

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

1904

18/4-83 P2-83-43

А.А.Бельков, В.Н.Первушин

О ВОЗМОЖНОСТИ ИЗУЧЕНИЯ НИЗКОЭНЕРГЕТИЧЕСКИХ ХАРАКТЕРИСТИК ПИОНОВ В ЭКСПЕРИМЕНТАХ ПО ФОТООБРАЗОВАНИЮ ПИОННЫХ ПАР В КУЛОНОВСКОМ ПОЛЕ ЯДРА

1983

1. ВВЕДЕНИЕ

Кулон-ядерное взаимодействие является в настоящее время эффективным методом экспериментального изучения комптон-эффекта на п -мезоне, который позволяет измерить один из важнейших параметров низкоэнергетической мезонной физики - поляризуемость пионав экспериментах при высоких энергиях. Возможны две постановки экспериментов по изучению низкоэнергетических электромагнитных свойств #-мезонов в процессе уу→лл: радиационное рассеяние пионов на ядрах $\pi A \to \pi \gamma A$ и фотообразование пионных пар в кулоновском поле ядра $y A \to \pi \pi A$. В основе обеих постановок лежит тот факт, что при достаточно малых передачах импульса взаимодействие частиц высоких энергий с ядрами определяется рассеянием на виртуальных фотонах кулоновского поля ядра. Первая постановка для заряженных л-мезонов была реализована в /1,2/. В настоящей работе исследуются возможности изучения низкоэнергетических электромагнитных свойств л-мезонов в экспериментах по фотообразованию пионных пар в кулоновском поле ядра.

Изученный в работах $^{/1,2/}$ процесс $\pi A \rightarrow \pi \gamma A$ позволяет исследовать амплитуду $\gamma \gamma \rightarrow \pi \pi$ в области $m_{\pi\pi}^2 < 0$ и измерять поляризуемость писла в точке $m_{\pi\pi}^2 = 0.0$ собенностью рассматриваемого в настоящей работе процесса $\gamma A \rightarrow \pi \pi A$ является то, что этот процесс идет в области эффективных масс дипиона $m_{\pi\pi}^2 \ge 4m_{\pi}^2$ вблизи физического порога $\pi\pi$ -рассеяния. Амплитуда процесса $\gamma\gamma \rightarrow \pi\pi$ характеризуется при $m_{\pi\pi}^2 > 0$ быстрым ростом ее действительной части под порогом $\pi\pi$ -рассеяния. Такое поведение обусловлено вкладом диаграммы с пионной петлей и существенным образом определяется параметрами низко-энергетического $\pi\pi$ -взаимодействия. Поэтому эксперименты по фотообразованию пионных пар в кулоновском поле ядра наряду с измерением поляризуемости заряженных и нейтральных пионов могут позволить также определить параметр нарушения киральной симметрии сильных взаимодействий, который входит в лагранжиан $\pi\pi$ -взаимо-действия в киральной теории.

АМПЛИТУДА ПРОЦЕССА УУ → ## В ТЕОРИИ НАРУШЕННОЙ КИРАЛЬНОЙ СИММЕТРИИ

Процесс уу → лл описывается в теории нарушенной киральной симметрии диаграммами, приведенными на рис.1. Определим амплитуду процесса следующим образом:

$$(2\pi)^{6} 4\sqrt{q_{1}^{0}q_{2}^{0}p_{1}^{0}p_{2}^{0}} < i_{1}, i_{2} | S_{\pi\gamma} | \epsilon_{\lambda_{1}}^{\mu}, \epsilon_{\lambda_{2}}^{\nu} > =$$

$$= I + i (2\pi)^{4} \delta^{(4)} (p_{1} + p_{2} - q_{1} - q_{2}) \epsilon_{\lambda_{1}}^{\mu} \epsilon_{\lambda_{2}}^{\nu} T_{i_{1}i_{2}}^{\mu\nu},$$

где $\mathbf{p}_1, \mathbf{p}_2$ и \mathbf{i}_1 , \mathbf{i}_2 - соответственно 4-импульсы и изотопические индексы пионов, а \mathbf{q}_1 , \mathbf{q}_2 и ϵ_{λ_1} , ϵ_{λ_2} - 4-импульсы и поляризации у-квантов. Борновская амплитуда процесса уу $\rightarrow \pi\pi$ имеет вид^{/3/}.

