

4254/83

22/8-83

P2-83-400

Г.И.Лыкасов, Б.Х.Шерхонов

ЗАВИСИМОСТЬ ОТ АТОМНОГО НОМЕРА ЯДРА-МИШЕНИ СПЕКТРОВ ЛЕПТОННЫХ ПАР, РОЖДЕННЫХ В АДРОН-ЯДЕРНЫХ ВЗАИМОДЕЙСТВИЯХ

Направлено в журнал "Ядерная физика"

1983

Как показывают экспериментальные данные /1-4/, инклюзивные спектры по эффективной массе m лептонных пар, рожденных в адрон∽ядерных реакциях при высоких энергиях, при m<3÷4 (ГэВ/с²) ведут себя в зависимости от атомного номера ядра-мишени (А), как $A^{a(m)}$. При этом показатель a(m) увеличивается от своего минимального значения до α ≈ 1 с ростом эффективной массы вплоть до m ≈ 3÷4 (ГэВ/с²). Подобным образом ведет себя и $\alpha(p_t)$ с ростом поперечного импульса р. при m, равной массе векторных мезонов ρ , ω , ϕ .Аналогичная А-зависимость наблюдается в инклюзивных P_1 -спектрах одиночных частиц $^{/5/}$ и струй адронов $^{/6,7/}$, образованных в h-A-столкновениях при высоких энергиях, при не очень больших р. . Характер перехода показателя а от своего минимального значения до $a \approx 1$ изучался в ряде работ $^{/8-12}$. Было убедительно показано, что в адрон-ядерных процессах с образованием протонов или мезонов с большими pt такое поведение a (pt) обусловлено многократными соударениями налетающих адронов ^{78,97} или составляющих кварков ^{/10-12/}Причем, как будет показано ниже, рассмотрение совокупности мягких многократных кварковых соударений внутри ядра фактически адекватно анализу многократных перерассеяний начального адрона с небольшими передачами в h-A взаимодействиях.

В настоящей работе А-зависимость спектров лептонных пар, образованных в h-A столкновениях при высоких энергиях, исследуется по их эффективной массе m, поперечному p, и продольному р, импульсам; исследуется также характер перехода a(m) и a(p,) от минимального значения до a = 1. В работах (10-12) анализировалась А-зависимость инклюзивных спектров одиночных мезонов с $\mathbf{p}_{t} = 1 \div 6$ (ГэВ/с) , рожденных в $\mathbf{p} - \mathbf{A}$ реакциях при высоких энергиях. Было показано, что при $p_t < 3$ (ГэВ/с) основной вклад в спектр дают мягкие многократные соударения кварков, а в области больших р, - жесткие кварковые столкновения /10/Учет и тех и других позволил вполне удовлетворительно описать/11,12/ экспериментальные данные. Мягкие кварковые соударения (q-q) - это столкновения с небольшими передачами t. При таких q-q соударениях, согласно одной из разновидностей модели дуально-топологической унитаризации /13-15/ применительно к h-A взаимодействиям, можно считать, что адрон, состоящий из кварков, взаимодействует с нуклоном внутри ядра целиком. Можно оценить критическую передачу t, при которой кварки еще не выбиваются за пределы адрона в h-h соударениях. Например, взаимодействуют два нуклона, для простоты рассмотрим упругие q-q столкновения.

В с.ц.м. q-q имеем: $-t = 4k^2 \sin^2 \frac{\theta^*}{2}$, k - начальный импульс кварка,

