

Объединенный институт ядерных исследований

дубна

Y122

5/8-83

P2-83-312

1983

Я.З.Дарбаидзе, А.Н.Сисакян, Л.А.Слепченко, Г.Т.Торосян

СОВМЕСТНЫЙ АВТОМОДЕЛЬНЫЙ АНАЛИЗ ПРОДОЛЬНЫХ И ПОПЕРЕЧНЫХ ПОЛУИНКЛЮЗИВНЫХ РАСПРЕДЕЛЕНИЙ В рр-СОУДАРЕНИЯХ ПРИ JS = 540 Гэв

Направлено в оргкомитет Международной Еврофизической конференции по физике высоких энергий. Брайтон, Великобритания, 20-27 июля 1983 года.

Как показывает ооработка данных по $\bar{p}p$ -соударениям при $\sqrt{S}^7 = 540$ ГэВ (UA5 эксперимент)^{/I/}, распределения по псевдобыстроте η при фиксированной множественности n_c сужаются, а пик распределения растет с ростом n_c . Дальнейшее увеличение стастики поаволипо выявить для этих распределений эффект типа "чайки" при малых n_c (UAI группа)^{/2/}, обнаруженный ранее при энергиях ISR CERN ^{/3/}. Было также обнаружено расширение одночастичных полуинклюзивных поперечных спектров при больших p_i с ростом множественности n_c ^{/4/}.

В свете этих данных встает вопрос о возможности объяснения в рамках единого механизма рождения наблюдаемые эффекты.

В настоящей работе предложена попытка совместного описания полуинклюзивных распределений по переменным р и р Бр-соударениях при \sqrt{S} = 540 ГэВ.

Рассмотрим систему уравнений в ренормгрупповом подходе, описывающую рождение нескольких адронных систем^{/5/}. Её решение с учетом принципа "максимальной" автомодельности^{/6/}приводит к следующему выражению для полуинклюзивного дифференциального сечения^{/7/}:

$$E \frac{d \delta_{n_{e}}}{d \vec{p}} = \frac{E \frac{d \delta}{d \vec{p}}}{\langle n_{e}(\vec{p}) \rangle + \alpha_{e}(\vec{p})} F(\vec{z}_{e}, \kappa), \quad (I)$$

где полностых инклюзивное сечение $E \frac{d \delta}{d P}$ представляется следующим образом:

$$E\frac{d6}{dP} = E\frac{d6}{dP_{o}}\left[1 + \frac{V_{c}}{\alpha}\left(\langle n_{c}(\overline{P_{o}})\rangle + \alpha_{c}(\overline{P_{o}})\right)\cdot T\right]^{-\alpha}, \quad (2)$$

 $\vec{P_o}$ - некоторое фиксированное при решении ренорытруппового уравнения "начальное" значение импульса, $\mathcal{T} = - \ln \frac{\vec{P} \cdot P_o}{P_o^2}$ - "временная"

Model ACCERTICATION ACCERTINATION ACCERTICATION ACCERTICATION ACCERTICATION ACCERTATION AC

эволюционная компонента ренормгруппового уравнения, X_i - аномальные размерности $i = 1, ..., \kappa$ видов полей частиц, параметр α задается соотношением

$$\sum_{j=1}^{\kappa} \frac{\langle n_i \ n_j \rangle}{\langle n_i \rangle \langle n_j \rangle} = \kappa^2 \left(\frac{1}{\alpha} + 1 \right) . \tag{3}$$

Как видно из (3) параметр α имеет смысл, аналогичный параметру Вроолевского: в самом деле, при $\kappa = I$ $\sqrt{a^7} = \frac{\langle n \rangle}{D}$. $\alpha_c(\vec{r})$ - "приведенная" ассоциативная множественность лидирующих компонент:

$$\mathcal{X}_{c}(\vec{P}) = \sum_{i=2}^{K} \frac{\mathscr{Y}_{i}}{\mathscr{Y}_{c}} < n_{i}(\vec{P}) \rangle , \qquad (4)$$

а средняя ассоциативная множественность $\langle n_c(\vec{r}) \rangle$ в рассматриваемой схеме представляется в виде

$$\langle n_{c}(\vec{p}) \rangle = \frac{\langle n_{c}(\vec{p}) \rangle}{1 + \frac{\lambda_{c}}{q} [\langle n_{c}(\vec{p}) \rangle + \alpha_{c}(\vec{p})] \cdot \tau}$$
 (5)

