83-179	Труды XУ Международной школы молодых ученых по физике высоких энергий. Дубна, 1982.	4	p.	80	к.
	Труды УШ Всесоюзного совещания по ускорителян заряженных частиц. Протвино, 1982 /2 тома/	11	р.	40	к.
A11-83-511	Труды совещания по системам и методам аналитических вычислений на ЗВМ и их применению в теоретической физике. Дубна, 1982.	2	р.	50	к.
Д7-83-644	Труды Международной школы-семинара по физике тяжелых ионов. Алушта, 1983.	6	p.	5	5 к.
A2,13-83-689	Труды рабочего совещания по проблемам излучения и детектирования гравитационных волн. Дубна, 1983.	2	р.	00	к.
Jawas					

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79 Издательский отдел Объединенного института ядерных исследований

	Дренска С., Мавродиев С.Щ., Сисакян А.Н. Р2-84-122 Сечения инклюзивных адрон-адронных процессов при больших Р _Т и возможный рост числа типов кварков
	Рассмотрена модификация формулы для сечения инклюзивных
40 K.	реакций $E \frac{d\sigma^{AB \rightarrow CX}}{d^{3}p}$ (s, p_{T} , θ), полученной в рамках правил кваркового
00 ĸ.	счета аномальных размерностей в ведущем логарифмическом прибли- жении квантовой хромодинамики. Формула удовлетворительно опи-
50 ĸ.	ствиям в широком интервале энергий 40 ≤ √s ≤540 и углов рассея- ния θ. Анализ указывает на возможный рост с энергией числа
00 к.	типов /ароматов/ кварков /до 8-10 при энергиях коллайдера SPS CERN $\sqrt{8} = 540 \Gamma_{9}B/.$
00 к.	Работа выполнена в Лаборатории теоретической физики ОИЯИ.
50 K.	
50 K.	Препринт Объединенного института ядерных исследований. Дубна 1984
60 K.	
40 K.	
20 к.	
80	Перевод О. С. Виноградовой
0U K.	Drenska S., Mavrodiev S.Cht., Sissakian A.N. P2-84-122
75 к.	Cross Sections of Inclusive Hadron-Hadron Processes at Large
30 к.	A modified formula was considered for the gross sections
00 к.	of the inclusive reactions $E \frac{d\sigma^{AB} \rightarrow CX}{\sigma^{AB} \rightarrow CX}$
80 к.	d ³ p d ³ p
40 ĸ.	rithmic approximation of the QCD. The formula describes sati- sfactorily all experimental data on hadron-hadron interactions
	in the broad range of energies 40 GeV $\leq s \leq 540$ GeV and scat-
50 K.	of a number of types (flavours) up to $8-10$ at the SPS CEPN color
55 K.	lider energies (V = 540 GeV).
00 ĸ.	The investigation has been performed at the Laboratory of Theoretical Physics, JINR.
:	Proprint of the local local
	Treprint of the Joint institute for Nuclear Research. Dubna 1084