

ОБЪЕДИНЕННЫЙ Институт Ядерных Исследований

дубна

Y123 /83

15/8-83 P2-83-336

А.В.Ефремов, С.В.Иванов*, Г.П.Корчемский*

К-ФАКТОР В ДВУХФОТОННОМ РОЖДЕНИИ АДРОННЫХ СТРУЙ

Направлено в журнал "Ядерная физика", Оргкомитет Международного семинара по проблемам физики высоких энергий и квантовой теории поля, Серпухов, июнь 1983 г.

*Ростовский государственный университет

1. ВВЕДЕНИЕ

В настоящее время квантовая хромодинамика /КХД/ дает качественное, а во многих случаях и полуколичественное описание всех имеющихся экспериментальных данных по жестким процессам. Однако в связи со значительным ростом в последние годы точности этих данных все острее встает вопрос о количественной проверке КХД. Наиболее значительные расхождения экспериментов с расчетами в наивной партонной модели наблюдаются в реакциях $pp \rightarrow \gamma + X, pp \rightarrow \mu^+ \mu^- + X, \gamma\gamma \rightarrow 2$ jets. Величина отношения соответствующих сечений $\sigma_{
m эксп}/\sigma_{
m парт}$ в современной литературе называется К-фактором. Для указанных процессов К ~ 2. Изучение возможностей КХД для объяснения столь значительной /~ 100%/ поправки, представляющее безусловный интерес, привлекло внимание многих авторов /1-3/. Подробно был изучен дрелл-яновский процесс $PP \rightarrow \mu^+ \mu^- + X$ в работах А.Контогориса /3, где в порядках ас и a² по константе связи сильного взаимодействия был учтен обмен мягкими глюонами и в рамках метода размерной регуляризации доказана компенсация сильных 1/є2 инфракрасных расходимостей. При этом оказалось, что для некоторых амплитуд, содержащих полюса $1/\epsilon^2$, необходимо аналитическое продолжение в область \$ > 0, при котором появляются слагаемые, пропорциональные π^2 , приводящие к большим поправкам. Их учет дает для Кфактора значение, близкое к эксперименту. Отметим, однако, что для дрелл-яновского процесса еще не выяснен до конца вопрос факторизации, возможное нарушение факторизации в некоторых работах связывают с обменом длинноволновыми глюонами между начальными адронными состояниями /глауберовский режим/ /4/. В случае, если факторизация все же реализуется, не исключается возможность искажения партонных функций распределения по сравнению с известными из данных по глубоконеупругому рассеянию 151. Поэтому реакция $pp \rightarrow \mu^+ \mu^- + X$ требует дополнительного изучения.

Нашей задачей является расчет К-фактора для процесса $yy \rightarrow 2$ jets. Измерения этого процесса ведутся в DESY группами PLUTO, TASSO, CELLO и JADE^{/6/}, причем наблюдались двухструйные события с p_T^2 , достигающим 20 /ГэВ/с/² /рис.1/. С теоретической точки зрения изучение реакции $yy \rightarrow 2$ jets играет особую роль, так как именно с двухфотонными реакциями связаны надежды на проверку цветовой симметрии сильных взаимодействий. При достаточно малой виртуальности фотонов существует реальная возможность измерить истинный заряд кварков, не переходя порога рождения цвета. Критическая величина виртуальности фотонов определяется

Рис.1. Кривая а соответствует расчету в ЭС-модели. Кривая б обозначает предсказание наивной /дробно-зарядной/ партонной модели. Пунктирная линия соответствует расчету в КХД, т.е. с учетом К-фактора.

токовой массой В-глюона в U(1) × SU_C(3) - модели электросильных взаимодействий /3C/⁷⁷. По современным данным ⁷⁷/ m_B \leq 0,2 ГэВ. Следовательно, средняя виртуальность $< Q^2 > \phi$ отонов должна быть $\leq 0,05$ ГэВ². Только в этом случае октетная часть электромагнитного тока кварков и глюонов будет давать

существенный вклад в сечение процесса. На рис.1 приведено также сравнение экспериментальных данных с ЭС-моделью и стандартной партонной моделью. Видно, что данные лучше согласуются с ЭС-моделью. Однако в этих экспериментах, к сожалению, виртуальность одного из фотонов изменялась от $<Q^2 > ~0,1$ ГэВ² (PLUTO) до $<Q^2 > ~0,4$ ГэВ² (JADE) и лишь второй фотон был практически реальным. В этих случаях происходит подавление эффекта нарушения цветовой симметрии /возможно, довольно значительное/. Поэтому для объяснения различия между данными измерений и результатами расчетов по партонной модели представляет интерес вычисление КХД-поправок.

Во втором разделе дан расчет поправок к реакции $\gamma\gamma \rightarrow 2$ jets, обусловленных взаимодействием с мягкими глюонами в порядке α_S . Показано, что роль мягких глюонов столь велика, что необходим анализ следующих порядков теории возмущений /TB/.

В третьем разделе вычислены КХД-поправки в порядке a_S^2 .В пределе длинноволновых глюонов показано, что π^2 -факторы, вносимые однопетлевыми и двухпетлевыми диаграммами экспоненциируются. В порядке a_S^2 вкладом π^2 -факторов, связанных с тормозным излучением глюонов, можно пренебречь по сравнению с вкладом двухпетлевых диаграмм. Полученное значение К-фактора значительно улучшает согласие теории с данными измерений.