$$(T_{\pi\gamma}^{(1)})_{i_{1}i_{2}}^{\mu\nu} = 2e^{2} \left(\delta_{i_{1}i_{2}} \delta_{i_{1}3} \delta_{i_{2}3}\right) \left(g^{\mu\nu} + \frac{2p_{1}^{\mu}p_{2}^{\nu}}{(p_{1}-q_{1})^{2} - m_{\pi}^{2}} + \frac{2p_{1}^{\nu}p_{2}^{\mu}}{(p_{2}-q_{1})^{2} - m_{\pi}^{2}}\right) . / 1.$$

Рис.1. Днаграммы, дающие вклад в процесс $\gamma\gamma \rightarrow \pi\pi$: $T_{\pi\gamma}^{(1)}$ – борновское приближение; $T_{\pi\gamma}$ – однопетлевое приближение. Унитарное рассечение однопетлевой диаграммы позволяет выразить соответствующую этой днаграмме амплитуду $T_{\pi\gamma}^{(2)}$ через борновскую амплитуду процесса $\gamma\gamma \rightarrow \pi\pi$ ($T_{\pi\gamma}^{(1)}$) и борновскую амплитуду $\pi\pi$ -рассеяния (T_{π}).

Унитарное рассечение ^{/4/} однопетлевой диаграммы позволяет выразить соответствующую амплитуду $T_{\pi\gamma}^{(2)}$ через борновские амплитуды процессов уу $\pi\pi(T_{\pi\gamma}^{(1)})$ и $\pi\pi \to \pi\pi(T_{\pi})$:

$$(T_{\pi\gamma})^{\mu\nu}_{ab} = \frac{1}{i} \int \frac{d^4k}{(2\pi)^4} \frac{1}{(k+q_1)^2 - m_{\pi}^2} \frac{1}{(k-q_2)^2 - m_{\pi}^2} \times \frac{1}{2} \sum_{i_1i_2} (T_{\pi\pi})_{i_1i_2ab} (T_{\pi\gamma}^{(1)})^{\mu\nu}_{i_1i_2} .$$

Борновская амплитуда *т*^{*π*}-рассеяния T_{*π*} определяется следующим образом:

$$(2\pi)^{6} 4\sqrt{p_{1}^{0} p_{2}^{0} p_{3}^{0} p_{4}^{0}} < i_{1} i_{2} | S_{\pi} | i_{3} i_{4} > =$$

= I + i(2\pi)^{4} \delta^{(4)} (p_{1} + p_{2} - p_{3} - p_{4}) (T_{\pi})_{i_{1} i_{2} i_{3} i_{4}}

и имеет вид /5/

$$(T_{\pi})_{i_{1}i_{2}i_{3}i_{4}^{\pm}}\delta_{i_{1}i_{2}}\delta_{i_{3}i_{4}}A(s,t,u) + \delta_{i_{1}i_{3}}\delta_{i_{2}i_{4}}A(t,s,u) + \delta_{i_{1}i_{3}}\delta_{i_{1}i_{4}}A(t,s,u) + \delta_{i_{1}i_{4}}A(t,s,u) + \delta_{i_{1}i_{$$

+
$$\delta_{i_1 i_4} \delta_{i_2 i_3} A(u,t,s)$$
,
 $A(s,t,u) = \frac{1}{F_{\pi}^2} (s - \frac{1}{2}(1 - \beta) 4 m_{\pi}^2) = \frac{1}{F_{\pi}^2} (s - 4 m_{\pi}^2 \kappa)$, /3/
 $\kappa = \frac{1}{2} (1 - \beta)$; $s = (p_1 + p_2)^2$; $t = (p_1 - p_3)^2$; $u = (p_1 - p_4)^2$.

Здесь $F_{\pi} = 94$ МэВ - константа распада $\pi \rightarrow \mu\nu$, а β - параметр нарушения киральной симметрии, который может принимать разные значения в зависимости от способа нарушения киральной симметрии сильных взаимодействий. Так, $\beta = 1/2$ в σ -модели Вайнберга⁷⁶⁷; $\beta = 1/3$ в экспоненциальной модели Гюрсея-Чанга⁷⁷⁷; $\beta = 1/4$ в модели Швингера⁸⁷.

