

P2-83-545

С.Г.Горишний, С.А.Ларин, Ф.В.Ткачев, ** К.Г.Четыркин **

ВЫСШИЕ КХД ПОПРАВКИ К ПРАВИЛУ СУММ БЬЕРКЕНА

Направлено в журнал "Physics Letters B"

* Московский государственный университет.

** Институт ядерных исследований АН СССР, Москва

1983

1. Операторное разложение /0Р/ на малых расстояниях является важным аппаратом для изучения сильных взаимодействий. Но чтобы использовать 0Р в полном объеме, необходимо иметь простые и эффективные методы вычисления многопетлевых коэффициентных функций /КФ/ 0Р. Двухпетлевые вычисления КФ были предприняты в $^{2,3/}$ и^{/4/}. Однако метод работы ^{/8/} может быть применен к очень сграниченному классу задач, в то время как методы работ ^{/3/} и ^{/4/} дали различные результаты для одной величины, что заставляет сомневаться в обоих методах.

Недавно мы предложили два новых алгоритма для вычисления КФ^{/5,6/}. Оба они являются достаточно общими и сводят вычисления, хотя и различными способами /метод^{/6/} - прямо, а метод^{/5/} - косвенно/ к так называемым р -интегралам /т.е. безмассовым интегралам Фейнмана пропагаторного типа в размерной регуляризации/. Аналитический расчет р -интегралов до трех петель вылючительно можно осуществлять с помощью SCHOONSCHIP-программы, которая реализует метод работы ^{/7/}.

В данной работе мы применяем алгоритмы работ $^{/5/}$ ι $^{/6/}$ для вычисления $O(\alpha_{g}^{2})$ -поправок к правилу сумм Бьеркена для рассеяния нейтрино на протоне $^{/8/}$.

2. Как хорошо известно, инклюзивные глубоконеупругие реакции описываются в первом порядке по константе слабых взаимодействий с помощью амплитуды

$$T_{\mu\nu}(p,q) = i \int e^{iqx} dx \sup_{\substack{\text{spin} \\ \text{averaged}}} = \left(\frac{q \mu^{\mu}}{q^2} - g^{\mu\nu} \right) F_1(x,Q^2) + \left(p - \frac{pq}{q^2} q \right)_{\mu} \left(p - \frac{pq}{q^2} q \right)_{\nu} F_2(x,Q^2) - \frac{1}{2}$$

$$-i\epsilon_{\mu\nu\lambda\rho} p_{\lambda} q_{\rho} F_{3}(x, Q^{2})$$

где $J_{\mu} = \tilde{u}(1 - \gamma_5)\gamma_{\mu}(d\cos\theta_{c} + s\cdot\sin\theta_{c})$ есть слабый кварновый ток / θ_{c} - угол Кабиббо/; $\mathbf{x} = -q^2/2pq$ - бьеркеновская перененная и $Q^2 = -q^2$.

Простейшая партонная модель предсказывает определенные соотношения и правила сумм для структурных функций \mathbf{F}_i . Е частности, имеет место следующее правило сумм $^{/8/}$:

$$\int_{0}^{1} dx \left(F_{1}^{\nu p} - F_{1}^{\nu p} \right) = 1.$$
(2/

В КХД правая часть /2/ приобретает дополнительную зависимость от 9² в силу кваркового взаимодействия, так что это соотношение должно модифицироваться. С этой целью обычно используется операторное разложение для

$$T^{ab}_{\mu\nu}(p,q) = i \int e^{iqx} dx \sup_{\substack{\text{averaged}}} , \qquad /3/$$

где $J_{\mu}^{a} = \bar{\psi} (1 - \gamma_{5}) \gamma_{\mu} \frac{\lambda^{a}}{2} \psi, \psi$ - кварковое поле, а λ^{a} действует на индексы аромата. /Из $\tilde{T}^{ab}_{\mu\nu}$ можно легко восстановить $T_{\mu\nu}$, беря соот-ветствующую проекцию по a и b /. Далее, левая часть /2/ пропорциональна КФ несинглетного спина один оператора для оператор-

ного разложения $T_{\mu\nu}^{ab} (J_{\mu}^{V,a} \equiv \vec{\psi} \gamma^{\mu} \frac{\lambda^{a}}{2} \psi)$:

$$T_{\mu\nu}^{ab}(p,q) \stackrel{\simeq}{\underset{Q^2 \to \infty}{=}} (-g_{\mu\nu} + \frac{q_{\mu}q_{\nu}}{q^2}) C_J^{abc}(\frac{\mu^2}{Q^2}, a_g) \frac{pq}{Q^2} O_J(\frac{\mu^2}{p^2}), \qquad /4/$$

