

С.Г.Горишний, С.А.Ларин^{*}, Ф.В.Ткачев^{**} К.Г.Четыркин^{**}

РЕНОРМГРУППОВЫЕ ВЫЧИСЛЕНИЯ В МОДЕЛИ $g \varphi_{(4)}^4$ В ПЯТИПЕТЛЕВОМ ПРИБЛИЖЕНИИ

Haправлено в журнал "Physics Letters B"

* Московский государственный университет.

**Институт ядерных исследований АН СССР, Москва.

1983

Метод ренормгруппы /РГ/ является одним из основнъх инструментов в изучении асимптотического поведения квантовопслевых моделей $^{1/}$. Его практическое применение требует расчета гядов теории возмущений для РГ-функций. Наибольший прогресс в таких вычислениях достигнут в модели $g\phi_{(4)}^{4/2,3/}$.

Традиционно эта модель служит пробным камнем для новых алгоритмов вычисления фейнмановских интегралов и изучения структуры рядов теории возмущений в целом. В частности, она усобна при исследовании возможности выхода за рамки слабой связи, основанной на методе суммирования асимптотических рядов ^{/4/}. Кроме того, многопетлевые расчеты в этой модели используются для вычисления критических индексов фазовых переходов ^{/5/}.

Трех- и четырехпетлевые приближения РГ-функций мсдели $g\phi_{(4)}^4$ были получены в $^{/2,3/}$. Пятипетлевые РГ-вычисления были начаты в работе $^{/6/}$, где найдена аномальная размерность поля ϕ .

Развитие новых эффективных методов расчета фейнисновских диаграмм и констант перенормировки в работах ^{/7-10/} гозволило нам осуществить полную программу РГ-вычислений в могели gd ⁴ на пятипетлевом уровне. В этой работе мы кратко обсуждаем методы вычислений, представляем результаты расчетов РГ-функций в пятипетлевом приближении и применяем к ним метод суммирсвания асимптотических рядов, развитый в ^{/11/}.

2. Рассматриваемая модель описывается лагранжиансм

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi^{a} \partial_{\mu} \phi^{a} - \frac{m^{2}}{2} \phi^{a} \phi^{a} - \frac{16\pi^{2}}{4!} g(\phi^{a} \phi^{a})^{2}, \qquad /1/$$

где ϕ^{a}_{-n} - компонентное действительное скалярное псле.

При вычислении используется размерная регуляризация и минимальная вычитательная (MS) схема^{/12/} Ренормированныє функции Грина Г_R получаются из "голых" в результате процедуры перенормировки

$$\Gamma_{R}(p^{2}, \mu^{2}, m^{2}, g) = Z_{\Gamma}(\epsilon, g)\Gamma_{B}(p^{2}, m_{B}^{2}, g_{B}), \qquad /2/$$

где

$$m_{B}^{2} = Z_{m^{2}}(\epsilon, g) m^{2}, g_{B} = \mu^{2} \epsilon Z_{g}(\epsilon, g) g, Z_{g} = Z_{4} \cdot Z_{2}^{-2}.$$

Здесь μ - единица массы t' Хоофта; $\epsilon = (4 - D)/2$, D - размерность пространства; Z_{m2}, Z₄ и Z₂ - константы перенормировки массы, вершинной функции и поля ϕ соответственно.

BUCHNEL DECTRONSE BUCHNELSE В MS -схеме эти константы имеют следующую структуру:

$$Z_{\Gamma}(\epsilon, g) = 1 + \sum_{k=1}^{\infty} \frac{Z_{\Gamma}^{(k)}(g)}{\epsilon^{k}}, \qquad (3/$$