С помощью унитарного рассечения пионной петли /2/, используя борновские амплитуды /1/, /3/, получим в однопетлевом приближении следующее выражение для амплитуды процесса уу $\rightarrow \pi\pi$ при любом нарушении киральной симметрии:

$$(T_{\pi\gamma}^{(2)})_{ab}^{\mu\nu} = 2e^2 \frac{1}{(4\pi F_{\pi})^2} \left\{ (\delta_{ab} - \delta_{a3} \ \delta_{b3}) (s - 4m_{\pi}^2 (4\kappa - 1)) + (4/4) \right\}$$

$$+ \delta_{a3} \delta_{b3} 2(s - 4m_{\pi}^2 \kappa) \left\{ \frac{1}{2} \Lambda_{\mu\nu} \right\}$$

Здесь

$$\begin{split} \Lambda_{\mu\nu} &= \frac{1}{i\pi^2} \int \frac{d^4k}{((k+q_1)^2 - m_\pi^2)((k-q_2)^2 - m_\pi^2)} \left(g_{\mu\nu} - \frac{4k_\mu k_\nu}{k^2 - m_\pi^2}\right) = \\ &= \left(g^{\mu\nu} - \frac{q_1^\nu q_2^\mu}{q_1 q_2}\right) \left[\frac{1}{2}t^2 \left(\tilde{s}\right) - 1\right] \,, \end{split}$$

$$\begin{split} \text{где} \quad \bar{\mathbf{s}} &= \mathbf{s}/(4m_{\pi}^2), \\ \text{f}(\xi) &= \begin{cases} & \arctan\left(\frac{1}{\xi} - 1\right)^{-\frac{1}{2}}, & 0 < \xi < 1, \\ & \frac{1}{2} \, i \ln \frac{1 + \sqrt{1 - 1/\xi}}{1 - \sqrt{1 - 1/\xi}} + \frac{\pi}{2}, & \xi > 1, \\ & \frac{1}{2} \, i \ln \frac{1 + \sqrt{1 - 1/\xi}}{-1 + \sqrt{1 - 1/\xi}}, & \xi < 0, \end{cases} \end{split}$$

2

3

причем

$$\begin{split} \Lambda_{\mu\nu}(\xi \to 0) &= \frac{1}{6 \, \mathrm{m}_{\pi}^2} \left(\mathrm{g}^{\mu\nu}(\mathfrak{q}_1 \, \mathfrak{q}_2) - \, \mathfrak{q}_1^{\nu} \mathfrak{q}_2^{\mu} \right) \,, \\ \Lambda_{\mu\nu}(\xi \to \infty) &= - \left(\mathrm{g}^{\mu\nu} - \, \frac{\, \mathfrak{q}_1^{\nu} \, \mathfrak{q}_2^{\mu}}{\, \mathfrak{q}_1 \, \mathfrak{q}_2} \, \right) \,. \end{split}$$

Полная амплитуда процесса уу → ππ с учетом борновской и однопетлевой диаграмм имеет вид

$$\begin{split} \mathrm{T}_{ab}^{\mu\nu} &= 2\,\mathrm{e}^2\,(\,\delta_{ab} - \delta_{a3}\,\delta_{b3}\,)\{\,\mathbf{g}^{\mu\nu} + \frac{2\,\mathrm{p}_{1\mu}\,\mathrm{p}_{2\nu}}{(\,\mathrm{p}_1 - \mathrm{q}_1\,)^2 - \,\mathrm{m}_\pi^2} + \frac{2\,\mathrm{p}_{1\nu}\,\mathrm{p}_{2\mu}}{(\,\mathrm{p}_2 - \mathrm{q}_1\,)^2 - \mathrm{m}_\pi^2} + \\ &+ \frac{1}{(4\,\pi\,\mathrm{F}_\pi)^2}\,(\,\mathbf{g}^{\mu\nu}\,(\mathrm{q}_1\,\mathrm{q}_2\,) - \,\mathbf{q}_1^\nu\,\mathbf{q}_2^\nu\,)\beta_{\pm}^{(\pi)}\,(\,\mathbf{m}_{\pi\pi}^2\,)\,\} + \\ &+ 4\,\mathrm{e}^2\,\delta_{a3}\,\delta_{b3}\,\frac{1}{(4\,\pi\,\mathrm{F}_\pi^2)}\,(\,\mathbf{g}^{\mu\nu}\,(\mathrm{q}_1\,\mathrm{q}_2\,) - \,\mathbf{q}_1^\nu\,\mathbf{q}_2^\nu\,)\beta_0^{(\pi)}\,(\,\mathbf{m}_{\pi\pi}^2\,)\,, \end{split}$$