MANALS COLOR HACTHEYY ROCKLER BECKRODERER ENDENNICS (EILA

L

 θ^* - угол его рассеяния; при больших k и малых t $\theta_L \approx \frac{\theta^*}{2} = \frac{\sqrt{|t|}}{2!}$, $\theta_{\rm L}$ - угол рассеяния в л.с. Рассеявшись на угол $\theta_{\rm I}$, составляющий кварк, пролетев среднее расстояние между нуклонами $r_0 \approx 1, 1 \div 1, 2$ Фм, отклонится от первоначального направления на расстояние $\mathbf{r}_{\perp} \approx \mathbf{r}_0 \sin \frac{\sqrt{|\mathbf{t}|}}{2\mathbf{k}}$. Отсюда можно получить, что при энергии начального протона $E_0 = 300(ГэВ)$ $r_1 \ge 0,3\div 0,4(\Phi_M)$ для $|t| \ge 3\div 4$ $(ГэВ/с)^2$. Другой кварк нуклона может после рассеяния отклониться в противоположном направлении, так что оба рассмотренных кварка, находящиеся первоначально в падающем на ядро нуклоне, после соударений и прохождения среднего межнуклонного расстояния го удалятся друг от друга на расстояние г ~ 0,6÷0,8(Фм) при $|t| \approx$ $\approx 3\div 4$ (ГэВ/с)² .Составляющие кварки могут рассеяться и неупруго, вероятность чего повышается с ростом начальной энергии, но в таком случае при той же передаче t угол $\theta_{\rm I}$ вылета рассеянного кварка будет больше, чем в упругом q-q столкновении. Поэтому приведенные оценки весьма приближенные и указывают, скорее, верхнюю границу передачи в q-q соударении, при которой кварки еще не выходят за пределы радиуса конфайнмента, который удерживает кварки в адроне, если в качестве такого радиуса принять нуклонный. Таким образом, при передачах $|t| < 3 (ГэВ/с)^2$ вполне логично предположить, что налетающий нуклон взаимодействует с внутриядерными нуклонами целиком/13-15/.

Рассмотрим процесс образования лептонной пары в адрон-ядерном взаимодействии, учтем ядерные эффекты, т.е. многократные перерассеяния налетающего адрона внутри ядра. Рождение лептонной пары в h-h столкновении при ее больших эффективных массах, m $\ge 3\div4$ (ГэВ/с²),довольно хорошо описывается механизмом Дрелла-Яна/16/.При меньших m механизм может быть более сложным, например, пара $\mu^+\mu^-$ образуется путем рождения векторного мезона в промежуточном состоянии и дальнейшего его распада на $\mu^+\mu^-$. Но поскольку в настоящей работе мы интересуемся A-зависимостью спектров лептонных пар, а не их абсолютными значениями, то сам механизм их рождения в h-A взаимодействии, как будет видно из приведенных ниже формул, нам не важен.

Процесс hA + $\mu^+ \mu^- X$ в рамках теории многократного рассеяния рассматривался в работе /17/,где вычислялось значение a(m)лишь при m, равной массе векторных мезонов ρ , ω , и не строилась зависимость a(m) при m > m_{ρ,ω}, а также $a(p_t)$ и $a(p_z)$ при m $\ge m_{\rho,\omega}$. В работе /17/ учитывались перерассеяния не только налетающего адрона, но и рождающихся внутри ядра скалярных и векторных мезонов. Однако согласно современным теоретическим представлениям и, в частности, модели дуально-топологической унитаризации /13-15/ быстрые вторичные частицы рождаются в основном за пределами ядра, а начальные лидирующие протоны - мгновенно.

Поэтому в настоящей работе учтем многократные перерассеяния лишь начального адрона и его кварковую структуру, т.к. медлен-

ные мезоны, рождающиеся внутри ядра, не дадут нам массивной лептонной пары.

Спектр лептонной пары, например $\mu^+\mu^-$, образованной в p-A реакции при высоких энергиях, в зависимости от ее эффективной массы m и поперечного импульса p_t , $d\sigma_A/dm^2 d^2p_t \equiv F_A^{(S)}(m, p_t)$, с учетом многократных перерассеяний лидирующего протона внутри ядра и кварковой структуры нуклонов можно записать в следующем виде $^{/10,11,16,18/2}$.

