

СООбщения Объединенного института ядерных исследований дубна

160/84

P2-83-727

Ю.И.Иваньшин, С.П.Кулешов, В.И.Саврин, Н.Б.Скачков, А.А.Тяпкин

О ВОЗМОЖНОСТИ СУЩЕСТВОВАНИЯ НОВЫХ РАДИАЛЬНЫХ ВОЗБУЖДЕНИЙ СИСТЕМ, СОСТАВЛЕННЫХ ИЗ ЛЕГКИХ КВАРКОВ

введение

Известно, что нерелятивистская потенциальная модель хорошо описывает спектры ψ -и у-мезонов, представляющих собой связанные состояния тяжелого кварка и антикварка ^{/1/}. Это и понятно, поскольку релятивистская поправка $\langle v^2/c^2 \rangle$ составляет в этом случае менее 30% ^{/2/}. Блестящим успехом потенциальной модели можно назвать тот факт, что предсказание ею величины расщепления масс J/ψ и η_c -мезонов как основных состояний орто- и парачармония /см., например, ^{/8/}/

$$M(1^{8}S_{1}) - M(1^{1}S_{0}) = (\frac{M_{J}/\psi}{2m_{c}})^{2} \cdot 70 \text{ M} \Rightarrow B = 90 \div 140 \text{ M} \Rightarrow B,$$

ставившееся вначале под сомнение в связи с существованием мезона X/2,83/, предназначавшегося на роль η_c , было подтверждено последующим экспериментальным обнаружением резонанса в системе $c\bar{c}$ с массой $M\eta_c = 2981 \pm 6$ МэВ^{/4/} и закрытием X /2,83/. Результат потенциальной модели совпадает также с расчетом указанного расщепления на основе дисперсионного метода в КХД^{/5/}.

При переходе к системам, составленным из легких кварков -/ m-, ρ -, ϕ -мезонам/, применение нерелятивистской теории к описанию спектра масс становится непоследовательным, поскольку релятивистская поправка в этом случае составляет 70÷90% ^{/2/}. Описание спектра масс легких мезонов не было столь актуальным в период открытия ψ - и у-мезонов, поскольку экспериментальная ситуация с их радиальными возбуждениями оставалась неясной, и лишь недавно были обнаружены два резонанса с квантовыми числами π мезона с массами $M_{\pi} = 1240+30$ МэВ^{/6/} и $M_{\pi} = 1770+40$ МэВ^{/7/}. Отметим также, что нет полной ясности и с существованием резонанса $\rho'(1250)$.

Открытие резонансов π (1240)и π (1770) поставило очень важный, на наш взгляд, вопрос, который до сих пор не обсуждался детально в работах, посвященных описанию этих резонансов ⁷⁸⁻¹⁰⁷. А именно: к каким по счету радиальным возбуждениям π -мезона следует относить эти резонансы? Ясно, что от решения этого вопроса зависиуспех совместного описания спектров π - и ρ -мезонов.

Наиболее ярко необходимость постановки такого вопроса проявляется при сравнительном анализе спектров масс, который мы приводим в табл.1, используя нумерацию уровней радиальных возбуждений, применявшуюся в работах ^{/8-10/} / n - номер состояния/.

ł

n	М ⁽ⁿ⁾ /МэВ/	М <mark>(n)</mark> /МэВ/	$M_{\rho}^{(n)} - M_{\pi}^{(n)} /M \rightarrow B/$
0	139,6	769	630
1	1240	1250	10
2	1770	1600	-170
3	?	2150	?

Здесь бросается в глаза резкое изменение величины расщепления масс π - и ρ -мезонов, обусловленное спин-спиновым взаимодействием, и, особенно, смена знака этого расщепления /при n = 2/, чего трудно ожидать в какой-либо разумной модели. Аналогичное сравнение для $c\bar{c}$ -систем дано в табл.2 и свидетельствует, хотя и на малом экспериментальном материале, о медленном изменении спин-спинового расщепления.

Таблица 2

Таблица 1

n	М <mark> (n)</mark> /МэВ/	М $\psi^{(n)}$ /МэВ/	$\mathbf{M}_{\psi}^{(\mathbf{n})} - \mathbf{M}_{\eta_{c}}^{(\mathbf{n})} / \mathbf{M} \mathbf{B} /$
n	2981	3096_9	116
1	3590	3686,0	• 96

С решением поставленного выше вопроса связаны, по-видимому, те трудности, с которыми сталкиваются существующие модели $^{/8-10/}$ при описании т- и ρ -спектров. Здесь следует упомянуть работу $^{/8/}$, в которой в рамках модели с контактным спин-спиновым взаимодействием были рассчитаны массы первых двух радиальных возбуждений т-мезона, оказавшиеся в интервалах 1100÷1190 МэВ и 1300÷1500 МэВ. Местоположение второго уровня, предсказанного этой моделью, не согласуется со значением массы обнаруженного позднее экспериментально резонанса т (1770+40). Отметим также, что метод расчета спектра т-мезонов $^{/9,10/}$ 7без связи со спектром ρ -мезонов/, основанный на правилах сумм в хромодинамике, не объясняет чрезвычайно большого расщепления масс между основным состоянием $\pi(1240)$.

Положение существенно меняется, если мы примем нумерацию возбуждений *п*-мезона, как показано в табл.3.

Ростом расщепления для 2-го и 3-го состояний в пределах ошибок можно пренебречь, и тогда мы получаем возможность перехода к плавному изменению величины расщепления /которое предполагает, что масса неизвестного нам пока первого радиального возбуждения должна лежать в интервале 620÷890 МэВ/.

Другая возможность для исправления положения состоит в том, чтобы отказаться от существования $\rho(1250)$, но считать $\pi(1240)$ первым радиальным возбуждением /см. табл.4/.