где

$$\beta_{\pm}^{(\pi)}(m_{\pi\pi}^2) = \frac{m_{\pi\pi}^2}{2q_1q_2} (1 - \frac{4\kappa - 1}{\overline{s}})(\frac{1}{\overline{s}}f^2(\overline{s}) - 1),$$

$$\beta_0^{(\pi)}(m_{\pi\pi}^2) = \frac{m_{\pi\pi}^2}{2q_1q_2} (1 - \frac{\kappa}{\overline{s}})(\frac{1}{\overline{s}}f^2(\overline{s}) - 1),$$

а s = $m_{\pi\pi}^2/(4m_{\pi}^2)$. Первый член в выражении /5/ описывает процесс образования заряженных пионов $\gamma\gamma \rightarrow \pi^+\pi^-$, а второй – нейтральных пионов $\gamma\gamma \rightarrow \pi^0\pi^0$. Заметим, что борновская диаграмма не дает вклада в процесс $\gamma\gamma \rightarrow \pi^0\pi^0$, амплитуда которого целиком определяется диаграммой с пионной петлей.

Следует подчеркнуть, что диаграмма с пионной петлей приводит к аномальному поведению амплитуды уу + лл под порогом л л-рассеяния. Для феноменологического описания амплитуд процесса уу + лл к функциям $\beta_{\pm}^{(n)}(\mathbf{m}_{\pi\pi})$ и $\beta_{0}^{(n)}(\mathbf{m}_{\pi\pi})$ необходимо также добавить некоторые константы $\beta_{\pm}^{(n)}$ и $\beta_{0}^{(n)}(\mathbf{m}_{\pi\pi})$ необходимо также добавить некоторые константы $\beta_{\pm}^{(n)}$ и $\beta_{0}^{(n)}$ ($\mathbf{m}_{\pi\pi}$) необходимо также добавить некоторые константы $\beta_{\pm}^{(n)}$ и $\beta_{0}^{(n)}$ которые в киральных моделях связаны с учетом фермионных петель/3/ и резонансов/9/. Теоретические и экспериментальные оценки/2/ приводят к значению $\beta_{\pm}^{(n)} \approx 2$, поэтому в выражении /5/ вместо $\beta_{\pm}^{(n)}$ следует подставить функцию $\beta_{\pm}(\mathbf{m}_{\pi\pi}^2) =$ $= \beta_{\pm}^{(n)}(\mathbf{m}_{\pi\pi}^2) + \beta_{\pm}^{(n)}$. В киральных моделях для константы $\beta_{0}^{(n)}$ предсказывается значение, на порядок меньшее, чем для $\beta_{\pm}^{(n)}$.В резонансных моделях /9/ имеются неоднозначности. Фиксирование этих неоднозначностей с помощью эксперимента $^{/2/}$ также приводит к малому значению β_0 , и этой константой в численных расчетах можно пренебречь.

3. ФОТООБРАЗОВАНИЕ "П-ПАР В КУЛОНОВСКОМ ПОЛЕ ЯДРА

Фотообразование $m\pi$ -пар в кулоновском поле ядра описывается диаграммой /рис.2/, где виртуальный фотон, соответствующий взаимодействию первичного У-кванта с внешним стационарным полем, имеет нулевую энергию и переносит только импульс: q₂ = (0, q₂). Амплитуда интересующего нас процесса имеет вид

$$A_{c} = (4\pi)^{3/2} e \frac{2M_{\pi} Z \epsilon_{\lambda_{1}}^{\mu}}{|\vec{q}_{2}|^{2}} T_{\mu 0}.$$

где М $_{\rm H}$ и Z - соответственно масса и заряд ядра. Амплитуда ${\rm T}_{\mu0}$ для фотообразования $\pi^0\pi^0-$ пары имеет вид

$$T_{\mu 0} = \frac{4 e^2}{(4 \pi F_{\pi})^2} (g_{\mu 0} (q_1 q_2) - q_{10} q_{2\mu}) (\beta_0^{(\pi)}(\bar{s}) + \beta_0'),$$