$$\begin{split} \mathbf{F}_{A}^{(S)}(\mathbf{m},\mathbf{p}_{t}) &= \sum_{\substack{n=0\\q \neq 0}} N_{n} \int \{ \mathbf{G}_{q}^{(n)}(\mathbf{x}_{1},\vec{\mathbf{p}}_{1t}) \mathbf{G}_{\overline{q}}(\mathbf{x}_{2},\mathbf{p}_{1},\mathbf{p}_{1}) \mathbf{G}_{\overline{q}}(\mathbf{x}_{2},\mathbf{p}_{1},\mathbf{p}_{1}) \mathbf{G}_{\overline{q}}(\mathbf{x}_{2},\mathbf{p}_{2},\mathbf{p}_{2},\mathbf{p}_{2}) \} \delta^{(2)}(\vec{\mathbf{p}}_{t} - \frac{1}{2}) + \mathbf{G}_{1t}^{(n)}(\mathbf{x}_{1},\vec{\mathbf{p}}_{1t}) \mathbf{G}_{q}(\mathbf{x}_{2},\vec{\mathbf{p}}_{2t}) \} \delta^{(2)}(\vec{\mathbf{p}}_{t} - \frac{1}{2}) \delta^{(n)}(\mathbf{m}^{2} - \mathbf{\hat{S}}_{q\,\overline{q}}) \sigma_{q\,\overline{q} \rightarrow \mu} + \mu^{-}(\mathbf{m}) * \\ & * d\mathbf{x}_{1} d\mathbf{x}_{2} d^{2} \vec{\mathbf{p}}_{1t} d^{2} \vec{\mathbf{p}}_{2t} . \end{split}$$

Здесь введены следующие обозначения: $N_{\rm n}$ - "эффективные" числа, они вычисляются, как и в работе $^{/19/}$:

$$N_{n} = \frac{1}{n!} \int_{-\infty}^{\infty} dz \int d^{2} \vec{b} (\sigma T_{-}(\vec{b}, z))^{n} \exp(-\sigma *$$
$$T_{-}(\vec{b}, z)\rho(\vec{b}, z)); T_{-}(\vec{b}, z) = \int_{-\infty}^{z} \rho(\vec{b}, z') dz',$$

где $\rho(\mathbf{b}, \mathbf{z})$ - ядерная плотность, нормированная следующим образом:

$$\int_{-\infty}^{\infty} dz \int d^2 \vec{b} \rho(\vec{b}, z) = \mathbf{A}.$$

 $G_q^{(n)}(x, p)$ - распределение кварка по доле продольного импульса x и поперечному импульсу p_t после n соударений внутри ядра начального протона, в котором находится кварк. Эта функция, вычисленная в работах /10,11/, имеет вид:

$$G_{q}^{(n)}(\mathbf{x},\mathbf{p}_{t}) = \int_{0}^{1} d\mathbf{x}_{1} \int_{0}^{1} d\mathbf{x}_{2} \int d^{2}\mathbf{p}_{1t} d^{2}\mathbf{p}_{2t} G_{q}(\mathbf{x}_{1},\mathbf{p}_{1t}) *$$

* $f_{p}^{(n)}(\mathbf{x}_{2},\mathbf{p}_{2t}) \delta(\mathbf{x}-\mathbf{x}_{1}\mathbf{x}_{2}) \delta^{(2)}(\vec{\mathbf{p}}_{t}-\vec{\mathbf{p}}_{1t}-\vec{\mathbf{p}}_{2t}).$

 $\mathbf{f}_{\mathbf{p}}^{(n)}(\mathbf{x}, \mathbf{p}_{t})$ - вероятность иметь начальному протону после его n

3

столкновений внутри ядра долю импульса х и поперечный импульс p_1 , она подробно вычисляется в работах $^{/10,11/}$, поэтому выражение для нее здесь приводить не будем. Заметим только, что при вычислении $f_p^{(n)}(x,p_t)$ понадобится спектр протонов в p-N взаимо-

действии, нормированный на 1 (
$$f_p(x, p_t) = \frac{1}{\sigma} \frac{d\sigma}{dxd^2p_t}$$
). Он выби-

рался в удобном для интегрирования виде

$$f_{p}(\mathbf{x}, \mathbf{p}_{t}) = (\beta + 1) \mathbf{x}^{\beta} \frac{B^{2}}{2\pi} \exp(-B\mathbf{p}_{t}),$$

$$\beta \approx 0.5, \quad B \approx 4.6 \ (\Gamma \ominus B/c)^{-1},$$

$$\hat{s}_{q\bar{q}} = x_{1} x_{2} s_{1} + \left(\frac{x_{1}}{x_{2}}\right)^{-1} p_{1t}^{2} + \left(\frac{x_{2}}{x_{1}}\right)^{-1} p_{2t}^{2} + 2\vec{p}_{1t} \vec{p}_{2t} -$$