Таблица 3

n	M ⁽ⁿ⁾ /МэВ/	М ⁽ⁿ⁾ /МэВ/	$M_{\rho}^{(n)} - M_{\pi}^{(n)} / M_{\Im}B/$
0	139,6	769	630
1	?	1250	?
2	1240	1600	360
3	1770	2150	380

Таблица 4

n	М <mark>(</mark> n) /МэВ/	М <mark>(n)</mark> /МэВ/	$M_{\rho}^{(n)} - M_{\pi}^{(n)} / M_{9}B/$
0	139,6	769	630
1	1240	1600	360
2	1770	2150	380

В настоящей работе мы исследуем спектры масс m- и ρ -мезонов на основе решения релятивистского динамического уравнения для составных двухчастичных систем, в качестве которого будем использовать квазипотенциальное уравнение для фермион-антифермионной системы, полученное при одновременной формулировке проблемы связанных состояний в квантовой теории поля ^{/11, 12}. Квазипотенциальный подход по форме наиболее близок к нерелятивистской потенциальной картине, однако полностью учитывает релятивистские эффекты в исследуемой системе. Успешное описание спектра тяжелых мезонов в рамках этого подхода было проведено в работе ^{/18}. Здесь мы для m- и ρ -мезонов исследуем все три возможности нумерации радиальных возбуждений этих мезонов, изображенные в табл.1,3,4, и покажем, что только две из них, а именно 3 и 4, могут быть реализованы в рамках релятивистского обобщения потенциальной модели, основанного на двухчастичном одновременном уравнении.

КВАЗИПОТЕНЦИАЛЬНОЕ УРАВНЕНИЕ ДЛЯ ПАРЦИАЛЬНЫХ ВОЛНОВЫХ ФУНКЦИЙ

Квазипотенциальное уравнение для волновой функции связанного состояния двух фермионов в релятивистском конфигурационном пространстве имеет следующий вид ^{/14,15/}:

$$(M - \hat{H}_0) \Psi(\vec{r}) = V(\vec{r}) \Psi(\vec{r}),$$
 /1/

где M – масса связанного состояния, $V({f f})$ – квазипотенциал взаимодействия, а свободный гамильтониан \hat{H}_0 имеет вид:

$$\hat{H}_{0} = 2m \operatorname{ch}(i\lambda \frac{\partial}{\partial r}) + \frac{2i}{r} \operatorname{sh}(i\lambda \frac{\partial}{\partial r}) + \frac{\Delta \theta, \phi}{mr^{2}} e^{(i\lambda \frac{\partial}{\partial r})}, \qquad /2/$$

где $\lambda = m^{-1}$ - комптоновская длина волны кварка.

Разложение волновой функции по парциальным волнам проведем стандартным образом с помощью шаровых спиноров /15/:

$$\mathbf{r}\Psi(\mathbf{r}) = 4\pi \sum_{j\ell m} \Phi_{\ell}^{(j,s)}(\mathbf{r}) \Omega_{j\ell m}^{(s)}(\mathbf{n}), \qquad (3)$$

где $\vec{n} = \vec{r}/r$, ј и m - полный момент и его проекция, s - спин, а ℓ - орбитальный момент составной системы. Квазипотенциальное уравнение /1/ для парциальных волн имеет вид:

$$(\mathbf{M} - \hat{\mathbf{H}}_{0}^{(\ell)}) \Phi_{\ell}^{(\mathbf{j},\mathbf{s})}(\mathbf{r}) = \sum_{\ell'} \mathbf{V}_{\ell\ell'}^{(\mathbf{j},\mathbf{s})}(\mathbf{r}) \Phi_{\ell'}^{(\mathbf{j},\mathbf{s})}(\mathbf{r}), \qquad /4/$$

где радиальный свободный гамильтониан

$$\hat{H}_{0}^{(\ell)} = 2m \operatorname{ch}(i\lambda \frac{\partial}{\partial r}) + \frac{\ell(\ell+1)}{mr(r+i\lambda)} e^{(i\lambda \frac{\partial}{\partial r})}, \qquad (5/)$$

а парциальный квазипотенциал

$$V_{\ell\ell'}^{(j,s)}(\mathbf{r}) = \int d\omega_{\vec{n}} \Omega_{j\ell m}^{+(s)}(\vec{n}) V(\vec{r}) \Omega_{j\ell' m}^{(s)}(\vec{n}), \qquad (6)$$

причем l и l' могут принимать значения j - s,..., j + s.

В случае взаимодействия спинорных кварка и антикварка квазипотенциал V() обычно представляют в виде:

$$V(\vec{r}) = V_{c}(r) + V_{ss}(r) (2\vec{S}^{2} - 3) + V_{sL}(r) (\vec{SL}) + V_{T}(r) [\theta(\vec{Sn})^{2} - 2\vec{S}^{2}], /7$$

где $V_c(r)$ отвечает центральным силам, $V_{ss}(r)$ - спин-спиновым, $V_{sL}(r)$ - спин-орбитальным, а $V_m(r)$ - тензорным. Вычисляя теперь парциальные квазипотенциалы /6/ квазипотенциала /7/, приходим к следующей системе радиальных уравнений ^{/15/}:

Для синглетного состояния S = 0, $\ell = j$: (M - $\hat{H}_{0}^{(\ell)}$) $\Phi_{\ell}^{(\ell,0)}(r) = [V_{c}(r) - 3V_{ss}(r)] \Phi_{\ell}^{(\ell,0)}(r)$. /8/ Для триплетного состояния S = 1, $\ell = j - 1$: $(M - \hat{H}_{0}^{(\ell)}) \Phi_{\ell}^{(\ell+1,1)}(r) = [V_{c}(r) + V_{ss}(r) + \ell V_{SL}(r) - \frac{2\ell}{2\ell + 3} V_{T}(r)] \times \\ \times \Phi_{\ell}^{(\ell+1,1)}(r) - \frac{6\sqrt{(\ell+1)(\ell+2)}}{2\ell + 3} V_{T}(r) \Phi_{\ell+2}^{(\ell+1,1)}(r);$ $(M - \hat{H}_{0}^{(\ell)}) \Phi_{\ell}^{(\ell,1)}(r) = [V_{c}(r) + V_{ss}(r) - V_{SL}(r) + 2V_{T}(r)] \Phi_{\ell}^{(\ell,1)}(r);$ $(M - \hat{H}_{0}^{(\ell)}) \Phi_{\ell}^{(\ell-1,1)}(r) = [V_{c}(r) + V_{ss}(r) - (\ell+1)V_{SL}(r) - (\ell+1)V_{SL}(r$