Автомодельная функция $F(z_c, k)$ не зависит явно от энергии и представляется в виде (см. /7/)

$$F(z_{c},\kappa) = \frac{\Gamma(\kappa)}{\Gamma(a)} \alpha^{\alpha} Z_{c}^{\alpha-1} e^{-\alpha Z_{c}} \Psi(\kappa-1,\alpha,\alpha Z_{c}) , \qquad (6)$$

где $\Psi(\alpha, \beta, x)$ - вырожденная гипергеометрическая функция, а масштабная переменная имеет вид

$$Z_{c} = \frac{n_{c}}{\langle n_{c}(\vec{p}) \rangle + \alpha_{c}(\vec{p})}$$
 (7)

Рассмотрим далее предел большого числа коррелированных компонент:

2

$$K \gg \frac{\delta_c \langle n_c(\overline{P_o}) \rangle \cdot \tilde{c}}{\alpha} \gg 1 \quad . \tag{8}$$

В этом случае легко получить следующие соотношения:

$$\begin{aligned} \chi_{i} \langle n_{i}(\vec{\mathbf{p}}) \rangle &= \chi_{j} \langle n_{j}(\vec{\mathbf{p}}) \rangle , \quad i, j = 1, \cdots, K , \\ \alpha_{c}(\vec{\mathbf{p}}) &= (\kappa \cdot 1) \langle n_{c}(\vec{\mathbf{p}}) \rangle , \\ \mathcal{Z}_{c} &= \frac{1}{\kappa} \frac{n_{c}}{\langle n_{c}(\vec{\mathbf{p}}) \rangle} \end{aligned}$$
(9)

Подставляя выражения (9) в формулу (1), находим

$$E \frac{d\delta_{n_c}}{dF} = A \cdot \tau^{-\frac{\alpha-1}{2}} K_{\alpha-1} \left(2 \sqrt{\partial \ell_{n_c} \tau} \right), \qquad (10)$$

где A - нормировочный множитель, $\mathcal{H}_{n_c} = \mathcal{Y}_c n_c K$ - полная "аномальная" размерность сечения, $K_{\alpha}(x)$ - модифицированная функция Бесселя.

Ниже используя следующую удобную параметризацию

$$\frac{\overrightarrow{P} \cdot \overrightarrow{P_o}}{P^2} = \frac{m_\perp}{m} ch (2 \cdot 2_o) , \qquad (II)$$

где $M_{\perp} = \sqrt{P_{\perp}^2 + m^2}$, $\gamma_o = \frac{1}{2} \ln \frac{E_p + P_u^o}{E_p - P_u^o}$, проводим с помощью формулы (IO) совместное описание экспериментальных полуинклюзивных распределений по γ и P_{\perp} /2,4/.

 $\left< \frac{n_c}{\Delta y} \right> = 2,4$; 5,7; IO,2, а для распределений по γ рассматривались совместно 5 интервалов множественности I $\leq n_c \leq 5$, 6 $\leq n_c \leq$ IO, II $\leq n_c \leq 20$, 2I $\leq n_c \leq 30$, 3I $\leq n_c \leq 40$ (сплошные линии на рис. I и 2; пунктирные линии соответствуют полностью инклозивным спектрам). При этом для параметра α бралось значение $\alpha = 0,35$. эволюционная компонента ренорытруппового уравнения, X_i - аномальные размерности $i = 1, ..., \kappa$ видов полей частиц, параметр α задается соотношением

$$\sum_{j=1}^{\kappa} \frac{\langle n_i \ n_j \rangle}{\langle n_i \rangle \langle n_j \rangle} = \kappa^2 \left(\frac{1}{\alpha} + 1 \right) . \tag{3}$$

Как видно из (3), параметр α имеет смысл, аналогичный параметру Врослевского: в самом деле, при $\kappa = I$ $\sqrt{a^7} = \frac{\langle n \rangle}{D}$. $\alpha'_c(\vec{p})$ - "приведенная" ассоциативная множественность лидирующих компонент:

$$\mathcal{X}_{c}(\vec{P}) = \sum_{i=2}^{K} \frac{\mathcal{X}_{i}}{\mathcal{X}_{c}} < n_{i}(\vec{P}) \rangle , \qquad (4)$$

а средняя ассоциативная множественность $\langle n_c(\vec{r}) \rangle$ в рассматриваемой схеме представляется в виде

$$\langle n_{c}(\vec{p}) \rangle = \frac{\langle n_{c}(\vec{p}_{o}) \rangle}{1 + \frac{\delta c}{q} [\langle n_{c}(\vec{p}_{o}) \rangle + \alpha_{c}(\vec{p}_{o})] \cdot \tau}$$
 (5)