- квадрат полной энергии в с.ц.м. q – \overline{q} ; p_{1t} , p_{2t} – поперечные импульсы кварка q и антикварка q; x₁, x₂ - их доли продольного

импульса; s - квадрат полной энергии в с.ц.м. p-N; $\sigma_{q\,\overline{q} o \mu^+\mu^-}$ (m) -

сечение рождения $\mu^+\mu^-$ при аннигиляции кварка q и антикварка \overline{q} , в /1/ можно вынести из-под знака интеграла. Поэтому отношение спектров лептонных пар, рожденных на разных ядрах, не будет зависеть от $\sigma_{q \, \overline{q} \to \mu^+ \mu^-}(m)$, т.е. от механизма рождения $q \, \overline{q} \to \mu^+ \mu^-$. Интегрируя /1/ по $d^2 p_i$, получим распределение лептонной пары

по ее эффективной массе. Вычисляя N_n , $G_q^{(n)}(x, p_t)$, $G_{\overline{q}}^{(n)}(x, p_t)$ с использованием при этом факторизованного вида функции распределения кварков $G_q(x, p_t)^{10,11/2}$ и подставляя результат в выражение /1/ для $F_A^{(S)}(m, p_t)$, можно найти p_t -зависимость $a(p_t) = ln(F_{A_1}^{(S)}(m, p_t) / F_{A_2}^{(S)}(m, p_t)) / ln \frac{A_1}{A_2}$ при определенном значении m. А интегрируя /1/ по d^2p_t , можно вычислить $\alpha(m) = \ln (F_{A_1}^{(S)}(m) / F_{A_2}^{(S)}(m)) / \ln \frac{A_1}{A_2}$. На рис.1,2 приведе-

ны A-зависимости спектров лептонной пары $\mu^+\mu^-$, рожденной в p-Aреакции при $E_0 = 400$ (ГэВ), по ее эффективной массе m и поперечному импульсу $\mathbf{p}_{t}^{}$ при m, равной массе векторных мезонов $\mathbf{\rho}_{0}^{}$, $\boldsymbol{\omega}_{0}^{}$. Из рис.1,2 видно, что « увеличивается от своего минимального значения до $\alpha \approx 1$ с ростом m или p_t при $m = m_{\rho,\omega}$. Этот рисунок показывает хорошее согласие теории с экспериментом

Выпишем теперь выражение для распределения пары $\mu^+ \mu^-$ по ее продольному импульсу, рожденной в р-А реакции. Вводя фейнманов-

 $= \ln \frac{r_{A_1}}{r_{A_2}^{(S)}} / \ln \frac{A_1}{A_2} ,$ $A_1 = {}^{64}Cu$, $A_2 = {}^{207}Pbot$ эффективной массы m пары, рожденной в р-А реакции при Е_п=400 (ГэВ), кривая - результат расчета, с - экспериментальные

a =

скую переменную $\mathbf{x}_{\mu} = 2\,\mathbf{p}_z^* / \sqrt{s}$, \mathbf{p}_z^* - продольный импульс пары в с.ц.м. N-N и учитывая, что $^{/20/}\mathbf{x}_{\mu} = \mathbf{x}_1 - \mathbf{x}_2$,легко получить вместо /1/ следующее приближенное выражение для спектра по \mathbf{x}_{μ} :

$$F_{A}^{(S)}(\mathbf{x}_{\mu}) \equiv \frac{d\sigma}{d\mathbf{x}_{\mu}d\mathbf{m}} \approx \frac{2\sigma_{q} \,\overline{q} \rightarrow \mu^{+}\mu^{-}(\mathbf{m})}{\mathbf{m}} \mathbf{x} \ast$$
$$\ast \sum_{n=0}^{A} N_{n} \{ G_{q}^{(n)}(\mathbf{x}_{\mu}) G_{\overline{q}}(\frac{\mathbf{x}}{\mathbf{x}_{\mu}}) + G_{\overline{q}}^{(n)}(\mathbf{x}_{\mu}) G_{q}(\frac{\mathbf{x}}{\mathbf{x}_{\mu}}) \}$$

при x $<\!\!<\!\!x_{\mu}$, x $\approx \frac{m^2}{s}$.Если m < 3÷4 (ГэВ/с) ,а $E_0=\!200\div\!400$ (ГэВ), то приведенное выше условие выполняется.