где $= p_{\mu} \cdot O_{J}^{c}(\frac{\mu^{2}}{p^{2}})$ и μ - ренормировочный параметр /мы не рассматриваем непоперечного древесного члена, который не дает вклада в правило сумм/. p> есть состояние безмассового кварка. С, удовлетворяет уравнению ренормгруппы

$$\left(\mu^{2} \frac{\partial}{\partial \mu^{2}} + \beta(a_{s}) \frac{\partial}{\partial a_{s}}\right) C_{J}\left(\frac{\mu^{2}}{Q^{2}}, a_{s}\right) = 0 \qquad (5/$$

с нулевой аномальной размерностью в силу сохранения тока, и, следовательно, С, является ренормгрупповым инвариантом:

$$C_{J}(\frac{\mu^{2}}{Q^{2}}, a_{s}) = C_{J}(1, \overline{a}_{s}(\frac{\Lambda^{2}}{Q^{2}})).$$
 /6/

Здесь, как обычно, \tilde{a}_{s} и $\beta(a) = -\beta_{0}a^{2} - \beta_{1}a^{3}$... обозначают эффективную константу связи и КХД β -функцию соответственно. Они связаны соотношением

$$\begin{aligned} \overline{a}_{s}(\frac{Q^{2}}{\Lambda^{2}}) &= \frac{1}{\beta_{0} \ln Q^{2}/\Lambda^{2}} - \frac{\beta_{1} \ln \ln (Q^{2}/\Lambda^{2})}{\beta_{0}^{3} \ln^{2} (Q^{2}/\Lambda^{2})} + \dots, \\ \beta_{0} &= (33 - 2f)/12\pi, \quad \beta_{1} = (102 - \frac{38}{3}f)/16\pi^{2}, \end{aligned}$$
(77)

где f – число кварковых ароматов, Λ – масштабный КХД параметр.

Окончательно зависимость /2/ от Q² может быть выражена в следующем виде:

$$\int_{0}^{1} dx \left(F_{1}^{\nu p} - F_{1}^{\nu p} \right) = A \cdot C_{J} \left(1, \, \overline{a_{g}} \left(\frac{Q^{2}}{\Lambda^{2}} \right) \right).$$
(8/

Константа А может быть найдена из сравнения правой части /8/ при $Q^2 \rightarrow \infty$ ($\overline{a_n} = 0$) с результатом партонной модели /2/.

Отметим, что /8/ может быть использовано для определения Л, но только если известны члены порядка $O(a^2)^{/10/}$. Рассчитать их и есть цель нашей работы. / $O(a_8)$ – член был вычислен в $^{/11//}$.

3. Сначала мы кратко обсудим применяемые методы. Оба они используют специфические свойства размерной регуляризации и MS схемы /12/

Основное наблюдение /5/ состоит в следующем. Проинтегрируем /3/ с весовой функцией f(q) по области, включающей Q² =∞. Вообще говоря. интеграл может расходиться на верхнем пределе, что ведет к полюсным сингулярностям при D = 4, где D - размерность пространства-времени. Однако структура $T^{ab}_{\mu\nu}$ при $Q^2_{\to\infty}$ полностью определяется коэффициентными функциями. Поэтому, как было показано в 151, только КФ операторов данного спина и размерности дают вклад в эти сингулярности, если весовая функция выбрана нужным образом. Так что КФ могут быть выделены из сингулярностей таких интегралов.

Применяя предписания /5/ к нашей задаче, мы свернем сначала /3/ с λ^{c} $g_{\mu\nu}$, чтобы образовать скалярную комбинацию

$$T^{ab}_{\mu\nu} \rightarrow T^{abc} = tr \{\lambda^c T^{ab}_{\mu\mu} / (D-1)\}.$$
 /9/

Затем проинтегрируем это соотношение по q с $f(q) = \frac{2pq}{2(q+\ell_{c})}/\ell$ -

вспомогательный параметр, $\epsilon = \frac{1}{2} (4-D)/.$ Эта процедура позволяет выделить точно вклад несинглетного токового оператора $J_{\mu}^{V,c}$. Те-перь $C_J^{abc}(1,a_s)$ могут быть получены взятием предела:

$$\lim C_{J}^{abc}(1, a_{s}) = \lim_{\epsilon \to 0} \sum_{k=0}^{\infty} \lim_{\ell \to -k-1} (k + \ell + 1) \epsilon Z^{abc}(a_{s}, \ell, \frac{1}{\epsilon}), \qquad /10/$$