В настоящей работе мы исследуем спектр радиальных возбуждений m- и ρ -мезонов, которые представляют собой системы с l = 0. Для этих состояний из уравнений /8/ и /9/ имеем:

$$\begin{bmatrix} M - 2m \operatorname{ch}(i\lambda \frac{\partial}{\partial r}) \end{bmatrix} \Phi_0^{(0,0)}(r) = \begin{bmatrix} V_c(r) - 3V_{ss}(r) \end{bmatrix} \Phi_0^{(0,0)}(r) , \qquad /12/$$

$$\begin{bmatrix} M - 2m \operatorname{ch}(i\lambda \frac{\partial}{\partial r}) \end{bmatrix} \Phi_0^{(1,1)}(r) = \begin{bmatrix} V_c(r) + V_{ss}(r) \end{bmatrix} \Phi_0^{(1,1)}(r) - 2\sqrt{2} V_r(r) \Phi_{\hat{z}}^{(1,1)}(r) / 13/$$

Если пренебречь тензорными силами, отвечающими за переходы между состояниями с различными ℓ , то оба уравнения /12/ и /13/ будут эквивалентны следующему уравнению для центральных сил:

$$\left[M - 2m \operatorname{ch}(i\lambda \frac{\partial}{\partial r})\right] \Phi^{(s)}(r) = V^{(s)}(r) \Phi^{(s)}(r) . \qquad (14)$$

С квазипотенциалами для синглетного и триплетного состояний вида:

$$V^{(0)}(r) = V_{c}(r) - 3V_{ss}(r);$$
 /15/

$$V^{(1)}(r) = V_{c}(r) + V_{ss}(r)$$
. /16/

КВАЗИКЛАССИЧЕСКОЕ РЕШЕНИЕ РАДИАЛЬНОГО КВАЗИПОТЕНЦИАЛЬНОГО УРАВНЕНИЯ

Решение уравнения /14/ в ВКБ-приближении будем искать в ви- де $^{/16/}$

$$\Phi^{(8)}(\mathbf{r}) = \exp\{\frac{\sigma_0(\mathbf{r})}{i\lambda} + \sigma_1(\mathbf{r}) + \dots\},$$
 /17/

4

5

т.е. в виде разложения по степеням $\lambda = m^{-1}$, поскольку в обычных единицах $\lambda = \hbar$. В результате, ограничиваясь двумя низшими порядками по λ , нетрудно получить следующие уравнения:

$$\operatorname{ch} \sigma'_{0}(\mathbf{r}) = \frac{M - V^{(8)}(\mathbf{r})}{2m},$$
 /18/

$$\sigma_0'' \, \operatorname{ch} \sigma_0' + 2\sigma_1' \, \operatorname{sh} \sigma_0' = 0.$$
 /19/

Введем обозначение $\sigma'_0(\mathbf{r}) = \chi(\mathbf{r})$, тогда с точностью до константы имеем:

$$\sigma_0(\mathbf{r}) = \int d\mathbf{r} \chi(\mathbf{r}) , \qquad /20/$$

$$\sigma_1(r) = -\frac{1}{2} \ln \sinh \chi(r)$$
, /21/

причем
$$ch_{\chi}(r) = \frac{M - V^{(s)}(r)}{2m}$$
, /22/

откуда заключаем, что функцию $\chi(\mathbf{r})$ можно интерпретировать как классическую релятивистскую быстроту кварка, движущегося в поле потенциала $V^{(s)}(\mathbf{r})$. Точки поворота, очевидно, определяются как рещения уравнения

$$M - V^{(8)}(r) = 2m$$
. (23)

Волновая функция /17/ теперь имеет вид

. .

$$\Phi^{(s)}(r) = \frac{\exp\{\inf \int dr \chi(r)\}}{\sqrt{\operatorname{sh}\chi(r)}}.$$
 (24/

Рассмотрим произвольный "воронкообразный" квазипотенциал $V^{(s)}(t)$, изображенный на рис.1. Поведение $ch\chi(t)$, определяемое формулой /22/, в этом случае изображено на рис.2. Точка поворота t_1 определяется уравнением /23/, и при $t < t_1$ расположена классически доступная область. Кроме того, из /24/ мы заключаем, что имеется еще одна сингулярная точка /где несправедливо квазиклассическое приближение/, определяемая условием $\chi(t_g) = i\pi$. Таким образом, вся координатная ось разбивается на три интервала: $0 < t < t_1$, $t_1 < t < t_2$ и $t_g < t < \infty$, где следует определить квазиклассические решения и затем провести их сшивание.

Ясно, что в классически доступной области $0 < t < t_1$ мы имеем два действительных решения $\chi(t) = \pm \chi_1(t)$ вследствие двузначности обратного гиперболического косинуса в уравнении /22/, причем

$$\chi$$
 (r) = arch $\frac{M - V^{(s)}(r)}{2m}$. /25/

Рис.3

В области $r > r_g$ решения уравнения /22/, очевидно, будут иметь вид $\chi(r) = i\pi \pm \chi_g(r)$, где

χ.

n

$$\chi_{3}(r) = \operatorname{arch} \frac{V^{(s)}(r) - M}{2m}$$
. /26/

В классически запретной области $r_1 < r < r_2$ решение будет чисто мнимым $\chi(r) = i\chi_p(r)$, причем

$$\cos \chi_{2}(\mathbf{r}) = \frac{\mathbf{M} - \mathbf{V}^{(s)}(\mathbf{r})}{2\mathbf{m}}; \quad 0 < \chi_{2} < \pi.$$
 /27/

Таким образом, при изменении координаты t от 0 до ∞ , величина $\chi(t)$ в комплексной плоскости проходит контур, изображенный на рис.3.