а для фотообразования заряженных пионов

$$\begin{split} \mathbf{T}_{\mu 0} &= 2 \, \mathrm{e}^2 \, \left[\, \mathrm{g}_{\mu 0} \, - \, \frac{\mathrm{p}_{1 \mu} \, \mathrm{p}_{2 0}}{\mathrm{p}_1 \, \mathrm{q}_1} \, - \, \frac{\mathrm{p}_{1 0} \mathrm{p}_{2 \mu}}{\mathrm{p}_2 \, \mathrm{q}_1} \, + \\ &+ \, \frac{1}{\left(4 \, \pi \, \mathrm{F}_{\pi}\right)^2} \left(\mathrm{g}_{\mu 0} \left(\mathrm{q}_1 \, \mathrm{q}_2 \right) \, - \, \mathrm{q}_{1 0} \, \mathrm{q}_{2 \mu} \right) \left(\beta_{\pm}^{(\pi)} \left(\overline{\mathrm{s}} \right) \, + \, \beta_{\pm}^{\prime} \right) \right]. \end{split}$$

Рис.2. Фотообразование пионных пар в кулоновском поле ядра.

Заметим, что для малых передач импульса ядру мишени $|\vec{q}_2| << \epsilon$ /где ϵ - энергия первичного у-кванта/ функции $\beta_0^{(\pi)}$ и $\beta_{\pm}^{(\pi)}$ можно записать в виде

$$\beta_{0}^{(\pi)}(\bar{s}) = (1 - \frac{\kappa}{\bar{s}})(\frac{1}{\bar{s}}f^{2}(s) - 1),$$

$$\beta_{\pm}^{(\pi)}(\bar{s}) = (1 - \frac{4\kappa - 1}{\bar{s}})(\frac{1}{\bar{s}}f^{2}(\bar{s}) - 1)$$

4

Рис. 3. Поведение функций $|\beta_0^{(\pi)}(\mathbf{\bar{s}})|$ и $|\beta_{\pm}^{(\pi)}(\mathbf{\bar{s}})|$ при различных эначениях параметра нарушения киральной симметрии: сплошные линии $-\beta = 1/2$; штрихпунктирные $-\beta = 1/3$; штриховая $-\beta = 1/4$.

Функции $|\beta_{0}^{(\pi)}(\bar{s})|$ и $|\beta_{+}^{(\pi)}(\bar{s})|$ будем называть динамическими поляризуемостями. Их поведение при различных значениях параметра нарушения киральной симметрии *В* показано на рис. 3. Фотообразованию ллпар в кулоновском поле ядра соответствует область значений масс дипиона $\bar{s} = m_{\pi\pi}^2 (4m_{\pi}^2) \ge 1.$ Из рис.3 видно, что амплитуда процесса γγ→ππ обладает "аномальным" с точки зрения гипотез алгебры токов поведением и резко меняется на пороге рождения пионов. В связи с этим экспериментальные измерения должны приводить к различным значе-

ниям величины поляризуемости пионов в зависимости от области энергий, в которой изучается процесс $\gamma\gamma \to \pi\pi$. Динамические поляризуемости нейтральных и заряженных пионов связаны с $\beta_0^{(\pi)}(\bar{s})$ и $\beta_+^{(\pi)}(\bar{s})$ соотношениями

$$\begin{aligned} \alpha_{\pi^{\circ}} &= 2 \frac{e^2}{m_{\pi}} \frac{1}{(4\pi F_{\pi})^2} \left(\beta_0^{(\pi)}(\bar{s}) + \beta_0^{\prime}\right) \frac{1}{4\pi} ,\\ \alpha_{\pi^{\pm}} &= \frac{e^2}{m_{\pi}} \frac{1}{(4\pi F_{\pi})^2} \left(\beta_{\pm}^{(\pi)}(s) + \beta_{\pm}^{\prime}\right) \frac{1}{4\pi} , \end{aligned}$$

где $e^2/m_{\pi}(4\pi F_{\pi})^2 = 4,8 \times 10^{-10} \text{ MэB}^{-3} = 3,7 \times 10^{-3} \Phi_{M} = 37 \times 10^{-43} \text{ см}^3.$ Значения $\beta_0^{(\pi)}$ и $\beta_{\pm}^{(\pi)}$ для разных нарушений киральной симметрии при $\overline{s} = 0$ и $\overline{s} = 1$ приведены в табл.1.