где $Z^{abc}(a_{8}^{a}, \ell, \frac{1}{\epsilon})$ есть константа ренормировки, определенная так: $Z^{abc}(a_{g}, \ell, \frac{1}{\ell}) = KR^{\{ \{ \int T^{abc}f(q) dq \}/p^{2} \}}$ /11/

Здесь R' означает вычитание подрасходимостей, К выделяет полюса по є согласно MS -схеме. Заметим также, что уравнения /10/ и /11/

предполагают выбор условия нормировки для O_{T}^{c} в виде $O_{tree}^{c} = \frac{\lambda^{2}}{2}$,

Алгоритм работы^{/6/} в применении к нашей задаче состоит в следующем. Уравнение /3/ может быть переписано в виде

3

$$T^{ab}_{\mu\nu}(p,q) - (\frac{q_{\mu}q_{\nu}}{q^{2}} - g_{\mu\nu}) C^{abc}_{J}(\frac{\mu^{2}}{q^{2}}, a_{s}) \frac{pq}{q^{2}} O^{c}_{J}(\frac{\mu^{2}}{p^{2}}) \stackrel{\approx}{Q^{\frac{2}{2}}_{\to\infty}} O(\frac{p^{2}}{Q^{2}}). \quad /12/$$

Вследствие оценки $O(p^2)$ левая часть /12/ является дифференцируемой по p в точке p = 0 /возможные логарифмические поправки к данной оценке не могут изменить этого факта/.

Применяя затем дифференциальный оператор $D = q_a \frac{\partial}{\partial p_a}|_{p=0} \kappa /12/,$ получаем:

$$DT^{abc} - C_{J}^{abd} \left(\frac{\mu^{2}}{Q^{2}}, a_{g}\right) tr \left\{\lambda^{c} O_{J}^{d} \left(\frac{\mu^{2}}{Q^{2}}\right)\right|_{p=0} = 0.$$
 (13)

Остается только заметить, что в размерной регуляризации все безмассовые вакуумные диаграммы равны нулю, так что только дре-

весные вклады выживают в $O_J^d(\frac{\mu^2}{p^2})|_{p=0}$. С ренормировкой O_J^d , за-писанной в форме

$$O_{J}^{d} = Z_{J} O_{B_{J}}^{d} = Z_{J} \{ \sum_{\ell=1}^{\infty} O_{\ell}^{d} (\frac{\mu^{2}}{p^{2}})^{\ell \epsilon} + O_{tree}^{d} \}, \qquad /14/$$

мы получаем, что $O_J^d |_{p=0} = Z_J \cdot O_{tree}^d$.Затем, выбирая нормировку $O_{tree}^d = \lambda^d/2$, мы в итоге найдем:

$$C_{J}^{abc}\left(\frac{\mu^2}{Q^2}, a_{J}\right) = Z_{J}^{-1}DT^{abc}$$
 (15/

Отметим, что /15/ предполагает нетривиальные сокращения между инфракрасными расходимостями, которые могут появляться в DT ^{abc} после зануления p, и ультрафиолетовыми сингулярностями оператора J $_{\mu}^{V,d}$, факторизованными в Z J /в нашем случае Z J = 1 в силу сохранения тока, поэтому инфракрасные полюса в DT^{abc}должны также сокращаться/.

Как было отмечено выше, мы вычисляем двухпетлевое приближение для C_J^{abc} . Уравнения /10/ и /15/ позволяют нам сделать это двумя существенно различными способами. Необходимые диаграммы представлены на рисунке. Диаграммы /а/ дают вклад в $T_{\mu\nu}^{ab}$; набор /в/ представляет графы для Z^{abc} /весовая функция обозначена точкой, вставленной в пунктирную линию/; наконец, диаграммы, соответствующие DT^{abc} , показаны на рис.1/с/.

Мы получили, что методы дают один и тот же результат, так что можно сделать заключение о согласованности обоих методов и о верности ответа. Он имеет вид /в MS -cxeмe/:

$$C_{J}^{abc}(1, a_{s}) = if^{abc} \left[2 - \frac{4a_{s}}{3\pi} + \left(\frac{16}{27}f - \frac{23}{3}\right)\left(\frac{a_{s}}{\pi}\right)^{2} + O(a_{s}^{3})\right], \qquad /16/$$

где f - структурные константы группы ароматов SU(3).

Настоящее вычисление показало, что второй метод гораздо проще в употреблении, чем первый, и существенно сокращает требуемое машинное время.