Сшивание решений путем выхода в комплексную плоскость у приводит к следующим выражениям для волновой функции /24/.В классически доступной области 0 < r < r₁:

$$\Phi^{(s)}(r) = \frac{c}{\sqrt{sh\chi_1(r)}} \sin\{m \int_r^{r_1} dr\chi_1(r) + \frac{\pi}{4}\}.$$
 (28/

В области $r_1 < r < r_2$

$$\Phi^{(s)}(r) = \frac{c}{2\sqrt{\sin\chi_{o}(r)}} \exp\{-m \int_{r_{1}}^{r} dr \chi_{2}(r)\}.$$
 (29)

И, наконец, в области г > г2:

$$\Phi^{(s)}(r) = \frac{c}{\sqrt{sh\chi_{s}(r)}} \cos\{m \int_{r_{2}}^{r} dr\chi_{3}(r) + \frac{\pi}{4}\} \exp\{-m \int_{r_{1}}^{2} dr\chi_{2}(r) - \pi m (r-r_{2})\}.$$
(30)

Из граничного условия $\Phi^{(8)}(0) = 0$ и выражения /28/ получаем условие квантования уровней /17,18/:

$$m \int_{0}^{r_{1}} dr \chi_{1}(r) = \pi (n + \frac{3}{4}); \quad n = 0, 1, ...,$$
 (31/

где χ_1 (t) определяется формулой /28/,а точка поворота - уравнением /23/. Условие /31/ является обобщением известного правила квантования Бора-Зоммерфельда на случай релятивистских систем. Отличие от нерелятивистского правила квантования состоит в том, что под интегралом в формуле /31/, вместо импульса кварка стоит его релятивистская быстрота.

РАСЧЕТ СПЕКТРОВ РАДИАЛЬНЫХ ВОЗБУЖДЕНИЙ *п*-- И *р*-МЕЗОНОВ

Вычисление масс π - и ρ -мезонов проводилось с помощью формулы /31/. В качестве центрального квазипотенциала $V_c(r)$ был выбран квазипотенциал следующего вида:

$$V_{c}(r) = -\frac{a}{r} + \left\{ \frac{\lambda r}{\omega r^{2}} \right\}, \qquad (32)$$

т.е. для запирающей его части рассматривалось два варианта: линейный и осцилляторный. Присутствие кулоновской части связано с необходимостью правильно передать поведение взаимодействия на малых расстояниях, согласующееся с квантовой хромодинамикой ^{/19/}.Что касается спин-спинового взаимодействия, то оно первоначально считалось не зависящим от расстояния:

$$V_{ss}(r) = V_0 = const.$$
 /33/

Вообще говоря, если не считать, что константы взаимодействия a, λ , ω , рассматриваемые как свободные параметры модели, могут быть различными для π — и ρ -мезонов, то такой потенциал приво-

дил бы к постоянной величине спин-спинового расщепления для радиальных возбуждений т- и р-мезона,что не согласовывалось бы с наблюдаемыми спектрами. Поэтому при обработке данных мы позволяли этим параметрам быть различными для л-и р-мезонного спектров, что эквивалентно допущению, что потенциал V_ (r) имеет структуру /32/. Заметим, что в работе /20/ было показано, что введение зависимости запирающего потенциала от полного спина двухчастичной системы позволяет хорошо описать спектры масс тяжелых мезонов. Та же возможность вклада запирающего потенциала в спин-спиновое взаимодействие предполагается и в моделях, где брейт-фермиевский потенциал взаимодействия кварка и антикварка строится как фурье-образ регуляризованного тем или иным способом при малых Q² пропагатора одноглюонного обмена^{/21/}. Кулоноподобная зависимость спин-спинового взаимодействия, как известно, отсутствует в электродинамическом потенциале Брейта-Ферми, где оно пропорционально δ(τ) -функции /как фурье-образ $a_{K9\Pi} \cdot \vec{\sigma_1} \vec{\sigma_2}/.$ Но, поскольку в КХД мы имеем дело с бегущей константой связи $a_{KX\Pi} = a(Q^2)$ /регуляризованной при $Q^2 = \Lambda^2$ /, спинспиновое взаимодействие может уже носить не точечный, типа $\delta(\mathbf{r})$, а дальнодействующий характер /как фурье-образ $a_{KXI}^{\text{per}}(Q) \vec{\sigma}_1 \vec{\sigma}_2$ /, о чем свидетельствовало бы различие параметров потенциала /32/ a_{ρ} и a_{π} , которые мы при фите данных будем считать независимыми.

Как уже говорилось во введении, нами были проанализированы различные способы нумерации наблюдаемых радиальных возбуждений, соответствующие табл.1,3 и 4. В результате обработки имеющихся данных мы пришли к следующим результатам.

1. Если зафиксировать значения масс первых трех уровней π мезонов и ρ -мезонов согласно табл.1, то фит данных не идет, т.е. ни при каких разумных значениях параметров квазипотенциала не удается описать эти спектры формулой /31/. Если же не фиксировать массу π -уровня с n = 2, то из формулы /31/ для нее получается значение 2178 МэВ /вариант ωr^2 /, или 1974 МэВ /вариант λr /, что не согласуется с экспериментальным значением $M_{\pi}(1770 \pm 40)$.