где Z $_{\Gamma}^{(k)}$ (g) не зависят от размерных параметров /13/. β -функция и аномальные размерности γ_{Γ} , входящие в уравнения ренормгруппы для $\Gamma_{\!_{\mathbf{R}}}$, определяются следующим образом через константы перенормировки:

$$\beta(g) = \mu^2 \frac{dg}{d\mu^2} \Big|_{\substack{g_B - fix}} = g \frac{\partial Z_g^{(1)}}{\partial g} = \sum_{k=1}^{\infty} \beta^{(k)} g^{k+1} ;$$

$$\gamma_{m^2}(g) = \frac{\mu^2}{m^2} \frac{dm^2}{d\mu^2} \Big|_{\substack{B, g_B}} = g \frac{\partial Z_m^{(1)}}{\partial g} = \sum_{k=1}^{\infty} \gamma_m^{(k)} g^k ;$$

$$\gamma_4(g) = \mu^2 \frac{d\ln Z_4}{d\mu^2} \Big|_{\substack{g_B}} = -g \frac{\partial Z_4^{(1)}}{\partial g} = \sum_{k=1}^{\infty} \gamma_4^{(k)} g^k ;$$

$$\gamma_2(g) = \mu^2 \frac{d\ln Z_2}{d\mu^2} \Big|_{\substack{g_B}} = -g \frac{\partial Z_4^{(1)}}{\partial g} = \sum_{k=1}^{\infty} \gamma_4^{(k)} g^k ;$$

Приведем также соотношения

$$\gamma_{m^2}(g) = \gamma_2(g) - \gamma_{\phi^2}(g), \quad \beta(g) = g(2\gamma_2(g) - \gamma_4(g)), \quad /5/$$

которыми удобно пользоваться при вычислении $\gamma_{m2}(\mathbf{g})$ и $\beta(\mathbf{g})$.Здесь $\gamma_{\phi2}(\mathbf{g})$ аномальная размерность двухточечной функции Грина со вставкой оператора ϕ^2 :

$$\Gamma_{\phi^2} = \langle 0 | T(\phi(\mathbf{x}) \phi(0) | \phi^2(\mathbf{y}) d\mathbf{y}) | 0 \rangle;$$
 /6/

$$\gamma_{\phi^2}(g) = \mu^2 \frac{d \ln Z_{\phi^2}}{d\mu^2} \Big|_{g_B} = -g \frac{\partial Z_{\phi^2}^{(1)}}{\partial g} = \sum_{k=1}^{\infty} \gamma_{\phi^2}^{(k)} g^k \cdot \frac{1}{7}$$

Нашей задачей является вычисление пятипетлевых коэффициентов рядов теории возмущений β , $\gamma_{m\,2}$ и γ_4 ./Напомним, что для γ_2 такой расчет был проведен в $^{/6/}$ /. Таким образом, нам достаточно знать константы Z_4 и $Z_6 2$.

3. В константу \mathbf{Z}_{a} дают вклад контрчлены 124 пятипетлевых вершинных диаграмм. После соответствующего изменения комбинаторных факторов 90 из этих контрчленов составляют также Zd2.

В процессе вычислений нам пришлось использовать все развитые в последнее время методы расчета контрчленов размерно регуляризованных фейнмановских интегралов, а именно, метод инфракрасного преобразования ^{/7/}, технику полиномов Гегенбауэра в х-пространст-ве /ТПГХ/ ^{/8/}, метод интегрирования по частям в размерной регуляризации ^{/9/} и инфракрасную R*-операцию ^{/10/}.

Мы не смогли вычислить аналитически три диаграммы, приведенные на рисунке, и вынуждены были прибегнуть к численному суммированию рядов, полученных с помощью ТПГХ. Суммирование было проведено с высокой точностью благодаря быстрой сходимости таких рядов. Остальные 121 из 124 диаграмм были вычислены аналитически. В процессе расчетов широко использовалась система аналитических вычислений SCHOONSCHIP /14/в частности, программа, реализующая алгоритм /9/, оказалась весьма полезной. Подробности вычислений будут даны в отдельной публикации.