2. РОЛЬ π^2 -ФАКТОРОВ В РЕАКЦИИ $\gamma\gamma \rightarrow 2$ jets

В этом разделе мы рассмотрим КХД-поправки в порядке α_S к процессу $yy \rightarrow 2$ jets в пределе мягких глюонов и проследим за компенсацией полюса $1/\epsilon^2$,имеющегося в различных диаграммах. Сравнивая полученное выражение с точным^{/8/}, мы убедимся, что роль π^2 -факторов в сечении реакции значительна.

В фейнмановской калибровке в порядке «_S сильную IR-расходимость имеют диаграммы рис.2 б,в.

Борновское приближение рис. 2а имеет вид

$$\frac{d\sigma^{(0)}}{d^4p_1} = \frac{(2\pi)^2}{(k_1k_2)} \,\delta_+ (p_1^2) \,\delta_+ ((k_1 + k_2 - p_1)^2) |\mathfrak{M}_a|^2 \,. \qquad (2.1/$$

Однопетлевая диаграмма рис. 26 приводит к интегралу

$$\mathbb{M}_{6} = -\mu^{2\epsilon} g^{2} e^{2} \int \frac{d^{n} k}{(2\pi)^{n}} \frac{N(k)}{k^{2} (p_{1} - k)^{2} (p_{2} - k)^{2} (p_{1} - k - k_{1})^{2}} \cdot /2.2/$$

В пределе мягких глюонов k_µ → 0

$$N(0) = -4(p_1p_2)C_F \bar{v}(p_1)\hat{e}_1(\hat{p}_1 - \hat{k}_1)\hat{e}_2 v(-p_2).$$

Вычисляя интеграл /2.2/, получаем

$$\mathfrak{M}_{6} = -\frac{a_{S}}{2\pi} C_{F} \mathfrak{M}_{a} \frac{\Gamma(1+\epsilon) \Gamma^{2}(1-\epsilon)}{\Gamma(1-2\epsilon)} \frac{1}{\epsilon^{2}} \left(-\frac{8}{4\pi\mu^{2}}\right)^{-\epsilon} . \qquad (2.3)$$

Аналитическое продолжение выражения /2.3/ в область S > 0 приводит к следующему вкладу в сечение:

$$\frac{d\sigma_{\ell o o p}^{(1)}}{d^{4} p_{1}} = 2 \frac{(2\pi)^{2}}{(k_{1} k_{2})} \delta_{+}(p_{1}) \delta_{+}((k_{1} + k_{2} - p_{1})^{2}) |\mathfrak{M}_{a}|^{2} \times /2.4 / \\ \times \frac{\alpha}{2\pi} C_{F} \frac{\Gamma(1 + \epsilon) \Gamma^{2}(1 - \epsilon)}{\Gamma(1 - 2\epsilon)} |\frac{s}{4\pi\mu^{2}}|^{-\epsilon} (-\frac{1}{\epsilon^{2}} + \frac{\pi^{2}}{2}) .$$

Перейдем от $\frac{d\sigma}{d^4p_1}$ к новым переменным интегрирования $\frac{d^2\sigma}{dtdu}$. Якобиан-переход имеет вид

$$J(t, u | p_1) = \int d^n p_1 \delta_+(p_1^2) \delta(t + 2(k_1 p_1)) \delta(u + 2(k_2 p_1)) =$$

$$= \frac{1}{2s} (\frac{tu}{s})^{-\epsilon} \frac{\pi^{1-\epsilon}}{\Gamma(1-\epsilon)} ,$$
(2.5/

где $s = (\mathbf{k}_1 + \mathbf{k}_2)^2$, $t = (\mathbf{k}_1 - \mathbf{p}_1)^2$, $u = (\mathbf{k}_2 - \mathbf{p}_1)^2$ - мандельстамовские переменные. В дальнейшем нас будет интересовать выражение

$$\frac{d\sigma}{dt} = \int du \delta_{+}^{-1}(\mathbf{p}_{1}) \frac{d\sigma}{d^{n}\mathbf{p}_{1}} J(t, u | \mathbf{p}_{1}) . \qquad (2.6)$$

Поскольку $\frac{d\sigma_{loop}}{d^n p_1}$ содержит $\delta(s + t + u)$, то немедленно получаем

факторизованное выражение

$$\frac{\mathrm{d}\sigma\rho_{oop}}{\mathrm{d}t} = \frac{\alpha_{s}}{\pi} C_{\mathrm{F}} \frac{\Gamma(1+\epsilon)\Gamma^{2}(1-\epsilon)}{\Gamma(1-2\epsilon)} \left| \frac{s}{4\pi\mu^{2}} \right|^{-\epsilon} \left(-\frac{1}{\epsilon^{2}} + \frac{\pi^{2}}{2}\right) \frac{\mathrm{d}\sigma^{(0)}}{\mathrm{d}t} \cdot /2.7/$$

Теперь перейдем к рассмотрению тормозного излучения /рис.2в/

$$\frac{d\sigma_{brems}}{d^{n}p_{1}} = \frac{(2\pi)^{2}}{(k_{1}k_{2})} \delta_{+}(p_{1}^{2}) \cdot 2g^{2}C_{F} \cdot 4(k_{1}k_{2})|\mathcal{M}_{a}|^{2} \times /2.8/$$

$$\times \int \frac{d^{n}k}{(2\pi)^{n-1}} \frac{\delta_{+}(k^{2})\delta_{+}((k_{1}+k_{2}-p_{1}-k)^{2})}{(p_{1}+k)^{2}(p_{2}+k)^{2}} \cdot /2.8/$$