2. Если пронумеровать радиальные возбуждения в соответствии с табл.3, но не фиксировать массу π -уровня с $\mathbf{n} = 3$, то для массы π -уровня с $\mathbf{n} = 1$ мы получаем для осцилляторного потенциала предсказание $M_{\pi}^{(1)} = 760$ МэВ, а $M_{\pi}^{(3)}$ оказывается равным 1700 МэВ.

При этом получены следующие значения параметров: $\omega_{\pi} = 0,130$, $\omega_{\rho} = 0,092$, $m_q = 0,478$, $a_{\pi} = 1,72$, $a_{\rho} = 1,67$. Отсюда видно, что спин-спиновое взаимодействие не имеет кулоновской части $(a_{\pi} = a_{\rho})$ и целиком определяется запирающим потенциалом. Если же зафиксировать значения масс π - и ρ -уровней согласно табл.3, то в случае осцилляторного потенциала получаем предсказание $M_{\pi}^{(1)} = 710$ МэВ.

9

3. Если мы откажемся от существования $\rho(1250)$ и проведем нумерацию уровней согласно табл.4, зафиксировав массы π - уровней с n = 0,1,2 и ρ -уровней с n = 0,1, то спектры также будут хорошо описываться формулой /31/, причем для ρ -уровня с n = 2 мы получим значение массы $M_{\rho}^{(2)} = 2180$ МэВ (ωr^2) или 2110 МэВ (λr), в хорошем согласии с табличным значением 2150 МэВ.

Таким образом, на основе проведенного анализа мы приходим к выводу о том, что если $\rho(1250)$ существует, то $\pi(1240)$ является вторым радиальным возбуждением, и должен существовать резонанс с квантовыми числами π -мезона и массой в районе 700 МэВ, являющейся первым радиальным возбуждением. Если же окажется, что $\pi(1240)$ является первым радиальным возбуждением, то это налагает запрет на существование $\rho(1250)$.

В соответствии с обсуждением экспериментальной ситуации во введении мы осмеливаемся утверждать, что эти выводы не зависят от выбора модели квазипотенциала, и лишь предсказываемая здесь величина массы первого радиального возбуждения *т*-мезона в какойто степени будет зависеть от конкретной формы квазипотенциала.

Авторы выражают искреннюю благодарность академику А.А.Логунову за интерес к работе и ценные замечания, а также А.Б.Говоркову и А.В.Сидорову за полезные обсуждения.

ЛИТЕРАТУРА

- 1. Quigg C., Rosner J.L. Phys.Rep., 1979, C56, No.4, p.168.
- 2. Barbieri R. et al. Nucl. Phys., 1976, B105, p.125.
- 3. Krammer M., Krasemann H. Preprint DESY 79/20, Hamburg, 1979.
- 4. Partridge J.V. et al. Phys.Rev.Lett., 1980, 45, p.1150; Himel T.M. et al. Phys.Rev.Lett., 1980, 45, p.1146.
- 5. Shifmann M.A. et al. Phys.Lett., 1978, 77B, p.80.
- 6. Bellini G. et al. Proc. of the IV Warsaw Symposium on Elementary Particle Physics, 1981, p.187; Bellini G. et al. CERN-EP/81-97, Geneva, 1981; Беллини Д.-П. Письма в ЖЭТФ, 1981, т.34, № 9, с.511-514.
- 7. Bellini G. et al. Phys.Rev.Lett., 1982, vol.48, No.25, p.1697-1700.
- 8. Gerasimov S.B., Govorkov A.N. Z.Phys.C Particles and Fields, 1982, 13, p.43.
- 9. Kataev A.L. et al. Preprint TH-3413-CERN, Geneva, 1982.
- 10. Григорян С.С. Препринт ИФВЭ 83-49, Серпухов, 1983.
- 11. Logunov A.A., Tavkhelidze A.N. Nuovo Cim., 1963, 29, p.280.
- 12. Kadyshevsky V.G. Nucl.Phys., 1968, B6, p.125.
- Savrin V.I., Sidorov A.V., Skachkov N.B. Hadronic Journal, 1981, 4, No.5, p.1642.
- 14. Кадышевский В.Г. и др. ЭЧАЯ, 1972, 2, с.635.
- 15. Скачков Н.Б., Соловцов И.Л. ЭЧАЯ, 1978, 9, с.5.

- 16. Донков А.Д. и др. В кн.: Взаимодействие адронов при высоких энергиях. Материалы Межд.семинара. Баку, 24-27 апреля 1972 г. Изд-во ИФ АН АзССР, Баку, 1972, с.5; в кн.: Труды IV Международного симпозиума по нелокальным теориям поля. Алушта, 1976. ОИЯИ, Д2-9788, Дубна, 1976; Донков А.Д., Кадышевский В.Г., Матеев М.Д. ТМФ, 1982, 50, № 3, с.360-369.
- 17. Скачков Н.Б., Соловцов И.Л. ТМФ, 1980, 31, с.1332.
- 18. Сидоров А.В., Скачков Н.Б. ТМФ, 1981, т.46, с.213.
- 19. Savrin V.I., Skachkov N.B. Nuovo Cim.Lett., 1980, vol.29, p.363.
- 20. Leutwyler H. et al. Proc.Int.Summer Inst.on Theor.Phys. Kaiserslauten, 1979. Plenum Press, New York, 1980.
- 21. Richardson J.L. Phys.Lett., 1979, 82B, p.272; Buchmuller W., Tye S.-H.H. The Quark-Antiquark Potential in Quantum Chromodynamics. Fermilab-Conf.-81/38 THY, 1981.

Рукопись поступила в издательский отдел 21 октября 1983 года.

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги,

если они не были заказаны ранее.