А-зависимость $\alpha(\mathbf{p}_z)$, или, что то же самое, $\alpha(\mathbf{x}_\mu)$, при $\mathbf{m}\approx\mathbf{m}_{\rho,\omega}$ представлена на рис.3. Из экспериментальных данных /1/ видно, что $\alpha(\textbf{p}_z\,)$ с ростом \textbf{p}_z убывает от своего максимального значения до минимального. Из выражения /2/ видно, что такая зависимость обусловлена поведением функций $G_q^{(n)}(x_{\mu}), G_{\overline{q}}^{(n)}(x_{\mu})$ распределения кварков после n соударений внутри ядра, которые подробно анализировались в работе /21/Рисунок 3 показывает вполне удовлетворительное согласие расчетной кривой с экспериментальными данными / 1/.

мягких соударений в спектры пар или одиночных Вклад **F**^(S) частиц, конечно, надо учитывать лишь при не очень больших передачах t. Как убедительно показано в работе /10/,правда, применительно к \mathbf{p}_{t} -спектрам одиночных мезонов, образованных в $\mathbf{p}-\mathbf{A}$ реакции, $\mathbf{F}_{A}^{\,(S)}\left(\mathbf{p}_{t}\right)$ весьма значителен при $\mathbf{p}_{t}<3{\div}4$ (ГэВ/с) ,а при

Рис.3. Зависимость α от продольного импульса p_z пары $\mu^+\mu^$ при m = 0,8 (ГэВ/с)², кривая – результаты расчета, Q – экспериментальные данные/1/.

больших p_t он уменьшается. При совсем больших p_t вклад $F_A^{(S)}(p_t)$ фактически исчезает, а основной вклад в спектр дают жесткие кварковые соударения. Как показано в работе $^{/22}$, вклад жестких q-q столкновений в спектры частиц с большими p_t , образованными в h-A процессах при высоких энергиях, линейно зависит от A. То же самое относится и к рассмотренным процессам $pA \to \mu^+ \mu^- X$, поскольку при большой эффективной массе пары $\mu^+ \mu^-$ аннигиляцию $q \, \overline{q} \to \mu^+ \mu^-$ можно рассматривать как жесткий процесс. Жесткие кварковые перерассеяния, как показано в работе $^{/18}$, дают пренебрежимо малый вклад в спектр при больших m.

малыи вклад в спектр при соледии Таким образом, проведенное исследование показало следующее. Если спектры по эффективной массе m или поперечному импульсу p_t лептонных пар, образованных в h-A реакциях при высоких энергиях, представить в виде A^{α} , то характер перехода α (m) и α (p_t) при $m \approx m_{\alpha,\alpha}$ от минимального значения ($\alpha < 1$) до $\alpha \approx 1$ с ростом m или p_t обусловлен мягкими кварковыми многократными соударениями внутри ядра. А вклад жестких кварковых процессов внутри ядра дает $\alpha \approx 1$ при больших m и p_t . Заметим, что недавно наблюдалась зависимость α (p_t) при больших массах пары $\mu^+\mu^-$, рожденной в h-A взаимодействиях при E = 150+300 (ГэВ)/23/ /она оказалась примерно линейной/.

Ивазалась принерно илисию. Конечно, при небольших m (m < Наконец, отметим следующее. Конечно, при небольших m (m < $(3 \div 4 \ (\Gamma \Im B/c^2))$ процесс рождения $\mu^+\mu^-$ в h-h столкновении может происходить гораздо сложнее, чем предсказывается механизмом Дрелла-Яна, например путем образования кварк-глююнной плазмы и последующего ее перехода в пару $\mu^+\mu^-$. В настоящей работе, как указывалось выше, сам механизм процесса $hh \to \mu^+\mu^- X$ не важен. Но, в принципе кварк-глююнная плазма может образоваться при взаимодействии налетающего нуклона с ядром, тогда процесс развития этой плазмы в ядре, которая может затем дать пару $\mu^+\mu^-$, будет более сложным, чем процесс обычного прохождения налетающей частицы через ядро. Однако количественно учесть такие эффекты довольно трудно. Поэтому мы ограничились более простым рассмотрением.