Выражение /2.8/ можно преобразовать к факторизованному виду:

$$\frac{d\sigma_{\text{brems}}}{dt} = \frac{\alpha_s}{\pi} C_F(-\frac{1}{\epsilon}) \frac{\Gamma(1-\epsilon)}{\Gamma(1-2\epsilon)} \times /2.9 / \times \int_{-t-s}^{0} du \left(\frac{u}{-t-s}\right)^{-\epsilon} \frac{s}{(s+t+u)(-t-u)} \left(\frac{s+t+u}{4\pi\mu^2}\right)^{-\epsilon} \frac{d\sigma^{(0)}}{dt} .$$

4

Введем переменную x = u + t + s/s, тогда

$$\frac{\mathrm{d}\sigma_{\mathrm{brems}}}{\mathrm{d}t} = \frac{a_{\mathrm{s}}}{\pi} C_{\mathrm{F}}(-\frac{1}{\epsilon}) \frac{\Gamma(1-\epsilon)}{\Gamma(1-2\epsilon)} R(\epsilon) \left(\frac{\mathrm{s}}{4\pi\mu^2}\right)^{-\epsilon} \frac{\mathrm{d}\sigma^{(0)}}{\mathrm{d}t} , \qquad /2.10/$$

$$R(\epsilon) = \int_{0}^{1+\frac{1}{5}} \frac{dx}{x} \left[\frac{(1-x)s+t}{s+t} \right]^{-\epsilon} \frac{x^{-\epsilon}}{1-x} \qquad (2.11)$$

Задача свелась к выделению $1/\epsilon$ -расходимости из $R(\epsilon)$. Сингулярность при x = 0 будет давать основной вклад. Замена

 $y = \frac{x}{1 + t/s}$ приводит выражение /2.11/ к интегралу типа β функции. Окончательно получаем

$$\frac{\mathrm{d}\sigma_{\mathrm{brems}}}{\mathrm{d}t} = \frac{a_{\mathrm{s}}}{\pi} C_{\mathrm{F}} \frac{\Gamma^{3}(1-\epsilon)}{\Gamma^{2}(1-2\epsilon)} \left(\frac{t+\mathrm{s}}{4\pi\mu^{2}}\right)^{-\epsilon} \frac{1}{\epsilon^{2}} \frac{\mathrm{d}\sigma^{(0)}}{\mathrm{d}t} \quad . \qquad /2.12/$$

Сумма выражений /2.7/ и /2.12/ дает сечение процесса*

$$\frac{d\sigma^{(1)}}{dt} = \left(1 + \frac{a_{\rm s}}{2\pi} C_{\rm F} \frac{2\pi^2}{3}\right) \frac{d\sigma^{(0)}}{dt}.$$
 /2.13/

Сравним результат /2.13/, полученный в приближении мягких глюонов, с результатом точного аналитического счета **.

Выбираем следующую кинематику процесса:

$$s, |u|, |t| \gg m_N^2$$
, $|\frac{t+u}{u}| \sim 1$,

тогда

$$d\sigma^{(1)} = (1 - \frac{a_{s}}{\pi} C_{F} \frac{U(s, u, t)}{U_{0}}) d\sigma^{(0)}, \qquad /2.14/$$

*Здесь и в дальнейшем необходимо учитывать, что $\ln \Gamma(1 + \epsilon) = -C\epsilon + \frac{1}{2}S_2\epsilon^2 - \frac{1}{3}S_3\epsilon^3 + \frac{1}{4}S_4\epsilon^4 \dots$, где C- эйлерова постоянная, а $S_n = \zeta(n)$ - дзета-функция Римана.

**Выражение для U(s, u, t) можно получить, воспользовавшись известными результатами из КЭД /см., например /8//.

где

$$U_0 = -\left(\frac{t}{u} + \frac{u}{t}\right),$$

$$U(s, u, t) = -U_0 \left\{ \left(1 + \frac{u}{2t} + \frac{t}{u}\right) \left[\ln^2 \left| \frac{s}{t} \right| - \ln \left| \frac{s}{t} \right| + 2\ln \left| \frac{u}{t} \right| \right] + \frac{1}{2} + \frac{1}{2} - 5y + 6y^2 \right\}.$$

$$(1 + \frac{u}{t} + \frac{t}{2u}) \left[\ln^2 \left| \frac{s}{u} \right| - \ln \left| \frac{s}{t} \right| - \ln \left| \frac{u}{t} \right| + \pi^2 \right] + \frac{1}{2} - 5y + 6y^2 \right\}.$$

$$(2.15/y = \operatorname{arsh} \frac{\sqrt{s}}{2} .$$

В экспериментально доступной на сегодняшний день кинематической области поправки типа π^2 /см. /2.14// играют важную роль, так как их вклад значительно превышает вклад всех остальных. В работе ^{/3/} высказывалось предположение, что π^2 поправки экспоненциируются. Поэтому особый интерес представляет рассмотрение старших по α_s порядков TB.