Дифференциальное сечение фотообразования пионных пар в кулоновском поле ядра равно

$$d\sigma = \frac{\delta^{(3)}(\vec{p}_1 + \vec{p}_2 - \vec{q}_1 - \vec{q}_2)\delta(E_1 + E_2 - \epsilon)}{4\epsilon M_{\mathfrak{R}}(2\pi)^5 8 E_1 E_2 M_{\mathfrak{R}}} |A_c|^2 d^3 \vec{q}_2 d^3 \vec{p}_3 d^3 \vec{p}_2 ,$$

где E_i , \vec{p}_i (i = 1,2) - соответственно энергия и импульс рождающихся пионов.В случае фотообразования π^0 -мезонов при интегрироТаблица 1

$\beta(\kappa)$	1/2 (1/4)	1/3 (1/3)	1/4 (3/8)
$\beta_0^{(\pi)}(0)$	0,08	0,11	0,13
$\beta_0^{(\pi)}(1)$	1,10	0,98	0,92
$\beta_{\pm}^{(\pi)}(0)$	0	0,11	0,17
$\beta_{\pm}^{(\pi)}(1)$	1,47	0,98	0,73

вании по фазовому объему необходимо учитывать тождественность частиц с помощью фактора 1/2.

Методом Монте-Карло были проведены расчеты полных сечений фотообразования $\pi\pi$ -пар в кулоновском поле ядра углерода (Z=8). Для константы β'_0 в расчетах взято нулевое значение. Важно отметить, что поскольку $q_2^{max} < \epsilon$, то эффективная масса $\pi\pi$ -системы при обрезании по передачам импульса q_2 может принимать значения в пределах $4m_\pi^2 \le m_{\pi\pi}^2 \le (m_{\pi\pi}^2)^{max} = 2\epsilon q_2^{max}$. Результаты вычислений при энергиях первичного γ -кванта 20 и 40 Гэв и различных q_2 приведены в табл.2. Для процесса $\gamma A \rightarrow \pi^+ \pi^- A$ наряду с полными сечениями σ_{tot} рассчитаны также неборновская часть полной амплитуды процесса $\gamma y \rightarrow \pi^+ \pi^-$ и вклад σ_{int} интерференции борновской амплитуды $T_{\pi\gamma}^{(1)}$ с $T_{\pi\gamma}^{(2)}$. Результаты расчетов практически не зависят от значения параметра нарушения киральной симметрии β , поскольку они в основном определяются наличием в амплитуде большой постоянной добавки β'_{\pm} , которая, по существу, и была измерена в эксперименте ^{/2/}. Расчеты, проведенные для процесса $\gamma A \rightarrow \pi^0 \pi^0 A$, показали, что полные сечения этой реакции существенно зависят от выбора

Одним из преимуществ эксперимента по фоторождению пар нейтральных пионов является отсутствие фона, за исключением процесса $\gamma A \to \pi^0 \gamma \gamma A$, обусловленного в киральных моделях диаграммой, приведенной на рис.4. Модельные оценки показывают, что такой процесс должен быть подавлен по крайней мере на два порядка по сравнению с изучаемым процессом $\gamma A \to \pi^0 \pi^0 A$.

Для оценки апертуры возможной экспериментальной установки рассчитаны распределения по углу вылета π^0 -мезонов относительно пучка у-квантов и распределения по углу разлета $\pi^0\pi^0$ -пары в лабораторной системе координат. Результаты расчетов приведены на рис.5. Малость углов вылета π^0 -мезонов, несомненно, также является одним из преимуществ предлагаемой постановки эксперимента.

2
cd
II
官
90
H

2		o ()	γA → π ⁺ π -	A) × (A	10-32 cm ²			$\sigma(\gamma \mathbf{A} \rightarrow \pi^{\circ} \pi^{\circ} \mathbf{A}) * 10^{-3}$	12 cM 2
raB		1 ^{max} = 5	M∋B	q ₂ ^{ma}	^x = 10 M ₃	B	8	$q_2^{max} = 5 M_{3B}$	q ^{max} = 10 M3B
	otot	σ	$\sigma_{\rm int}$	o _{tot}	σ _{ππ}	o _{int}	1		
20	1,0	0,01	0,15	6,6	0,1	6'0	1/2 1/3 1/4	0,0029 0,0014 0,0009	0,053 0,026 0,016
40	1,9	0,03	0,32	7,3	0,16	۱,۱	1/2 1/3 1/4	0,016 0,0075 0,0048	0,107 0,061 0,039

Рис.4. Диаграмма фонового процесса уА→ууπ⁰А. Сплошные линии соответствуют барионам.