Имея С $\frac{a}{J}^{bc}$, можно получить правило сумм, подставляя /16/ в /8/ и полагая f = 3. Но прежде чем сделать это, отметим, что $O(\alpha_s^2)$ – член в /16/ зависит от схемы. Чтобы увидеть, как этот факт влияет на правило сумм, мы приводим /8/ для трех различных схем, а именно: для MS - схемы, MOM-схемы работы ^{/12/} и так называемой G - схемы ^{/13/} Чтобы перевести MS - результат в другую схему, мы должны выразить $\alpha_s = \alpha_{MS}$ в /16/ через константу связи соответствующей схемы:

$$a_{\overline{\text{MS}}} = a_{\text{MOM}} (1 - (4,179 - 0,277f) - \frac{a_{\text{MOM}}}{\pi}) = a_{\text{G}} (1 - 2\beta_0 a_{\text{G}}). \qquad /17/$$

/вся информация для получения этих формул может быть найдена в ^{/12,13/} /. Теперь мы можем представить правило сумм в рамках каждой из этих схем *:

^{*} Некоторые оценки, касающиеся членов высших твистов в /18/, даны в работе $^{/14/}$.

$$\int_{0}^{1} d\mathbf{x} \left(\mathbf{F}_{1}^{\,\overline{\nu p}} - \mathbf{F}_{1}^{\,\nu p} \right) = 1 - \frac{2}{3} \left(\frac{\overline{a_{s}}}{\pi} \right) + \mathbf{K}_{sch} \left(\frac{\overline{a_{s}}}{\pi} \right)^{2} + O\left(\frac{1}{Q^{2}} \right), \qquad /18/$$

где

$$K_{\overline{MS}} = -\frac{53}{18}, K_{MOM} = -0.712, K_{G} = \frac{1}{18}.$$

Отметим, что $O(\overline{a}_s^2)$ -член мал в двух последних схемах, особенно в 'G -схеме*.

Обычный способ сравнения КХД-предсказания /18/ с экспериментом состоит в получении $\Lambda_{\rm eff}$ фитированием данных только двумя первыми членами правой части /18/ с $\bar{a}_{\rm s} \approx [\beta_0 \ln ({\bf Q}^2/{\bf A}_{\rm eff}^2)]^{-1}$,

 $\beta_0 = \frac{9}{4\pi}$. Далее значение Λ в различных схемах может быть получено из соотношений

 $\Lambda_{eff}^2 = 7.12 \Lambda_{MS}^2 = 1.61 \Lambda_{MOM}^2 = 0.96 \Lambda_G^2$.

Уравнения /18/ и /19/ ясно показывают, что G-схема является предпочтительной для сравнения теории с экспериментом /так же, однако, как любая другая схема, в которой поправки малы/. Отметим также, что, будучи модификацией MS-схемы, G-схема очень удобна для практических вычислений /чего нельзя сказать о MOMсхеме/.

 κ сожалению, в настоящее время экспериментальные ошибки слишком велики для извлечения Λ_{eff} с должной точностью.

Мы благодарны профессорам В.А.Матвееву и А.Н.Тавхелидзе за постоянную поддержку. Мы также признательны А.Л.Катаеву и А.В.Радюшкину за полезные обсуждения.

ЛИТЕРАТУРА

- 1. Wilson K.G. Phys.Rev., 1969, 179, p.1499.
- 2. Смилга А.В. ЯФ, 1982, 35, с.473.
- 3. Coulson S.N., Ecclestone R.E. Phys.Lett., 1982, 115B, p.45; Nucl.Phys., 1983, B211, p.317.
- 4. Duke D.W., Kimel J.D., Sowell G.A. Phys.Rev., 1982, D25, p.71.
- 5. Chetyrkin K.G., Gorishny S.G., Tkachov F.V. Phys.Lett., 1982, 119B, p.407.
- 6. Gorishny S.G., Larin S.A., Tkachov F.V. Phys.Lett., 1983, 124B, p.217.

- 7. Tkachov F.V. Phys.Lett., 1981, 100B, p.65; Chetyrkin K.G., Tkachov F.V. Nucl.Phys., 1981, B192, p.159.
- 8. Bjorken J.D. Phys.Rev., 1967, 163, p.1767.
- 9. Bace M. Phys.Lett., 1978, 78B, p.132.
- Bardeen W.A. et al. Phys.Rev., 1978, D18, p.3998;
 Altarelli G., Ellis R.K., Martinelli G. Nucl.Phys., 1978, B143, p.521; 1978, B146, p.544(E).
- 11. t'Hooft G. Nucl.Phys., 1973, B61, p.455.
- 12. Gelmaster W., Gonsalvez R. Phys.Rev., 1970, D21, p.3112.
- Chetyrkin K.G., Kataev A.L., Tkachov F.V. Nucl.Phys., 1980, B174, p.345.
- 14. Shuryak E.V., Vainshtein A.I. Phys.Lett., 1981, 105B, p.65; Jaffe R.L., Soldate M. Phys.Lett., 1981, 105B, p.467.