3. О ВОЗМОЖНОСТИ ЭКСПОНЕНЦИИРОВАНИЯ "-ФАКТОРОВ

В квантовой теории поля наблюдаемые величины, рассчитанные в рамках теории возмущений, представляются в виде асимптотических рядов. В некоторых случаях удается выделить из асимптотического ряда ведущую последовательность и просуммировать ее, что эффективно сводится к перестройке ряда теории возмущений.

Так, из КЭД известно, что члены вида $(a \ln^2 \frac{q^2}{r^2})^n$ сводятся

к экспоненциальному фактору, дающему дважды логарифмическую асимптотику. Естественно, появляется надежда получить аналогичный результат в КХД. Исследуем эту возможность, рассчитывая a^2 -поправки к процессу $\gamma\gamma \rightarrow 2$ jets в пределе мягких глюонов. Лидирующие инфракрасные расходимости $1/\epsilon^4$ появляются только в тех диаграммах, в которых мягкие глюоны излучаются /поглощаются/ частицами. находящимися на массовой поверхности. Диаграммы с собственно-энергетическими вставками в пределе мягких глюонов вклада не дают. Расчеты в порядке a² достаточно громоздки, поэтому мы ограничимся анализом результатов вычислений. представленных в табл.2. Как видно из этой таблицы, π^2 -факторы идут как из петлевых диаграмм 1 ÷6, так и из диаграмм 7 ÷15 с тормозными глюонами. Поскольку мягкий глюон, взаимодействующий с фермионами, не меняет дираковской структуры амплитуды, то удобно ввести факторы, выписанные в табл.1. С их помощью расчет вклада тормозных глюонов значительно упрощается. Суммируя вклады диаграмм, приведенные в табл.2, легко убедиться в том, что имеет место сокращение $1/\epsilon^4$ -полюсов при цветовом множителе $N_C C_F$, обусловленном неабелевостью калибровочной группы КХД. Сокращение оставшихся полюсов $1/\epsilon^4$ при множителе C_F^2 в диаграммах КЭД типа 3,4,5,11,12,13,14,15 табл.2 обеспечивается хорошо известными теоремами ^{/9/}, справедливыми для КХД при $N_C = 0$. Нашей целью является учет большого вклада мягких глюонных обменов, который обусловлен только двумя обстоятельствами:

1/ неаналитичностью при s > 0 коэффициентов лидирующих инфракрасных расходимостей;

2/ сингулярностью полученных выражений при $t = (k_1 + k_2 - p_1)^2 = 0$, соответствующей коллинеарному излучению. Интеграция указанной сингулярности по t, дающая вклад в $\frac{d\sigma}{dt}$, приводит к появлению гамма-функций, разложение которых до ϵ^4 содержит константы π^2 , π^4 . С удовлетворением заметим, что тормозные глюоны дают существенный вклад лишь в порядке a_s /см. диаграмму 2 в табл.2/. В порядке a_s^2 вклад в сечение реакции амплитуд с тормозными глюонами незначителен. Квадрат модуля суммы 2-петлевых диаграмм 1,3,4,5,6 имеет вид

$$\sum_{\substack{\text{floop}\\\text{graphs}}} \mathcal{M}|^2 = |\mathcal{M}_{\text{E}}|^2 |1 - C_{\text{F}} \frac{a_{\text{s}}}{2\pi} - \frac{e^{i\pi\epsilon}}{\epsilon^2} + \frac{1}{2!} C_{\text{F}}^2(\frac{a_{\text{s}}}{2\pi}) - \frac{e^{2\pi\epsilon}}{\epsilon^4} |^2 \cdot /3.1/$$

Так как ведущие полюса по ϵ сокращаются при учете всех диаграмм, выпишем конечную часть выражения /3.1/ при $\epsilon \to 0$:

$$\operatorname{reg}_{\epsilon} \exp(-\frac{a_{s}}{2\pi} C_{F} \frac{e^{i\pi\epsilon} + e^{-i\pi\epsilon}}{\epsilon^{2}}) = \sum_{n=0}^{\infty} \frac{1}{n!} \frac{(2n^{2})^{n}}{(2n)!} x^{n} \simeq e^{x}, \quad /3.2/$$

где $x = \frac{a_s}{2\pi} C_F \pi^2$. В выражении /3.2/ мы предположили, что старшие порядки по a_s в рассматриваемом классе диаграмм с виртуальными глюонами дадут следующие члены ряда разложения экспоненты /см. /3.1//. С учетом вклада тормозного глюона диаграммы 2 в табл.2 получим окончательное выражение для К-фактора процесса $yy \rightarrow 2$ jets:

$$K \simeq \exp \frac{a_s}{2\pi} C_F \pi^2 - \frac{a_s}{2\pi} C_F \frac{\pi^2}{3}$$
.

Величина полученной поправки при $a_{g} = 0,2 \div 0,3$ соответствует фактору K = 1,38 ÷ 1,67. Зависимость K- фактора от бегущей константы связи a_{g} приведена на рис.3. Полученное значение для K - фактора значительно улучшает согласие теории с точной цветовой симметрией с экспериментом /см. рис.1/. Таким образом, встает вопрос: чем вызвано столь значительное отклонение наивной

Рис.3. а – зависимость К – фактора от бегущей константы a_s ; б – зависимость К-фактора от поперечного импульса струи относительно оси столкновения γ -квантов при различных значениях Λ_{KXI} .