Рис.5. Распределения по углу вылета π^0 -мезонов относительно пучка γ -квантов и распределения по углу разлета $\pi^0 \pi^0$ -пары в лабораторной системе координат. Расчеты проведены для энергии пучка γ -квантов $\epsilon = 20$ ГэВ: сплошные линии – при обрезании $q_2 = 10$ МэВ; штриховые – при обрезании $q_2 = 5$ МэВ.

4. ЗАКЛЮЧЕНИЕ

Проведенные расчеты полных сечений реакции фотообразования пионных пар в кулоновском поле ядра показали, что эти процессы в настоящее время вполне доступны для экспериментального изучения на существующих пучках γ -квантов. Наибольший интерес представляет изучение фотообразования пар π^0 -мезонов. В этом процессе можно экспериментально измерить фундаментальный параметр

низкоэнергетической мезонной физики - поляризуемость нейтральных пионов.

Следует особо подчеркнуть, что речь идет об измерении порогового эффекта, связанного с аномальным поведением динамической поляризуемости вблизи порога образования пионной пары. Этот пороговый эффект обусловлен вкладом диаграмм с пионной петлей в амплитуду процесса уу э лл.Поэтому измерение поляризуемости нейтральных пионов самым тесным образом связано с проблемой определения низкоэнергетических характеристик лл-взаимодействия (10/, в частности, с проблемой определения параметра нарушения киральной симметрии сильных взаимодействий.

В настоящее время для получения экспериментальной информации о $\pi\pi$ -рассеянии используются косвенные методы, основанные на выделении из данных о различных процессах с участием π -мезонов вкладов диаграмм, связанных с $\pi\pi$ -взаимодействием /например, из распадов каонов либо из реакций $\pi N \to \pi \pi N$ /. Причем вклад этих диаграмм не является во всех этих процессах доминирующим, а сами методы их выделения требуют большой экспериментальной статистики и дополнительных модельных предположений. Для определения параметра нарушения киральной симметрии необходимо с высокой точностью измерить фазы $\pi\pi$ -рассеяния вблизи порога, где должна наблюдаться существенная зависимость S-волновых фаз от его величины. Однако область низкоэнергетического $\pi\pi$ -взаимодействия оказалась наиболее труднодоступной для экспериментальной симметрии до сих пор так и не определен однозначно.

Предлагаемая в настоящей работе постановка эксперимента по фоторождению нейтральных пионов в кулоновском поле ядра наряду с измерением поляризуемости π^0 -мезонов дает уникальную возможность определять параметры низкоэнергетического $\pi\pi$ -взаимодействия в наиболее чистой форме, без каких-либо дополнительных модельных аппроксимаций. Существует реальная возможность постановки экспериментов подобного рода на существующих пучках у-квантов, например, на пучке ИФВЭ /Серпухов/ со спектром У-квантов до 40 ГэВ.

Авторы выражают благодарность С.Б.Нурушеву за консультации и поддержку настоящей работы, М.К.Волкову и А.В.Ефремову за обсуждения теоретических моделей, а также Г.В.Мицельмахеру за полезные дискуссии.

ЛИТЕРАТУРА

- 1. Гальперин А.С. и др. ЯФ, 1980, 32, с.1053.
- Antipov Yu.M. et al. IHEP, 82-120, SERP-E-143, Serpukhov, 1982.
- 3. Волков М.К., Первушин В.Н. ЯФ, 1975, 22, с.346.

- Ахиезер А.И., Берестецкий В.Б. Квантовая электродинамика. "Наука", М., 1964, с.609.
- 5. Бельков А.А., Бунятов С.А., Первушин В.Н. ЯФ, 1979, 30, с.546.
- 6. Weinberg S. Phys.Rev.Lett., 1967, 18, p.188.
- 7. Chang P., Gursey F. Phys.Rev., 1967, 164, p.1752.
- 8. Schwinger J. Phys.Lett., 1967, 24B, p.473.
- 9. Волков М.К., Креопалов Д.В. ОИЯИ, Р2-82-476, Дубна, 1982.
- 10. Бельков А.А., Бунятов С.А. ЭЧАЯ, 1982, 13, с.5.

Рукопись поступила в издательский отдел 28 января 1983 года.

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги,

если они не были заказаны ранее.