•

ДЗ-11787	Труды III Международной школы по неитронной физике. Алушта, 1978.	3	p.	00	к.
Д13-11807	Труды III Международного совещания по пропорциональ- ным и дрейфовым камерам. Дубна, 1978.	6	p.	00	к.
	Труды VI Всесоюзного совещания по ускорителям заря- женных частиц. Дубна, 1978 /2 тома/	7	p.	40	к.
Д1,2-12036	Труды V Международного семинара по пробленан физики высоких энергий. Дубна, 1978	5	p.	00	к.
Д1,2-12450	Труды XII Международной школы молодых ученых по физике высоких энергий. Приморско, НРБ, 1978.	3	p.	00	к.
	Труды VII Всесоюзного совещания по ускорителям заря- женных частиц, Дубна, 1980 /2 тома/	8	p.	00	к.
Д11-80-13	Труды рабочего совещания по системам и методам аналитических вычислений на ЗВМ-и их применению в теоретической физике, Дубна, 1979	3	p.	50	к.
д4-80-271	Труды Международной конференции по проблеман нескольких тел в ядерной физике. Дубна, 1979.	3	p.	00	к.
д4-80-385	Труды Международной школы по структуре ядра. Алушта, 1980.	5	p.	00	к.
д2-81-543	Труды VI Международного совещания по проблеман кван- товой теории поля. Алушта, 1981	2	p.	50	к.
A10,11-81-622	Труды Международного совещания по проблемам математи- ческого моделирования в ядерно-физических исследова- ниях. Дубна, 1980	2	р.	50	к.
A1,2-81-728	Труды VI Международного семинара по проблемам физики высоких энергий. Дубна, 1981.	3	p.	60	к.
Д17-81-758	Труды II Международного симпозиума по избранным проблемам статистической механики. Дубна, 1981.	5	p.	40	к.
Д1,2-82-27	Труды Международного симпозиума по поляризационным явлениям в физике высоких энергий. Дубна, 1981.	3	p.	20	к.
P18-82-117	Труды IV совещания по использованию новых ядерно- физических методов для решения научно-технических и народнохозяйственных задач. Дубиа, 1981.	3	p.	80	к.
Д2-82-568	Труды совещания по исследованиям в области релятивистской ядерной физики. Дубна, 1982.	1	p.	75	к.
д9-82-664	Труды совещания по коллективным методам ускорения. Дубна, 1982.	3	p.	30	к.
ДЗ, 4-82-704	Труды IV Международной школы по нейтронной физике, Дубна, 1982.	5	P.	00	к.

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79 Издательский отдел Объединенного института ядерных исследований