партонной модели от данных измерений реакции $yy \rightarrow 2 \text{ jets } * ? T.e.$ $K - \phi$ актор или нарушение цветовой симметрии? Ответ могут дать эксперименты при достаточно больших поперечных импульсах адронных струй / $P_T^2 \ge 20$ ГэВ²/. В этом случае величина K-фактора становится малой, а отличие целозарядной модели от дробнозарядной в 2-3 раза остается.

Авторы благодарны Д.В.Ширкову за обсуждение результатов работы и А.В.Радюшкину за полезные замечания.

*Это в равной мере относится к реакциям $y N \rightarrow y X$ и 'pp $\rightarrow yy + X$.

Таблица I

факторизация мягких глюонных обменов

.

Фактор	$-2i k_{\rm c} \vartheta^{\frac{3}{2}} \left\{ \frac{d^n q_{\rm c}}{(2\pi)^n} \frac{R^{\rm u}}{q_{\rm c}^2} \frac{R^{\rm u}}{(q_{\rm c}^+ q_{\rm c})^2} \frac{V_{\mu\nu\lambda}(m_{\rm L}^+ + m_{\rm c}^2)}{(R^- q_{\rm c})^2 (R_{\rm c}^+ q_{\rm c})^2} \right\} - 2i k_{\rm c} \vartheta^{\frac{3}{2}} \left\{ \frac{1}{(2\pi)^n} \frac{R^{\rm u}}{q_{\rm c}^2} \frac{R^{\rm u}}{(q_{\rm c}^+ + q_{\rm c})^2} \frac{V_{\mu\nu\lambda}(m_{\rm c}^- + m_{\rm c}^- + m_{\rm c}^-)}{(R^- q_{\rm c})^2 (R^- + q_{\rm c})^2} \right\} - 2i k_{\rm c} \vartheta^{\frac{3}{2}} \left\{ \frac{R^{\rm u}}{(2\pi)^n} \frac{R^{\rm u}}{q_{\rm c}^2} \frac{R^{\rm u}}{(q_{\rm c}^+ + q_{\rm c})^2} \frac{R^{\rm u}}{(R^- + q_{\rm c})^2} $	$\frac{2i f^{\alpha} \epsilon_g {}^{z} p_{j}^{\beta} V_{\mu\nu\lambda}}{(p_{i}+q_{i}+q_{i})^{2} (q_{i}+q_{j})^{2}} \left(\mathcal{M}_{\mathrm{I}}^{c} + \mathcal{M}_{\mathrm{II}}^{c} \right)$	$\frac{-2it^{\alpha}t^{\alpha}g^{2}P_{J}^{3}V_{\mu\nu\lambda}}{(P_{a}+q_{a})^{2}(q_{a}+q_{a})^{2}}\left(\mathcal{M}_{\mathbf{I}}^{c}+\mathcal{M}_{\mathbf{I}}^{c}\right)$	$2i\mathcal{N}_{\mathcal{L}}g^{a}\int_{(\mathcal{Z}\pi)^{n}}^{\mathcal{A}}\frac{p_{i}^{\mathcal{N}}p_{i}^{\mathcal{A}}\mathcal{V}_{\mu\nu\lambda}}{q_{z}^{2}(q_{i}+q_{z})^{3}(p_{i}+q_{i})^{2}(p_{i}+q_{i})^{2}}$	$-2iN_{c}g^{3}\left[\frac{d^{n}q_{a}}{(2\pi)^{n}}\frac{P_{a}VP_{a}^{3}V_{\mu\nu\lambda}(M_{T}^{a}+M_{\Xi}^{a})}{q_{a}^{2}(q_{i}+q_{a})^{2}(P_{a}+q)^{2}(P_{a}+q_{i}^{2}+q_{a}^{2})^{3}}\right]$	$m_{I} + m_{I}$	Vinx= (qq_2)^3 g^{44} + (q_2-q_3)^4 g^{42} + (q_3-q_1)^2 g^{43}	
Tpağ	Р.H.~	2'1+	2'A ~)	N.H <	214 - 1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	Ĺ	4'5 4's	
លិងកោ០ក្ន	$\frac{2P_{i}^{K}}{(P_{i}+q)^{2}} g\left(m_{x}^{\alpha}+m_{y}^{\alpha}\right)$	$\frac{-2\rho_{\rm r}^{\rm H}}{(\rho_{\rm s}+q)^{\rm r}} g\left(m_{\rm r}^{\rm a}+m_{\rm J}^{\rm a}\right)$	$8:C_{F}(P_{1}P_{1}^{\mu}H_{2}^{2})\underbrace{\left(\mathcal{A}^{\mu}q_{e}}{(2\pi)^{\mu}d_{e}^{2}}\underbrace{m_{r}^{\Delta}+m_{r}^{\Delta}}{(2\pi)^{\mu}d_{e}^{2}}\underbrace{m_{r}^{\Delta}q_{e}^{2}}(P_{1}-q_{e}^{2})^{\mu}C_{P}+q_{e}^{2})^{2}$	$-\mathbf{g}_{1};c_{f}(\mathbf{p}_{f})\mathbf{p}_{f}^{H}\mathbf{g}^{3}[\frac{d^{T}q_{2}}{(2\pi)^{n}}\frac{\mathcal{M}_{2}^{T}}{q_{2}^{2}(\mathbf{p}_{1}-q_{2})^{2}(\mathbf{p}_{2}+q_{1}+q_{2})^{2}(\mathbf{p}_{2}+q_{1})^{2}}$	$\mathfrak{s}_{1}(c_{F}-\frac{\hbar \varepsilon}{2}(r_{F},c_{F})p_{K}^{F}g^{2}(\underline{z}^{H})^{T}nq^{2}\underline{c}(q_{v}^{-}r_{{}}^{2})^{2}(p_{F}+q_{v}^{+}f^{+})^{T}p_{F}^{F}q^{-1})$	$-8:\left(c_{F}-\frac{M_{e}}{2}\right)\left(P_{P}P_{P}^{H}P_{P}^{3}\right)\left(\frac{d^{H}q_{e}}{(2\pi)^{5}}\frac{m_{F}^{2}+m_{F}^{2}}{q_{e}^{2}(q_{e}-P_{f})^{2}(P_{e}+q_{e}^{2})^{2}(P_{e}+q_{e}^{2})}$	$\frac{-4g^2p_1^{\mu}P_{\underline{k}}^{\nu}}{(p_1+q_1)^3(p_2+q_2)^3}\left(m_1^{a\ell}+\mathcal{M}_{\underline{a}}^{a\ell}\right)$	
ľþaథ	1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1	2	1 + + +	P.H ~/	P.H 4-1	- vi441-/	2,4.4 2,4.4	