4. Результатом наших расчетов являются следующие выражения пятипетлевых коэффициентов РГ-функций /см. уравнение /4//:

$$\begin{split} \beta^{(5)} &= 1001,7934 \pm 0,0004 + n \cdot (382,7593 \pm 0,0002) + \\ &+ n^2 \cdot (35,57160 \pm 0,00002) + \\ &+ n^3 \cdot (\frac{2083}{20736} + \frac{13}{81} \cdot \zeta (3) - \frac{1}{9} \cdot \zeta^2 (3) - \frac{185}{1296} \cdot \zeta (4) + \frac{245}{324} \cdot \zeta (5) - \frac{91}{486} \cdot \zeta (6)) + \\ &+ n^4 \cdot (\frac{13}{124416} - \frac{1}{864} \cdot \zeta (3)); \\ y^{(5)}_{m^2} &= \frac{1397}{81} + \frac{1327}{162} \zeta (3) - \frac{194}{81} \zeta^2 (3) + \frac{697}{162} \zeta (4) + \frac{622}{243} \zeta (5) + \frac{775}{81} \zeta (6) + \\ &+ n \cdot (\frac{3508}{243} + \frac{2011}{324} \zeta (3) - \frac{436}{243} \zeta^2 (3) + \frac{125}{36} \cdot \zeta (4) + \frac{725}{243} \zeta (5) + \frac{1850}{243} \zeta (6)) + \\ &+ n^2 \cdot (\frac{32563}{10368} + \frac{1261}{972} \zeta (3) - \frac{149}{486} \zeta^2 (3) + \frac{17}{24} \zeta (4) + \frac{529}{486} \zeta (5) + \frac{1475}{972} \zeta (6)) + \\ \end{split}$$

3

2

$$+ n^{3} \cdot \left(\frac{19}{162} + \frac{487}{3888}\zeta(3) - \frac{1}{243}\zeta^{2}(3) + \frac{25}{1296}\zeta(4) + \frac{115}{972}\zeta(5) + \frac{25}{486}\zeta(6)\right) + n^{4} \cdot \left(\frac{7}{124416} + \frac{17}{7776}\zeta(3) - \frac{1}{432}\zeta(4)\right),$$

где

$$\zeta(\mathbf{p}) = \sum_{k=1}^{\infty} \frac{1}{k^p} \, .$$

Часть результата для $\beta(g)$ представлена в численном виде, поскольку, как было отмечено, три диаграммы не удалось вычислить точно. Что касается $\gamma_{m2}(g)$, то все соответствующие контрчлены были получены в аналитическом виде.

Приведем также выражения для $\beta(g)$ и $\gamma_{m,2}(g)$ при n = 1:

$$\beta(g) = \frac{3}{2}g^2 - \frac{17}{6}g^3 + 16,27g^4 - 135,80g^5 + 1420,69g^8;$$

$$\gamma_{m2}(g) = \frac{1}{2}g - \frac{5}{12}g^2 + \frac{7}{4}g^3 - 9,98g^4 + 82,73g^5.$$
(10)

5. Как было показано Липатовым $^{/15/}$, коэффициенты $\beta^{(k)}$ ряда теории возмущений β -функции растут, как

$$\beta^{(k)}_{k \to \infty} = \frac{k! k^{7/2} (-1)^{k} \cdot C \cdot (1 + O(\frac{1}{k}))}{1 + O(\frac{1}{k})}.$$
 (11/

Поэтому ряд теории возмущений для $\beta(g)$ является асимптотическим. Этот результат находится в качественном согласии с нашими вычислениями, поскольку рассчитанные коэффициенты $\beta(g)$ и $\gamma_{m\,2}(g)$ растут весьма /хотя и недостаточно/ быстро /см. уравнение /10//, приблизительно как 10^k.

Отметим, что, строго говоря, оценка /11/ была получена в МОМсхеме, в то время как мы работаем в MS-схеме. Однако фактор $k! k^{7/2} (-1)^k$ в правой части /11/ зависит только от такой характеристики модели $g\phi^4_{(4)}$, как число нулевых мод экстремума функционального интеграла, так что схемовозависимой величиной является только константа С. Но это несущественно для дальнейшего анализа.