Один из авторов /Г.И.Л./ выражает глубокую признательность и благодарность Л.И.Лапидусу, А.Б.Кайдалову, М.Г.Рыскину и М.И.Горенштейну за полезные обсуждения и ценные советы.

ЛИТЕРАТУРА

- 1. Binkley M. et al. Phys.Rev.Lett., 1976, vol.37, p.571.
- 2. Branson J.G. et al. Phys.Rev.Lett., 1977, vol.38, p.457.
- 3. Vannucci F. Preprint CERN-EP/79-151, Geneva, 1979.
- 4. Николаев Н.Н. ЭЧАЯ, 1981, т.12, вып.1, с.162.
- 5. Cronin J.W. et al. Phys.Rev., 1975, vol.D11, p.3105; ibid., 1979, vol.D19, p.764.
- 6. Bromberg C. et al. Phys.Rev.Lett., 1979, vol.42, p.1202; ibid., vol.43, p.1057(E).
- 7. Takagi F. Phys.Rev.Lett., 1979, vol.43, p.1296.
- 8. Алавердян Г.Б., Тарасов А.В., Ужинский В.В. ЯФ, 1977, с.666; JINR, E2-9606, Dubna, 1976.
- 9. Алавердян Г.Б. и др. ОИЯИ, Р2-12537, Дубна, 1979.
- 10. Lykasov G.I. JINR, E2-82-651, Dubna, 1982.
- 11. Лыкасов Г.И., Шерхонов Б.Х. ОИЯИ, Р2-82-665, Дубна, 1982.
- 12. Лыкасов Г.И., Шерхонов Б.Х. ОИЯИ, Р2-82-911, Дубна, 1982.
- 13. Chiu C.B. et al. Phys.Rev.Lett., 1980, vol.44, p.518.
- 14. Chiu C.B. Proc. of the Europhysics Study Conference. Erice, Italy, 1981, p.279.
- 15. Chin C.B. Preprint DOK-ER-03992, Austin, Texas, USA, 1981.
- 16. Drell S.D., Yan T.N. Phys.Rev.Lett., 1970, vol.25, p.316; Ann.Phys., 1971, vol.66, p.578.
- 17. Геворкян С.Р., Жамкочан В.М. ЯФ, 1979, т.29, с.990.
- 18. Michael C., Weber D.M. Phys.Lett., 1979, vol.83B, p.243.
- 19. Tapacos A.B. 34AA, 1976, T.7, Bun.3, C.771.
- 20. Badier J. et al. Phys.Lett., 1979, vol.B89, p.145.
- 21. Лыкасов Г.И. ОИЯИ, Р2-82-59, Дубна, 1982.
- 22. Левин Е.М., Рыскин М.Г. ЯФ, 1981, т.33, с.1673.
- 23. Badier J. et al. Preprint CERN-EP/82-190, Geneva, 1982.
- 24. Shuryak E.V. Preprint CERN 83-01, Geneva, 1983.

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги,

если они не были заказаны ранее.