Taduana 2

PR жении IDNOI æ nponecca II ~ 2;ets Dacyera Результати

	Комо́ин. множ.	2	2	8	5	Ι
HTKKX IJIOHOB	т ² – фактор	<u>∞</u> C _F π² 2π C _F 2	$-\frac{\alpha_s}{2\pi}C_F\frac{\pi^2}{6}$	$\frac{2}{3} \left(\frac{ds}{4\pi} \right)^2 c_F^2 \pi^4$	$\frac{2}{3} C_F \left(C_F - \frac{M_{e}}{2} \right) \left(\frac{\alpha \epsilon}{4\pi} \right)^2 \pi^4$	0
-{с в приолижении м	$\frac{d\sigma}{dt} = \left(\frac{\phi_{\alpha k} \tau_{\alpha p}}{dt}\right) \frac{d\sigma^{(Bun)}}{dt}$	-2CF 4 6 61	$2C_F \frac{d_6}{4\pi} \frac{\Gamma^2(1-\epsilon)}{\Gamma(1-2\epsilon)} \frac{1}{\epsilon^2}$	$C_{F}^{2} \left(\frac{\alpha_{S}}{4\pi} \right)^{2} \frac{e^{2i\pi E}}{E4}$	$C_{F}\left(C_{F}-\frac{N_{e}}{2}\right)\left(\frac{\omega_{e}}{4\pi}\right)^{2}\frac{e^{2i\pi E}}{E4}$	$4 c_F^2 \left(\frac{\alpha_E}{4\pi}\right)^2 \frac{1}{E4}$
расчета процесса ј ј -> 2 је	$\frac{d\sigma}{d^4 R} = \frac{d\sigma^{(Bon)}}{d^4 R_1} (\tilde{q}akrop)$	$-2c_F \frac{d_b}{4\pi} \left(\frac{b}{4\pi \mu^4} \right)^{-E} \frac{e^{i\pi E}}{E^2}$	$-2c_F \frac{\alpha_s}{4\pi} \frac{s t^{-\epsilon}}{t(s-t)} \frac{(4\pi \mu^z)^{\epsilon}}{\epsilon}$	$C_{F}^{2}\left(\frac{\alpha_{6}}{4\pi}\right)^{2}\left(\frac{S}{4\pi\mu^{2}}\right)^{-2E}\frac{S^{2}}{e^{2}}\frac{\pi}{e^{4}}$	$C_{F}\left(C_{F}-\frac{M_{e}}{2}\right)\left(\frac{\sigma L_{e}}{4\pi}\right)^{2}\left(\frac{S}{4\pi}\frac{1}{\mu^{4}}\right)\frac{-2\epsilon}{\varepsilon^{4}}\frac{2i\pi\epsilon}{\varepsilon^{4}}$	$4 C_F^2 \left(\frac{\alpha_S}{4\pi}\right)^2 \left(\frac{S}{4\pi \mu^2}\right)^2 \frac{1}{E^4}$
Результати	Tpağ	Щ	M		4 JX	

10

Таблица 2 (продолжение)