Иваньшин Ю.И. и др.	P2-83-727
О возможности существования новых радиа.	льных возбуждений систем.
составленных из легких кварков	The second second second second second
	a second second second second second second second second
Целью работы заляется изучение воз	можности существования новых радиал
HUY BOSEVWORHUNHESONA DACCHATOHERE	HOTO NAK CREZZHUGE COCTORNIE KRADK
и антикварка. Для описания свизанного с	OCIONNA ABYA JOI KAA KBADKOA HCHOM
зувтся релятивистское квазипотенциально	е уравнение, которое решается мето
дом окр. квазипотенциал высирается в ви	де сумны кулоновского и запираюцего
/линеиного или осцилляторного/ потенциа	лов, путем совместного фита спект-
ров и р-мезонных радиальных возоужд	ении установлено, что в случае су-
ществования в (1250) резонанса первое ра	диальное возбуждение # -мезона
должно лежать в области масс М _, ~ 700 М	эв.
Работа выполнена в Лаборатории тео	ретической физики ОИЯИ.
Сообщение Объединенного института в	дерных исследований. Дубна 1983
Сообщение Объединенного института я	дерных исследований. Дубна 1983 Р2-83-727
Cooбщение Объединенного института я Ivanshin Yu,I. et al.	дерных исследований. Дубна 1983 Р2-83-727
Cooбщение Объединенного института в Ivanshin Yu,I. et al. About the Possibility of the Existence	дерных исследований. Дубна 1983 P2-83-727 of New Radial Excitations
Сообщение Объединенного института и Ivanshin Yu, I. et al. About the Possibility of the Existence of the Systems Formed of Light Quarks	дерных исследований. Дубна 1983 P2-83-727 of New Radial Excitations
Сообщение Объединенного института и Ivanshin Yu,i. et al. About the Possibility of the Existence of the Systems Formed of Light Quarks	дерных исследований. Дубна 1983 P2-83-727 of New Radial Excitations
Сообщение Объединенного института и Ivanshin Yu, I. et al. About the Possibility of the Existence of the Systems Formed of Light Quarks The aim of the work is to study th	дерных исследований. Дубна 1983 P2-83-727 of New Radial Excitations e possibility of the existence of
Сообщение Объединенного института и Ivanshin Yu,I. et al. About the Possibility of the Existence of the Systems Formed of Light Quarks The alm of the work is to study th new radial excitations of s-meson, con	дерных исследований. Дубна 1983 P2-83-727 of New Radial Excitations e possibility of the existence of sidered as a bound state of quark
Сообщение Объединенного института и ivanshin Yu,i. et al. About the Possibility of the Existence of the Systems Formed of Light Quarks The aim of the work is to study th new radial excitations of <i>m</i> -meson, con	дерных исследований. Дубна 1983 P2-83-727 of New Radial Excitations e possibility of the existence of sidered as a bound state of quark
Сообщение Объединенного института и Ivanshin Yu,i. et al. About the Possibility of the Existence of the Systems Formed of Light Quarks The alm of the work is to study th new radial excitations of #-meson, con and antiquark. To describe the bound st	дерных исследований. Дубна 1983 P2-83-727 of New Radial Excitations e possibility of the existence of sidered as a bound state of quark ate of two light quarks the rela-
Сообщение Объединенного института и Ivanshin Yu,i. et al. About the Possibility of the Existence of the Systems Formed of Light Quarks The alm of the work is to study th new radial excitations of <i>m</i> -meson, con and antiquark. To describe the bound st tivistic quasipotential equation is use	дерных исследований. Дубна 1983 P2-83-727 of New Radial Excitations e possibility of the existence of sidered as a bound state of quark ate of two light quarks the rela- d that is solved by WKB method.
Сообщение Объединенного института и Ivanshin Yu, I. et al. About the Possibility of the Existence of the Systems Formed of Light Quarks The aim of the work is to study th new radial excitations of s-meson, con and antiquark. To describe the bound st tivistic quasipotential equation is use The guasipotential is chosen to be a su	дерных исследований. Дубна 1983 P2-83-727 of New Radial Excitations e possibility of the existence of sidered as a bound state of quark ate of two light quarks the rela- d that is solved by WKB method. m of a Coulomb and confining (line
Сообщение Объединенного института и Ivanshin Yu, I. et al. About the Possibility of the Existence of the Systems Formed of Light Quarks The aim of the work is to study th new radial excitations of <i>m</i> -meson, con and antiquark. To describe the bound st tivistic quasipotential equation is use The quasipotential is chosen to be a su or escillator) potentials. It is found	дерных исследований. Дубна 1983 P2-83-727 of New Radial Excitations e possibility of the existence of sidered as a bound state of quark ate of two light quarks the rela- d that is solved by WKB method. m of a Coulomb and confining (line with the help of a simultaneous fi
Сообщение Объединенного института и Ivanshin Yu, I. et al. About the Possibility of the Existence of the Systems Formed of Light Quarks The aim of the work is to study th new radial excitations of #-meson, con and antiquark. To describe the bound st tivistic quasipotential equation is use The quasipotential is chosen to be a su or oscillator) potentials. It is found	дерных исследований. Дубна 1983 P2-83-727 of New Radial Excitations e possibility of the existence of sidered as a bound state of quark ate of two light quarks the rela- d that is solved by WKB method. m of a Coulomb and confining (line with the help of a simultaneous fi
Сообщение Объединенного института и ivanshin Yu, i. et al. About the Possibility of the Existence of the Systems Formed of Light Quarks The aim of the work is to study th new radial excitations of π -meson, con and antiquark. To describe the bound st tivistic quasipotential equation is use The quasipotential is chosen to be a su or oscillator) potentials. It is found of the spectrum of π - and ρ -meson radi	дерных исследований. Дубна 1983 P2-83-727 of New Radial Excitations e possibility of the existence of sidered as a bound state of quark ate of two light quarks the rela- d that is solved by WKB method. m of a Coulomb and confining (line with the help of a simultaneous fi al excitations that in the case of
Coodwenne Объединенного института и Ivanshin Yu, I. et al. About the Possibility of the Existence of the Systems Formed of Light Quarks The aim of the work is to study th new radial excitations of π -meson, con and antiquark. To describe the bound st tivistic quasipotential equation is use The quasipotential is chosen to be a su or oscillator) potentials. It is found of the spectrum of π - and ρ -meson radi the existence of $\rho'(1250)$ resonance the f	дерных исследований. Дубна 1983 P2-83-727 of New Radial Excitations e possibility of the existence of sidered as a bound state of quark ate of two light quarks the rela- d that is solved by WKB method. m of a Coulomb and confining (line with the help of a simultaneous fi ai excitations that in the case of irst radial excitation of g-meson
Сообщение Объединенного института и Ivanshin Yu, I. et al. About the Possibility of the Existence of the Systems Formed of Light Quarks The aim of the work is to study th new radial excitations of <i>m</i> -meson, con and antiquark. To describe the bound st tivistic quasipotential equation is use The quasipotential is chosen to be a su or oscillator) potentials. It is found of the spectrum of <i>m</i> - and <i>p</i> -meson radi the existence of <i>p'</i> (1250) resonance the f should be in the mass region M~700 M	дерных исследований. Дубна 1983 P2-83-727 of New Radial Excitations e possibility of the existence of sidered as a bound state of quark ate of two light quarks the rela- d that is solved by WKB method. m of a Coulomb and confining (line with the help of a simultaneous fi al excitations that in the case of irst radial excitation of g-meson eV.