Ясно, что прямое суммирование ряда $\beta(g)$ может иметь смысл только при очень малых значениях g. Чтобы получить разумные результаты для больших g(g > 1), необходимо использовать специальную технику суммирования асимптотических рядов /см. обзор ^{/4/} /. Мы применяем метод работы ^{/11/}, основанный на модифицированном борелевском преобразовании и конформном отображении. Борелевски преобразованная β -функция определена, как

$$\beta(g) = \int_{0}^{\infty} \frac{dx}{g} e^{-x/y} (\frac{x}{g})^{b-a} \cdot (x \frac{\partial}{\partial x})^{a} B(x) , \qquad /12/$$

где

$$B(x) = \sum_{k=2}^{\infty} B^{(k)} x^{k}, \quad B^{(k)} = \frac{\beta^{(k)}}{\Gamma(k+b+1-a)k^{a}}$$

и мы выбираем a = 5, b = 5 согласно^{/11/}. Ряд B(x) сходится только при |x| < 1. Его аналитическое продолжение на область x > 1 осуществляется посредством конформного преобразования $x \to w$:

$$w(x) = \frac{\sqrt{1+x}-1}{\sqrt{1+x}+1}$$
. /13/

При этом область интегрирования $[0, \infty)$ переходит в [0, 1], где ряд по w, получающийся переразложением B(x(w)) по w, сходится. Коэффициент при w^N зависит только от $\beta^{(k)}$ для $k \leq N$. Таким образом, пренебрегая членами $O(w^m)$, m > N, мы получаем приближенную "сумму" $\beta_N(g)$ для исходной β -функции, соответствующую учету N членов ряда теории возмущений.

Отметим, что переразложение B(x) в ряд по w допускает неоднозначность /11/:

$$B(\mathbf{x}) \rightarrow \mathbf{x}^{\lambda} B_{\lambda}(\mathbf{x}) = \left(\frac{\mathbf{x}}{\mathbf{w}}\right)^{\lambda} \sum_{n=2}^{\infty} \mathbf{w}^{n} B_{\lambda}^{(n)}, \qquad /14/$$

где λ – произвольный действительный параметр, причем его значение является критичным для результатов суммирования, так как он определяет асимптотику β (g) при больших g:

$$\beta(g) = g^{\lambda} \cdot (15/g)^{\lambda}$$

Точное значение λ , конечно, неизвестно. Его можно фиксировать с помощью критерия быстрейшей сходимости $\beta_N(g)$, который, как показано в $^{/11/}$, дает хорошие результаты для точно решаемых моделей. Формально λ_N выбирается из условия минимума величины:

$$\Delta_{N}(\lambda_{N}, g) = \min_{\lambda} \Delta_{N}(\lambda, g) = \min_{\lambda} \left| \frac{\beta_{N}(g) - \beta_{N-1}(g)}{\beta_{N-1}(g)} \right|.$$
 (16/

Как показывают вычисления, λ_N не зависит от g при больших g и слабо зависит от N,что свидетельствует в пользу применяемого метода.

Четырехпетлевой анализ в $^{/11}$ дал $\lambda_2 \approx 2$ для β -функции, вычисленной в МОМ-схеме. Мы получили, что в MS-схеме $\lambda_3 = 1, 8\pm0, 1;$

5

 $\lambda_4 = \lambda_5 = 1,9 \pm 0,1$, причем $\Delta_5(\lambda_5,g)$ составляет примерно 2% при $0 < g \le 10^3$. Таким образом, асимптотики $\beta(g)$ в различных схемах совпадают. С другой стороны, малость Δ_5 показывает, что используемый метод суммирования стабилен по отношению к добавлению высших порядков теории возмущений.

Эта стабильность дает возможность предсказывать N + 1, N + 2,... коэффициенты β -функции, если известны первые N. Действительно, рассмотрим $\Delta_N(\lambda_N)$ как функцию двух параметров: $\Delta_N = \Delta_N(\lambda_N, \beta^{(N)})$. Так как λ_N не зависит от N, то λ_N и $\beta^{(N+1)}$ должны минимизировать Δ_{N+1} , и из этого условия можно извлечь неизвестный параметр β^{N+1*} .