				<u> </u>		
Комбин. множ	4	4	4	4	4	
^д − фактор	$\frac{1}{4} C_F N_c \left(\frac{\alpha_S}{(4\pi)}\right)^2 \frac{3}{3} \pi^4$	$-\frac{1}{2}C_FN_c\left(\frac{\sigma d_S}{\left(\frac{1}{A}T\right)}\right)^2 \left(0.0 M^4\right)$	0	$-C_F N_E \left(\frac{ds}{d\pi}\right)^2 \left\{ 0.1\pi^6 \\ 0.05\pi^6 \right\}$	$- C_F N_c \left(\frac{\sigma_{45}}{\sqrt{4}}\right)^2 \frac{7\pi^4}{360}$	
$\frac{d\sigma}{dt} = (\phi_{atrop}) \frac{d\sigma_{(BOW)}}{dt}$	$\frac{1}{4} C_F N_c \left(\frac{\alpha_S}{4\pi}\right)^2 \frac{e^{2i\pi E}}{E^4}$	$-\frac{1}{2}C_F N_c \left(\frac{\sigma_S}{4\pi}\right) \frac{e^{\frac{1}{2}\pi E}}{\epsilon 4} \Gamma(1-\epsilon) \left \frac{\Gamma(1-\epsilon)}{\Gamma(1-2t)} \frac{\Gamma(1-\epsilon)}{\Gamma(1-2t)} \right ^{\frac{1}{2}}$	0 (፤)	$-C_F N_c \left(\frac{\alpha t_s}{\zeta \pi}\right)^2 \frac{e^{i\pi\epsilon}}{\epsilon^4} \Gamma(t-\epsilon) \left\{ \begin{array}{l} \frac{\Gamma(t-\epsilon)}{\Gamma(t-2t)} \\ \frac{\Gamma(t-2t)}{\Gamma(t-3t)} \end{array} \right.$	$C_F N_c \left(\frac{\sigma c_S}{4\pi} \right)^2 \frac{1}{E4} \frac{\Gamma^2(t-E)}{\Gamma(t-2E)}$	
$\frac{d\sigma}{d^4 P_1} = \frac{d\sigma^{(Born)}}{d^4 P_1} \left(\frac{\Phi}{\Phi} \text{arrop} \right)$	$\frac{1}{4}C_F N_C \left(\frac{d_S}{4\pi}\right)^2 \left(\frac{S}{4\pi}\frac{S}{4\pi}\right)^2 \left(\frac{S}{4\pi}\frac{S}{\mu^2}\right) \frac{C_F}{E4}$	$\frac{1}{2}C_{F}N_{c}\left(\frac{\alpha_{6}}{4\pi}\right)^{2}\frac{5}{t\left(s-t\right)^{4}}\left(s-t\right)^{-\epsilon}t^{-\epsilon}\left(\frac{2\epsilon}{t-t}\right)^{2}\left(t-t-s\right)^{2\epsilon}t^{-\epsilon}t^{-\epsilon}\left(t-s\right)^{2\epsilon}t^{-\epsilon}t$	0 (<u>+</u> 3)	$C_F N_c \left(\frac{d_S}{d_R} \right)^2 \frac{1}{S - \frac{1}{C}} \left\{ \frac{e^{-g_s}}{\frac{1}{S}} \frac{s \varepsilon \varepsilon^{-\frac{1}{C}} \cdot \varepsilon}{(s_1 - \varepsilon)^R} \right\} \left(\frac{s \varepsilon \varepsilon^{-\frac{1}{C}}}{\frac{1}{S}} \right)^2 \left(\frac{e^{-g_s}}{\varepsilon^{-\frac{1}{C}}} \right)^2 \frac{e^{-g_s}}{\varepsilon^{-\frac{1}{C}}} \frac{e^{-g_s}}{\varepsilon^{-\frac{1}{C}}} \right)$	$-C_F \mathcal{N}_{\varepsilon} \left(\frac{d\varepsilon}{4\pi} \right)^{\frac{2}{2}} \frac{\varepsilon}{t(s-t)} \left(\frac{d}{4} \vec{K}_{MAR} ^2 \right)^{-\frac{2}{2}} \frac{\varepsilon}{\varepsilon^{\frac{2}{3}}} \right)^{\frac{2}{2}} \frac{\varepsilon}{\varepsilon^{\frac{2}{3}}}$	
Ipağ	R	A	A	THI THI		
	e o	~	00	6	H H	

Таблица 2 (продолжение)