Рукопись поступила в издательский отдел 27 июля 1983 года.

^{*} То же самое верно для электрон-позитронной аннигиляции в адроны /13/ так же как и для глубоконеупругого рассеяния.

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги,

если они не были заказаны ранее.

дз-11/8/	труды III пеждународной школы по иейтронной физике. Алушта, 1978.	3	р.	00	к.
Д13-11807	Труды III Международного совещания по пропорциональ- ным и дрейфовым камерам. Дубна, 1978.	6	р.	00	к.
	Труды VI Всесоюзного совещания по ускорителям заря- женных частиц. Дубна, 1978 /2 тома/	7	р.	40	к.
Д1,2-12036	Труды V Международного семинара по проблемам физики высоких знергий. Дубна, 1978	5	р.	00	к.
Д1,2-12450	Труды XII Международной школы молодых ученых по физике высоких энергий. Приморско, НРБ, 1978.	3	р.	00	к.
	Труды VII Всесоюзного совещания по ускорителям заря- женных частиц, Дубна, 1980 /2 тома/	8	р.	00	к.
Д11-80-13	Труды рабочего совещания по системам и методам аналитических вычислений на ЗВМ и их применению в теоретической физике, Дубна, 1979	3	р.	50	к.
Д4-80-271	Труды Международной конференции по проблемам нескольких тел в ядерной физике. Дубна, 1979.	3	р.	00	к.
Д4-80-385	Труды Международной школы по структуре ядра. Алушта, 1980.	5	р.	00	к.
A2 01 543	Труды VI пеждународного совещания по проблемам кван- товой теорим поля. Алушта, 1981	2	в.	50	к.
Д10,11-81-622	Труды Международного совещания по проблемам математи- ческого моделирования в ядерно-физических исследова- ниях. Дубна, 1980	2	р.	50	к.
Д1,2-81-728	Труды VI Международного семинара по проблемам физики высоких энергий. Дубна, 1981.	3	р.	60	к.
Д17-81-758	Труды II Международного симпозиуйа по избранным проблемам статистической механики. Дубна, 1981.	5	р.	40	к.
Д1,2-82-27	Труды Международного симпозиума по поляризационным явлениям в физике высоких энергий. Дубна, 1981.	3	р.	20	к.
P18-82-117	Труды IV совещания по использованию новых ядерно- физических методов для решения научно-технических и народнохозяйственных задач. Дубна, 1981.	3	в.	80	к.
Д2-82-568	Труды совещания по исследованиям в области релятивистской ядерной физики. Дубна, 1982.	1	р.	75	к.
д9-82-664	Труды совещания по коллективным методам ускорения. Дубна, 1982.	3	р.	30	к.
ДЗ,4-82-704	Труды IV Международной школы по нейтронной Физике. Дубна, 1982.	5	р.	00	к.

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79 Издательский отдел Объединенного института ядерных исследований

Горишний С.Г. и др. P2-83-545 Высшие КХД поправки к правилу сумм Бьеркена Пертурбативные КХД О(а з) -поправки к правилу сумм Бьеркена для глубоконеупругого рассеяния нейтрино на протоне рассчитаны с помощью двух новых эффективных алгоритмов вычисления коэффициентных функций операторного разложения Вильсона. Вычисленные поправки оказываются малыми в 'С-схеме, и, следовательно, она является предпочтительной при сравнении правила сумм с экспериментом. Работа выполнена в Лаборатории теоретической физики ОИЯИ. Преприять Объедиленного института Адерных исследований. Дубна 1983 Gorishny S.G. et al. P2-83-545 Higher QCD Corrections to the Bjorken Sum Rule We present QCD perturbative $O(a_s^2)$ corrections to the Bjorken sum rule for the deep-inelastic neutrino-proton scattering, calculated via two new effective algorithms for evaluating coefficient functions of the Wilson operator expansion. The investigation has been performed at the Laboratory of Theoretical Physics, JINR. Preprint of the Joint Institute for Nuclear Research. Dubna 1983

Перевод О.С.Виноградовой

Ħ