Автомодельная функция $F(z_c, \kappa)$ не зависит явно от энергии и представляется в виде (см. /7/)

$$F(z_{c},\kappa) = \frac{\Gamma(\kappa)}{\Gamma(a)} \alpha^{\alpha} Z_{c}^{\alpha-1} e^{-\alpha Z_{c}} \Psi(\kappa-1,\alpha,\alpha Z_{c}) , \qquad (6)$$

где $\Psi(\alpha, \beta, x)$ – вырожденная гипергеометрическая функция, а масштабная переменная имеет вид

$$Z_{c} = \frac{n_{c}}{\langle n_{c}(\vec{p}) \rangle + \alpha_{c}(\vec{p})} \quad (7)$$

Рассмотрим далее предел большого числа коррелированных компонент:

$$\kappa \gg \frac{\chi_c < n_c (\overline{P_o}) > 7}{\alpha} \gg 1$$
 (8)

В этом случае легко получить следующие соотношения:

$$\chi_{i} \langle n_{i}(\overline{P}) \rangle = \chi_{j} \langle n_{j}(\overline{P}) \rangle , \quad i, j = 1, ..., \kappa ,$$

$$\chi_{c}(\overline{P}) = (\kappa \cdot 1) \langle n_{c}(\overline{P}) \rangle , \qquad (9)$$

$$\overline{\mathcal{Z}}_{c} = \frac{1}{\kappa} \frac{n_{c}}{\langle n_{c}(\overline{P}) \rangle} .$$

Подставляя выражения (9) в формулу (1), находим

$$E \frac{d\delta_{n_c}}{d\overline{P}} = A \cdot \tau^{-\frac{n-1}{2}} \cdot K_{n-1} \left(2 \sqrt{\partial \ell_{n_c} \tau} \right), \qquad (10)$$

где \mathcal{A} - нормировочный множитель, $\mathcal{H}_{n_c} = \mathcal{Y}_c n_c \mathcal{K}$ - полная "аномальная" размерность сечения, $\mathcal{K}_{\alpha}(x)$ - модифицированная функция Бесселя.

Ниже используя следующую удобную параметризацию

$$\frac{\vec{P} \cdot \vec{P}_{o}}{P_{o}^{2}} = \frac{m_{\perp}}{m} ch (2 \cdot 2_{o}) , \qquad (II)$$

где $M_{\perp} = \sqrt{P_{\perp}^2 + m^2}$, $\gamma_o = \frac{1}{2} \ln \frac{E_p + P_u^o}{E_p - P_u^o}$, проводим с помощью формулы (IO) совместное описание экспериментальных полуинклюзивных распределений по γ и P_{\perp} /2,4/.

Результаты сравнения приведены на рис.1-5. Для <u>р</u>-распределений рассматривались три интервала плотности множественности:

 $\left< \frac{n_c}{\Delta y} \right> = 2,4$; 5,7; IO,2, а для распределений по γ рассматривались совместно 5 интервалов множественности I $\leq n_c \leq 5$, 6 $\leq n_c \leq$ IO, II $\leq n_c \leq 20$, 2I $\leq n_c \leq 30$, 3I $\leq n_c \leq 40$ (сплошные линии на рис. I и 2; пунктирные линии соответствуют полностью инклюзивным спектрам). При этом для параметра α бралось значение $\alpha = 0,35$.

2

Значения "аномальных" размерностей $\mathcal{H}_{n_c}^{P_1}$ и $\mathcal{H}_{n_c}^{\gamma}$, полученных в процессе подгонки, приведены на рис.3 и 4 соответственно. Сплошная линия на рис.3 соответствует аппроксимации

$$\mathcal{H}_{n_{c}}^{P_{1}} = \frac{130}{\ln \ln \left(\frac{n_{c}}{\Delta y} + 5\right)} \quad (12)$$

Такая зависимость приводит к расширению распределений по r_1 и увеличению $< r_2 >$ с ростом n_c .

На рис.4 сплошная линия представляется следующей аппроксимацией

$$\partial \ell_{n_c}^2 = -0,01 + 0,002 n_c$$
, (13)

что соответствует проведенному нами ранее отдельному анализу экспериментальных распределений по псевдооыстроте 7 /8/.