Например, считая исходно известной четырехпетлевую β -функцию, мы получаем для "неизвестного" пятого коэффициента:

$$\beta^{(5)} = 1405 \pm 80$$
, /17/

что находится в хорошем согласии с нашим результатом /см./10//. Мы можем также предсказать значение $\beta^{(6)}$:

$$\beta^{(6)} = 17200 \pm 50.$$
 /18/

Точность предсказаний определена из условия $|B_{\lambda}^{(N+1)}| \le |B_{\lambda}^{(N)}|$, причем в /18/ точность выше, так как учтена новая информация /пятый коэффициент/ по сравнению с /17/. Полученные числа показывают, что хотя видна тенденция для $\beta^{(k)}$ расти быстрее, чем 10^k, рост, предсказанный /11/, еще не наблюдается.

6. ЗАКЛЮЧЕНИЕ

Мы рассчитали пятипетлевые приближения рядов теории возмущений РГ-функций β (g) и y_{m^2} (g) в MS -схеме /см. уравнения /8/-/9//, используя эффективные методы вычисления многопетлевых фейнмановских интегралов, развитые в последнее время в работах ^{77-10/}. Получено, что коэффициенты β ^(k) ряда теории возмущений β -функции растут только как 10^k, и на пятипетлевом уровне роста, предсказанного оценками Липатова /11/, не наблюдается.

Мы применили к ряду для $\beta(g)$ борелевский метод суммирования, развитый в $^{/11/}$, и нашли, что результат суммирования не зависит от выбора схемы перенормировки и стабилен по отношению к учету пятипетлевой поправки, которая изменяет результат только на 2% в области 0 < g \leq 10⁸. Приближенное выражение для $\beta(g)$ при больщих g имеет вид

- β_{resum} (g) ~ 0,7 \cdot g^{1,9}.
- * Минимум $\Delta_{N+1}(\lambda_N, \beta^{N+1})$ соответствует занулению $B_{\lambda_N}^{(N+1)}(\beta^{(N+1)})$ в /14/.

Мы выражаем глубокую благодарность В.А.Матвееву и А.Н.Тавхелидзе за постоянную поддержку. Мы признательны Д.И.Казакову, А.Л.Катаеву и О.В.Тарасову за полезные обсуждения.

ЛИТЕРАТУРА

- 1. Боголюбов Н.Н., Ширков Д.В. Введение в теорию квантованных полей. "Наука", М., 1976.
- Brezin E., Le Guillou J.C., Zinn-Justin J. Phys.Rev., 1974, B9, p.1121.
- 3. Владимиров А.А., Казаков Д.И., Тарасов О.В. ЖЭТФ, 1979, 77, с.1035.
- 4. Kazakov D.I., Shirkov D.V. Fortsch.d. Phys., 1980, 28, p.465.
- Brezin E., Le Guillou J.C., Zinn-Justin J. Phase Transitions and Critical Phenomena. Academic Press, New York, 1976, vol.VI.
- Chetyrkin K.G., Kataev A.L., Tkachov F.V. Phys.Lett., 1981, 99B, p.147; Errat.Phys.Lett., 1981, 101B, p.457.
- 7. Владимиров А.А. ТИФ, 1980, 43, с.210.
- Chetyrkin K.G., Kataev A.L., Tkachov F.V. Nucl. Phys., 1980, B174, p.345.
- 9. Tkachov F.V. Phys.Lett., 1981, 100B, p.65; Chetyrkin K.G., Tkachov F.V. Nucl.Phys., 1981, B192, p.159.
- 10. Chetyrkin K.G., Tkachov F.V. Phys Lett., 1982, 11/19, p.3/10.
- 11. Казаков Д.И., Тарасов О.В., Ширков Д.В. ТМФ, 1979, 38, с.15.
- 12. t'Hooft G. Nucl.Phys., 1973, B61, p.455.
- 13. Collins J.G. Nucl.Phys., 1974, B80, p.341.
- 14. Strubbe H. Comp.Phys.Comm., 1974, 8, p.1.
- 15. Липатов Л.Н. ЖЭТФ, 1977, 72, с.411.