д3-11787	Труды III Международной школы по нейтронной физике. Алушта, 1978.	3 р. 00 к.
Д13-11807	Труды III Международного совещания по пропорциональ- ным и дрейфовым камерам. Дубна, 1978.	6 р. 00 к.
	Труды VI Всесоюзного совещания по ускорителям заря- женных частиц. Дубна, 1978 /2 тома/	7 p. 40 ĸ.
Д1,2-12036	Труды V Международного семинара по проблемам физики высоких энергий. Дубна, 1978	5 p. 00 ĸ.
Д1,2-12450	Труды XII Международной школы молодых ученых по физике высоких энергий. Приморско, НРБ, 1978.	3 p. 00 ĸ.
	Труды VII Всесоюзного совещания по ускорителям заря- женных частиц, Дубна, 1980 /2 тома/	8 p. 00 ĸ.
Д11-80-13	Труды рабочего совещания по системам и методам аналитических вычислений на ЭВМ и их применению в теоретической физике, Дубна, 1979	3 p. 50 ĸ.
д4-80-271	Труды Международной конференции по проблемам нескольких тел в ядерной физике. Дубна, 1979.	3 р. 00 к.
Д4-80-385	Труды Международной школы по структуре ядра. Алушта, 1980.	5 p. 00 ĸ.
д2-81-543	Труды VI Международного совещания по проблемам кван- товой теории поля. Алушта, 1981	2 р. 50 к.
Д10,11-81-622	Труды Международного совещания по проблемам математи- ческого моделирования в ядерно-физических исследова- ниях. Дубна, 1980	2 p. 50 m.
Д1,2-81-728	Труды VI Международного семинара по проблемам физики высоких энергий. Дубна, 1981.	3 р. 60 к.
Д17-81 - 758	Труды II Международного симпозиума по избранным проблемам статистической механики. Дубна, 1981.	5 р. 40 к.
Д1,2-82-27	Труды Международного симпозиума по поляризационным явлениям в Физике высоких энергий. Дубна, 1981.	3 р. 20 к.
P18-82-117	Труды IV совещания по использованию новых ядерно- физических методов для решения научно-технических и народнохозяйственных задач. Дубна, 1981.	3 р. 80 к.
Д2-82-568	Труды совещания по исследованиям в области релятивистской ядерной физики. Дубна, 1982.	1 р. 75 к.
д9-82-664	Труды совещания по коллективным методам ускорения. Дубна, 1982.	3 р. 30 к.
ДЗ,4-82-704	Труды IV Междунаводной школы по нейтронной физике. Дубна, 1982.	5 р. 00 к.

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79 Издательский отдел Объединенного института ядерных исследований

Лыкасов Г. Зависимост спектров л в адрон-яд	И., Шерхонов Б.Х. УЪ от атомного номера я цептонных пар, рожденны церных взаимодействиях	Р2-83-400 дра-мишени іх	
Анали спектров п ному p_t им в адрон-яд при тех п спектры да мягкие мно учет таких и p_t предс описать по ется с рос $a \approx 1$. Работ и автомати Препринт	ізируется зависимость о ю эффективной массе m, пульсам лептонных пар, церных взаимодействиях. п, p_z и p_t , при которых ют многократные перера- югократные кварковые со с процессов внутри ядра тавить в виде A^{α} , позв- ведение $a(m)$ и $a(p_t)$, п стом m или p_t от своег- та выполнена в Лаборато гаации ОИЛИ. Объединенного института яд	от атомного номера ядра-мишен, продольному p_z и попереч- в частности $\mu^+\mu^-$, рожденных Исследование проводится с основной вклад в данные вссеяния налетающего адрона и рударения. Показывается, что а, если спектры $\mu^+\mu^-$ по т воляет вполне удовлетворитель причем показатель а увеличив то минимального значения до ории вычислительной техники дерных исследований. Дубна 1983	и ли а-
Lykasov G. Dependence Interactio	I., Sherkhanov B.Kh. of Lepton Pair Spectrons on the Atomic Numbe	P2-83-400 a Produced in Hadron-Nuclear er of a Target-Nucleus	
The d produced i of the tar m, longit investigat the multip multiple q these spec m and p_t such proce and $\alpha(p_t)$ r to $\alpha \approx 1$, if The i of Computi	ependence of lepton pa n hadron-nuclear inter get-nucleus is analyse udinal momentum p_z and ion is carried out wit le rescattering of a p uark collisions give t tra. It is shown that, are expressed in the f sses, it permits to de ather well with a incr m or p_t increases. nvestigation has been ng Techniques and Auto	air spectra (especially $\mu^+\mu^-$ cactions) on the atomic number of over their effective mass l transverse momentum \mathbf{p}_t . The ch such \mathbf{m}, \mathbf{p}_z and \mathbf{p}_t at whice projectile hadron or of soft the main contribution into , if the spectra of $\mu^+\mu^-$ over form of \mathbf{A}^a , taking into account escribe the behaviour of $a(\mathbf{m})$ ceasing from its minimum value performed at the Laboratory pomation, JINR.	r .h .nt
Preprint	of the Joint Institute fo	or Nuclear Research. Dubna 1983	

Перевод О.С.Виноградовой

۶