Заметим, что при малых значениях множественности $n_c < 10$ параметр $\mathcal{H}_{n_c}^2 \approx 0$, и следовательно, из (10) имеем

$$\frac{dN}{d\eta} \sim \gamma^{-\frac{\alpha-1}{2}} \sim \left[ch(\gamma-\gamma_{o}) \right]^{0,34} . \tag{I4}$$

Именно благодаря такой зависимости $\mathcal{H}_{n_c}^2$ от n_c (см. (I3)) обеспечивается описание наблюденного в эксперименте $^{/2/}$ эффекта типа "чайки" для полуинклюзивных распределений по псевдоомстроте 2при малых n_c (рис.2), имеющего место также при энергиях ISR CERN $^{/3/}$. С ростом n_c параметр $\mathcal{H}_{n_c}^2$ становится больше нуля и эффект сглаживается из-за множителя $K_{n-1}(2\sqrt{\mathcal{H}_nc})$ в (IO). Как легко заметить, углубление в центральной области 2-спектров здесь обеспечивается условиями $\alpha < I$ и $\mathcal{H}_{n_c}^2 \ll I$, что имеет место также при энергиях ISR

На рис.5 приведено сравнение модельной кривой, полученной интегрированием выражения (IO) по ρ_{\perp} с экспериментальными данными по $< \rho_{\perp} >$ при фиксированных выше параметризациях $\partial C_{n_e}^{\rho_{\perp}}$ и α . Как видно из рисунка, получено удовлетворительное согласие.

4

5

Отметим также, что значение параметра $\alpha = 0.35$ хорошо согласуется с описанием экспериментальных данных по вперед-назад корреляциям заряженных частиц в $\bar{p}p$ -соударениях при $\sqrt{S} = 540 \ \Gamma_{2B} / 9/$ с помощью следующей формулы, полученной из (IO) (см. /6,9,IO/):

$$\langle n_{B}(n_{F}) \rangle = \langle n_{B} \rangle \left(\frac{z_{F}}{\alpha}\right)^{\frac{1}{2}} \frac{K_{\alpha}(2\sqrt{\alpha z_{F}})}{K_{\alpha-1}(2\sqrt{\alpha z_{F}})}$$
 (15)

$$rae \ \vec{z}_F = \frac{n_F}{\langle n_F \rangle} \cdot$$

Результаты этого сравнения приведены на рис.6. Верхняя кривая соответствует предельному значению $K \gg I$ (при этом $a = 0.35 \pm 0.08$). Для сравнения эдесь же приведены описания при меньших энергиях/II/, которым соответствуют значения K = 3, 4 и 5.

Авторы благодарны В.А.Матвееву за плодотворные обсуждения.

Литература

7

I. A.Alpgard et al., Phys.Lett., 107B, 310, 315, 1981.

2. S.Geer. CERN-EP/82-180, 1982.

G.Arnison et al., CERN-EP/82-134, 1982.

3. W. Thome et al. Nucl. Phys., B129, 365, 1977.

6

4. G.Arnison et al. CERN-EP/82-125, 1982.

5. W.Ernst, I.Schmitt. Nuovo Cim., 31A, 120, 1976.

- 6. В.А.Матвеев, Р.М.Мурадян, А.Н.Тавхелидзе. ЭЧАЯ, 2, 5, 1971. V.R.Garsevanishvili et al. Fortsch.d. Phys., 28, 501, 1980.
- 7. Я.З.Дарбаидзе, А.Н.Сисакян, Л.А.Слепченко. ОИЯИ Р2-80-615, Дубна 1980.
- 8. Я.З.Даровидзе, А.Н.Сисакян, Л.А.Слепченко, Г.Т.Торосян. ОИЯИ Д2-82-297, Дуона 1982.
- 9. P.Carlson. XXI Int. Conf. of HEP, Paris 1982.
- IO. N.S.Amaglobeli et al. JINR, E2-82-107, Dubna, 1982.
- II. N.Schmitz. Preprint MPI-PAE/Exp. E1, 96, 1981.

Рукопись поступила в издательский отдел 13 мая 1983 года.

Дарбандзе Я.З. и др.

P2-83-312

Совместный автомодельный анализ продольных и поперечных полуинклюзивных распределений в рр-соударениях при √S = 540 Гзв

В рамках феноменологической многокомпонентной модели предложена схема, дающая возможность совместного описания инклюзивных и полуинклюзивных распределений по Р₁ и η в рР-соударениях при √S = 540 ГэВ. В предположении большого числа коррелированных компонент обеспечивается описание наблюденного в эксперименте эффекта типа "чайки".

Работа выполнена в Лаборатории теоретической физики ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1983

Darbaidze Ya.Z. et al.

P2-83-312

A Common Automodel Analysis of Longitudinal and Transverse Semi_Inclusive Distributions in pp-Collisions at $\sqrt{8}$ = 540 GeV

The scheme providing a joint description of inclusive and semi-inclusive distributions over P_{\perp} and η in $\overline{p}p$ -collisions at \sqrt{S} = 540 GeV is proposed in the framework of the phenomenological multicomponent model. The "sea-gull" effect observed experimentally is described under the assumption of a large number of correlated components.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1983

Перевод авторов.