Сообщение Объединенного института и ivanshin Yu,i. et al. About the Possibility of the Existence of the Systems Formed of Light Quarks The alm of the work is to study th new radial excitations of π -meson, con and antiquark. To describe the bound st tivistic quasipotential equation is use The quasipotential is chosen to be a su or oscillator) potentials. It is found to of the spectrum of π - and ρ -meson radi the existence of $\rho'(1250)$ resonance the f should be in the mass region $W_{\pi} \sim 700$ M	дерных исследований. Дубна 1983 P2-83-727 of New Radial Excitations e possibility of the existence of sidered as a bound state of quark ate of two light quarks the rela- d that is solved by WKB method. m of a Coulomb and confining (line: with the help of a simultaneous fi al excitations that in the case of irst radial excitation of m=meson eV.
Сообщение Объединенного института и Ivanshin Yu, I. et al. About the Possibility of the Existence of the Systems Formed of Light Quarks The alm of the work is to study th new radial excitations of *-meson, con and antiquark. To describe the bound st tivistic quasipotential equation is use The quasipotential is chosen to be a su or escillator) potentials. It is found of the spectrum of *- and p-meson radi the existence of p'(1250) resonance the f should be in the mass region M_*- 700 M	дерных исследований. Дубна 1983 P2-83-727 of New Radial Excitations e possibility of the existence of sidered as a bound state of quark ate of two light quarks the rela- d that is solved by WKB method. m of a Coulomb and confining (line. with the help of a simultaneous fi al excitations that in the case of irst radial excitation of #-meson eV. ed at the Laboratory of Theoretica
Сообщение Объединенного института и Ivanshin Yu, I. et al. About the Possibility of the Existence of of the Systems Formed of Light Quarks The aim of the work is to study th new radial excitations of π -meson, con and antiquark. To describe the bound st tivistic quasipotential equation is use The quasipotential is chosen to be a su or oscillator) potentials. It is found of the spectrum of π - and ρ -meson radi the existence of $\rho'(1250)$ resonance the f should be in the mass region $M_{\pi'}$ - 700 M The investigation has been perform	дерных исследований. Дубна 1983 P2-83-727 of New Radial Excitations e possibility of the existence of sidered as a bound state of quark ate of two light quarks the rela- d that is solved by WKB method. m of a Coulomb and confining (line with the help of a simultaneous fi ai excitations that in the case of irst radial excitation of g-meson eV. ed at the Laboratory of Theoretica
Сообщение Объединенного института и Ivanshin Yu, I. et al. About the Possibility of the Existence of af the Systems Formed of Light Quarks The aim of the work is to study th new radial excitations of π -meson, con and antiquark. To describe the bound st tivistic quasipotential equation is use The quasipotential is chosen to be a su or oscillator) potentials. It is found of of the spectrum of π - and ρ -meson radii the existence of $\rho'(1250)$ resonance the f should be in the mass region M _g 700 M The investigation has been perform Physics, JINR.	дерных исследований. Дубна 1983 P2-83-727 of New Radial Excitations e possibility of the existence of sidered as a bound state of quark ate of two light quarks the rela- d that is solved by WKB method. m of a Coulomb and confining (line with the help of a simultaneous fi al excitations that in the case of irst radial excitation of @-meson eV. ed at the Laboratory of Theoretica
Сообщение Объединенного института и Ivanshin Yu, I. et al. About the Possibility of the Existence of of the Systems Formed of Light Quarks The aim of the work is to study the new radial excitations of π -meson, con- and antiquark. To describe the bound st tivistic quasipotential equation is use The quasipotential is chosen to be a su or oscillator) potentials. It is found to of the spectrum of m and p -meson radii the existence of $p'(1250)$ resonance the f should be in the mass region $M_{\pi} \sim 700$ M The investigation has been perform Physics, JINR.	дерных исследований. Дубна 1983 P2-83-727 of New Radial Excitations e possibility of the existence of sidered as a bound state of quark ate of two light quarks the rela- d that is solved by WKB method. m of a Coulomb and confining (line with the help of a simultaneous fi al excitations that in the case of irst radial excitation of g-meson eV. ed at the Laboratory of Theoretica
Coodwenne Odbegunenhoro института m Ivanshin Yu, I. et al. About the Possibility of the Existence of af the Systems Formed of Light Quarks The alm of the work is to study the new radial excitations of π -meson, con- and antiquark. To describe the bound stativistic quasipotential equation is use The quasipotential is chosen to be a sup- or oscillator) potentials. It is found to of the spectrum of π - and ρ -meson radi- the existence of $\rho'(1250)$ resonance the for- should be in the mass region $M_{\pi'}$. 700 M The investigation has been perform Physics, JINR.	дерных исследований. Дубна 1983 P2-83-727 of New Radial Excitations e possibility of the existence of sidered as a bound state of quark ate of two light quarks the rela- d that is solved by WKB method. m of a Coulomb and confining (line with the help of a simultaneous fi al excitations that in the case of irst radial excitation of g-meson eV. ed at the Laboratory of Theoretica
Coodweame Odsequatemento and the transmither of the listence of the Systems Formed of Light Quarks. The aim of the work is to study the new radial excitations of π -meson, con and antiquark. To describe the bound st tivistic quasipotential equation is use the quasipotential is chosen to be a sup or oscillator) potentials. It is found to of the spectrum of π - and ρ -meson radiate existence of $\rho'(1250)$ resonance the f should be in the mass region M _g 700 M The investigation has been perform Physics, JINR.	дерных исследований. Дубна 1983 P2-83-727 of New Radial Excitations e possibility of the existence of sidered as a bound state of quark ate of two light quarks the rela- d that is solved by WKB method. m of a Coulomb and confining (line with the help of a simultaneous fi al excitations that in the case of irst radial excitation of g-meson eV. ed at the Laboratory of Theoretica
Сообщение Объединенного института и Ivanshin Yu, I. et al. About the Possibility of the Existence of of the Systems Formed of Light Quarks The aim of the work is to study the new radial excitations of π -meson, con and antiquark. To describe the bound st tivistic quasipotential equation is use The quasipotential is chosen to be a su or oscillator) potentials. It is found of the spectrum of π - and ρ -meson radii the existence of $\rho'(1250)$ resonance the f should be in the mass region M _g 700 M The investigation has been perform Physics, JINR.	дерных исследований. Дубна 1983 P2-83-727 of New Radial Excitations e possibility of the existence of sidered as a bound state of quark ate of two light quarks the rela- d that is solved by WKB method. m of a Coulomb and confining (line with the help of a simultaneous fi al excitations that in the case of irst radial excitation of g-meson eV. ed at the Laboratory of Theoretica
Сообщение Объединенного института и Ivanshin Yu, I. et al. About the Possibility of the Existence of of the Systems Formed of Light Quarks The alm of the work is to study the new radial excitations of π -meson, con and antiquark. To describe the bound st tivistic quasipotential equation is use The quasipotential is chosen to be a su or oscillator) potentials. It is found of of the spectrum of m and ρ -meson radii the existence of $\rho'(1250)$ resonance the f should be in the mass region $M_{\pi'}$. 700 M The investigation has been perform Physics, JINR.	дерных исследований. Дубна 1983 P2-83-727 of New Radial Excitations e possibility of the existence of sidered as a bound state of quark ate of two light quarks the rela- d that is solved by WKB method. m of a Coulomb and confining (line with the help of a simultaneous fi al excitations that in the case of irst radial excitation of <i>m</i> -meson eV. ed at the Laboratory of Theoretica

Communication of the Joint Institute for Nuclear Research. Dubna 1983

Перевод О.С.Виноградовой