A3~11787	Труды III Международной школы по нейтронной физике. Алушта, 1978.	3	p.	00	к.
A13-11807	Труды III Международного совещания по пропорциональ- ным и дрейфовым камерам. Дубна, 1978.	6	p.	00	к.
	Труды VI Всесоюзного совещания по ускорителям заря- женных частиц. Дубна, 1978 /2 тома/	7	p.	40	к.
Д1,2-12036	Труды V Международного семинара по проблемам физики высоких энергий. Дубна, 1978	5	p.	00	к.
A1,2-12450	Труды XII Международной школы молодых ученых по физике высоких энергий. Приморско, НРБ, 1978.	3	p.	00	к.
	Труды VII Всесоюзного совещания по ускорителям заря- женных частиц, Дубна, 1980 /2 тома/	8	P.	00	к.
Д11-80-13	Труды рабочего совещания по системам и методам аналитических вычислений на ЗВМ и их применению в теоретической физике, Дубна, 1979	3	p.	50	к.
A4-80-271	Труды Международной конференции по проблемам нескольких тел в ядерной физике. Дубна, 1979.	.3	p.	00	к.
д4-80-385	Труды Международной школы по структуре ядра. Алушта, 1980.	5	p.	00	к.
42-81-543	Труды VI Международного совещания по проблеман кван- товой теории поля. Алушта, 1981	2	p.	50	к.
A10,11-81-622	Труды Международного совещания по проблемам математи- ческого моделирования в ядерно-физических исследова- ниях. Дубна, 1980	2	p.	50	к.
Д1,2-81-728	Труды VI Международного семинара по проблемам физики высоких энергий. Дубна, 1981.	3	p.	60	к.
Д17-81-758	Труды II Международного симпозиума по избранным проблемам статистической механики. Дубна, 1981.	5	p.	40	к.
A1,2-82-27	Труды Международного симпозиума по поляризационным явлениям в физике высоких энергий. Дубна, 1981.	3	p.	20	к.
P18-82-117	Труды IV совещания по использованию новых ядерно- физических методов для решения научно-технических и народнохозяйственных задач. Дубна, 1981.	3	p.	80	к.
Д2-82-568	Труды совещания по исследованиям в области релятивистской ядерной физики. Дубна, 1982.	1	p.	75	к.
д9-82-664	Труды совещания по коллективным методам ускорения. Дубна, 1982.	3	p.	30	к.
ДЗ,4-82-704	Труды IV Международной школы по нейтронной мание. Либиа 1982	5	Di	00	к.

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79 Издательский отдел Объединенного института ядерных исследований

Бельков А.А., Первушин В.Н.	P2-83-43
0 возможности изучения низкоэнергетических характерист	ик пионов
в экспериментах по фотообразованию пионных пар	
в кулоновском поле ядра	
Рассматривается возможность проведения эксперимен пионных пар в кулоновском поле ядра. В рамках кирально полные сечения процессов фоторождения заряженных и ней ловое распределение пионов. Результаты расчетов показы цессы в настоящее время вполне достижимы для экспериме существующих пучках У -квантов. Предлагаемая постановк фоторождению нейтральных пионов в кулоновском поле ядр поляризуемости * -мезона дает уникальную возможность ров низкоэнергетического пион-пионного взаимодействия.	та по фоторождению й теории вычислены тральных пионов и уг- вают, что эти про- нтального изучения на а эксперимента по на наряду с измерением определения парамет-
Работа выполнена в Лаборатории теоретической физи	КИ ОИЯИ.
	A DESCRIPTION
Сообщение Объединенного института ядерных исследован	ий. Дубна 1983
Belkov A.A., Pervushin V.N. On a Possibility of Studying Low Energy Characteristi in Experiments on Pion Pair Photoproduction in Nuclear Coulomb Field	P2-83-43 cs of Pions
A possibility of performing an experiment on the pion pairs in nuclear Coulomb field is considered. In chiral theory total cross sections of processes of ch pion photoproduction and pion angular distribution a calculation results demonstrate that to date these pr approachable for experimental study on standard beams proposed experimental set-up to study neutral pion ph nuclear Coulomb field alongside with the measurement zability provides for a unique possibility to determin of low energy pion-pion interaction.	e photoproduction of the framework of arged and neutral re calculated. The ocesses are quite of γ -quanta. The otoproduction in of π° -meson polari- ne the parameters
The investigation has been performed at the Labo Physics, JINR.	ratory of Theoretical
communication of the joint institute for Nuclear Resea	arch. Uubha 1903

Перевод О.С.Виноградовой.

=