	L					
	Komóren. Meiox.	4	I	8	4	2
Tavarata a Infortantal	π²- ชุ้ актор	$-4c_{F}(c_{F}^{-\frac{1}{2}})\frac{d_{F}}{d_{F}})^{2}_{0.08\pi^{4}}$	0	0	$-2c_F^2 \left(\frac{d_6}{4\pi}\right)^2 \left[\begin{array}{c} 0.1\pi^4 \\ 0.02\pi^4 \end{array} \right]$	0
	do = (tarrop) de (born)	$-4 C_{F} \left(C_{F} - \frac{M_{e}}{2} \right) \left(\frac{\alpha c_{e}}{4\pi} \right)^{2} \frac{e}{\epsilon^{4}} \left(1 \left(1 - c_{e} \right) \right) \frac{1}{\epsilon^{4}} \left(\frac{1}{\epsilon^{1-2}} \right) \frac{1}{\epsilon^{4}} \left(\frac{1}{\epsilon^{2}} \right) \frac{1}{\epsilon^{4}} \left(\frac{1}{\epsilon^{4}} \right) $	$4c_{\mu}(c_{F}-\frac{M_{F}}{2})\left(\frac{\alpha_{6}}{4\pi}\right)^{2}\frac{t}{E4}$	$\mathcal{L}_{c_{F}}\left(C_{F}-\frac{M_{c}}{2}\right)\left(\frac{\alpha \ell_{E}}{4\pi}\right)^{2}\frac{\ell}{\xi}q$	$-2C_F\left(\frac{2}{4\pi}\right)\frac{2}{64}\frac{1}{64}\left\{\frac{\Gamma^2(1-2)}{\Gamma(1-22)}\frac{\Gamma(1-21)}{\Gamma(1-3)}\frac{\Gamma(1-21)}{\Gamma(1-32)}\right\}$	$2 \operatorname{CF}^{2} \left(\frac{\operatorname{de}}{4\pi} \right)^{2} \frac{1}{64}$
	at o = (parceop) at b	$4c_{\mu}(c_{\mu} - \frac{N_{e}}{2})\left(\frac{d_{e}}{4\pi}\right)^{2} \frac{\epsilon \cdot \frac{1}{2} - \epsilon}{\frac{1}{2}(5-\frac{1}{2})} \left(\frac{(s-t)^{-1}}{2 \cdot \frac{1}{2}}\right)^{\frac{1}{2}} \frac{(d_{e}+p_{e})^{2}}{\epsilon^{3}}$	$4 C_{\mu} \left(C_{F} - \frac{N_{e}}{2} \right) \left(\frac{d_{S}}{4\pi} \right)^{2} \frac{1}{E^{4}} \frac{\Gamma^{2}(1-E)}{\Gamma^{4}(1-2E)} \left(\frac{d_{F} \sum_{i=1}^{2} -2E}{4\pi \mu^{2}} \right)^{2} \left(\frac{1}{4} \frac{1}{\pi^{2}} \right)^{2} \left(\frac{1}{4} \frac{1}{\pi^{2}} \right)^{2} \left(\frac{1}{4} \frac{1}{\pi^{2}} \right)^{2} \left(\frac{1}{4} \frac{1}{\pi^{2}} \frac{1}{\pi^{2}} \right)^{2} \left(\frac{1}{4} \frac{1}{\pi^{2}} \frac{1}{\pi^{2}} \right)^{2} \left(\frac{1}{4} \frac{1}{\pi^{2}} $	$4 c_{p} \left(c_{p} - \frac{M_{e}}{2} \right) \left(\frac{d_{e}}{4\pi} \right)^{2} \frac{1}{E4} \frac{\Gamma^{2} (1-E)}{\Gamma^{2} (1-2E)} \left(\frac{4 E^{2} L^{2}}{4\pi \mu^{4}} \right)^{5} U_{e}^{1}$	$4c_{F}^{2}\left(\frac{d_{e}}{4\pi}\right)^{2}\frac{s^{+E}}{t(s-t)}\left\{\frac{t-\frac{1}{2}}{t-s}\frac{s^{E}}{(s-t)^{E}}\right]\frac{(d_{F}\mu^{1})^{R}}{E^{2}}e^{i\piE}$	$2 C_{F}^{2} \left(\frac{ds}{d\pi} \right)^{2} \frac{1}{64} \left(\frac{4 \tilde{R}^{4}}{4 \pi \mu^{4}} \right)^{2} S(t)$
	Ipağ	M	X	TT	X	I
			1 1 1	EI	14	12

12

ЛИТЕРАТУРА

- 1. Kienzle W. Proceed.of Intern. Symposium on Lepton and photon Interact at H.E., Fermilab, 1979.
- Lefrancois J. Proceed of XX Intern. Conference on H.E. Physics, Madison, 1980, p. 1315.
- 3. Contogouris A.P. Large Perturbative corrections from gluon bremsstrahling. Preprint Lab. de Phys. Theorigue et Hautes Energies, Orsay, France, 1982; Contogouris A.P., Marlean L. Exponentiation of soft gluon Large corrections. Preprint Lab. de Phys.Theorique et Hantes Energies, Orsay, France.
- 4. Bodwin G.T., Brodsky S.J., Lepage G.P. Preprint SLAC-PUB-2860, 1981.
- 5. Collins J.C., Soper D.E., Sterman G. Preprint ITP-SB-82-46, 1982.
- Spitzer H. Preprint DESY F14-80/01, 1980; Wagner W. Preprint DESY 80/102, 1980.
- 7. Ефремов А.В., Иванов С.В., Нестеренко В.А. ЯФ, 34в5/11/, 1981; ОИЯИ, P2-80-519, 1980; E2-82-433, 1982; Игнатьев А.Ю. и др. ТМФ, 1981, 47, с. 148; Тавхелидзе А.Н. В кн.: IV Международная школа молодых ученых по физике высоких энергий, Дубна, 1980, ОИЯИ, Д2-81-158, с. 9-36.
- 8. Ахиезер А.И., Берестецкий В.Б. Квантовая электродинамика. "Наука". М., 1969.
- Bloch F., Nordsick A. Phys.Rev., 1937, 52, p. 54;
 Kinoshita T. J. Math.Phys., 1962, 3, p. 650;
 Lee T.D., Nauenberg M. Phys.Rev., 1964, 133, p. 1549.

Ефремов А.В., Иванов С.В., Корчемский Г.П. P2-83-336 К-фактор в двухфотонном рождении адронных струй

Рассчитаны поправки к жесткому процессу $\gamma\gamma \rightarrow 2$ jets, обусловленные взаимодействием кварков с мягкими длинноволновыми глюонами в порядках $a_s u a_s^2$. Показано, что поправки типа $(\pi^2 a_s)^n$ в этих порядках имеют тенденцию к экспоненциации в К -фактор. Полученная величина К-фактора значительно улучшает согласие КХД с данными измерений.

Работа выполнена в Лаборатории теоретической физики ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1983

Efremov A.V., Ivanov S.V., Korchemskij G.P. P2-83-336 The K-Factor for the Two-Photon Production of Jets

Corrections to the process $\gamma\gamma \rightarrow 2$ jets of an order of a_s and a_s due to the soft long-wave gluons in QCD are calculated. It is shown that terms $(\pi^2 a_s)^n$ in these orders tend to exponentiate into a constant K-factor. The inclusion of this K-factor results in a much better agreement of QCD with experimental data.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1983

Перевод О.С.Виноградовой.