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги,

если они не были заказаны ранее.

Д3-11787	Труды III Международной школы по нейтронной физике. Алушта, 1978.	3 р. 00 к.
Д13-11807	Труды III Международного совещания по пропорциональ- ным и дрейфовым камерам. Дубна, 1978.	6 р. 00 к.
	Труды VI Всесоюзного совещания по ускорителям заря- женных частиц. Дубна, 1978 /2 тома/	7 р. 40 к.
A1,2-12036	Труды V Международного семинара по проблемам физики высоких энергий. Дубна, 1978	5 р. 00 к.
Д1,2-12450	Труды XII Международной школы молодых ученых по физике высоких энергий. Приморско, НРБ, 1978.	3 р. 00 к.
	Труды VII Всесоюзного совещания по ускорителям заря- женных частиц, Дубна, 1980 /2 тома/	8 р. 00 к.
Д11-80-13	Труды рабочего совещания по системам и методам аналитических вычислений на ЗВМ и их применению в теоретической физике, Дубна, 1979	3 р. 50 к.
д4-80-27 1	Труды Международной конференции по проблемам нескольких тел в ядерной физике. Дубна, 1979.	3 р. 00 к.
Д4-80-385	Труды Международной школы по структуре ядра. Алушта, 1980.	5 р. 00 к.
M2-R1-563	Труд: VI Маждународного совещания по проблемам кван- товой теории поля. Алушта, 1981	2 р. 50 к.
Д10,11-81-622	Труды Международного совещания по проблемам математи- ческого моделирования в ядерно-физических исследова- ниях. Дубна, 1980	2 р. 50 к.
Д1,2-81-728	Труды VI Международного семинара по проблемам физики высоких энергий. Дубна, 1981.	3 р. 60 к.
Д17-81-758	Труды II Международного симпозиума по избранным проблемам статистической механики. Дубна, 1981.	5 р. 40 к.
Д1,2-82-27	Труды Международного симпозиума по поляризационным явлениям в физике высоких энергий. Дубна, 1981.	3 р. 20 к.
P18-82-117	Труды IV совещания по использованию новых ядерно- физических методов для решения научно-технических и народнохозяйственных задач. Дубна, 1981.	3 р. 80 к.
Д2-82-568	Труды совещания по исследованиям в области релятивистской ядерной физики. Дубна, 1982.	1 р. 75 к.
д9-82-664	Труды совещания по коллективным методам ускорения. Дубна, 1982.	3 р. 30 к.
ДЗ,4-82-704	Труды IV Международной школы по нейтронной физике. Дубна. 1982.	5 p. 00 ĸ.

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79 Издательский отдел Объединенного института ядерных исследований

Ħ

Горишний С.Г. и др. P2-83-546 Ренормгрупповые вычисления в модели $g\phi_{(4)}^4$ в пятипетлевом приближении Вычислены пятипетлевые приближения В-функции и аномальной массовой размерности в модели $g\phi_{(4)}^4$ в MS-схеме. К β - функции применен борелевский метод суммирования. Найдено, что поведение β_{resum} (g) $\approx O(g^2)$ при $g \rightarrow \infty$ сохраняется на пятипетлевом уровне и не зависит от схемы перенормировки. Работа выполнена в Лаборатории теоретической физики ОИЯИ. Препринт Объединенного института ядерных исследований. Дубна 1983 Gorishny S.G. et al. P2-83-546 Five-Loop Renormalization Group Calculations in the $g\beta_{(4)}^4$ Theory The β -function and the mass anomalous dimension in the $g\phi^4_{(4)}$ theory model are calculated perturbatively through five loops in the MS-scheme and resummed via a Borel-like technique. The behaviour $\beta_{\text{resum}}(g) \approx O(g^2)$ at $g \to \infty$ is found to persist in five loops, independently of the renormalization scheme. The investigation has been performed at the Laboratory of Theoretical Physics, JINR. Preprint of the Joint Institute for Nuclear Research. Dubna 1983 Перевод О.С.Виноградовой