

P2-82-511

В.С.Барашенков, А.М.Задорожный, А.В.Музыкантов, С.Ю.Шмаков

РЕЛЯТИВИСТСКИЕ ПОПРАВКИ К МОДЕЛИ МНОГОКРАТНОГО ДИФРАКЦИОННОГО РАССЕЯНИЯ ЧАСТИЦ И ЯДЕР НА ЯДРАХ

Направлено в журнал "Ядерная физика"

1982

Приближение многократного дифракционного рассеяния, разработанное впервые Р.Глаубером и А.Г.Ситенко^{/1,2/}, - один из основных подходов к анализу упругого рассеяния частиц и ядер на ядрах, применяемый в настоящее время вплоть до очень высоких энергий - порядка сотен ГэВ. Вместе с тем это приближение является нерелятивистским. Оно не учитывает изменения формы рассеивающихся ядер вследствие их релятивистского сжатия, не принимает во внимание влияния отдачи и т.п. Насколько существенны все эти эффекты и в какой степени законно использование формул Глаубера-Ситенко при высоких энергиях?

Для того чтобы ответить на этот вопрос, воспользуемся релятивистским обобщением теории многократного дифракционного рассеяния, развитым в работах $^{/3.4/}$. Приведенные в этих работах релятивистские матричные элементы переходят в нерелятивистские, если пренебречь зависимостью от временной координаты и нормированную волновую функцию четырехмерного гармонического осциллятора заменить соответствующей трехмерной гауссовской функцией*. Изменения в выражениях для сечений рассеяния при этом сводятся к замене формфактора $F(t) = (1-t/2M^2) \rightarrow 1$ / t - передаваемый импульс, M - масса ядра/**

* Релятивистское обобщение можно сформулировать и для других волновых функций, однако в этом случае мы встречаемся со сложной задачей численного расчета многомерных интегралов. Поскольку релятивистские поправки быстро убывают при увеличении массы ядра /см. ниже/, достаточно ограничиться осцилляторными функциями, которые являются хорошим приближением для легких ядер.

** Следует также иметь в виду различие нормировочных постоянных ядерных волновых функций. В нерелятивистском приближении принято использовать относительные пространственные переменные $\mathbf{x}_{i} = \mathbf{x}_{i} - \mathbf{R}_{c}$, где \mathbf{R}_{c} - радиус-вектор центра масс, в то время как релятивистские матричные элементы выражаются через координаты Якоби ξ_{i} , связанные с \mathbf{x}_{i} соотношением $\sum_{i=1}^{A} \mathbf{x}_{i}^{2} = \mathbf{A} \sum_{i=1}^{A-1} \xi_{i}^{2}$

/А - массовое число ядра/. Поэтому нормировочная постоянная релятивистской ядерной функции $d = d_0 / A$, где $d_0 = R^2$ - соответствующая постоянная, используемая в теории Глаубера-Ситенко; R - радиус ядра.

1

Релятивистское сечение адрон-ядерного рассеяния

$$\frac{d\sigma(t,s.)}{dt} = \left\{ \sum_{n=1}^{A} M_{n}(t,s) F(t)^{A-1} \left[\frac{R^{2}F(t) + 4\gamma(s)}{R^{2} + 4\gamma(s)} \right]^{\frac{1-n}{2}} \times \frac{1}{2} \times \frac{1}{2} + \frac{1$$

$$M_{n}(t,s) = (2i)^{n-1} \frac{A! T_{0}}{n \cdot n! (A-n)!} [R^{2} + 4\gamma(s)]^{1-n} \exp\left\{\frac{t\gamma(s)}{n} + \frac{tR^{2}}{4n}(1-\frac{n}{A})\right\}$$

- нерелятивистская амплитуда адрон-ядерного рассеяния, $T(t,s) = T_0(s) \exp[t_{\gamma}(s)]$ - амплитуда упругого адрон-нуклонного столкновения.

В области до первого дифракционного минимума, где основной вклад дают однократные адрон-нуклонные столкновения, относительная разность релятивистского и нерелятивистского сечений с точностью до членов порядка t²

$$\frac{(\frac{d\sigma}{dt}-\frac{d\sigma}{dt})}{dt}/\frac{d\sigma}{dt}\simeq t(1-A^{-1})/(2Am^2),$$

где m- масса нуклона.

В случае рассеяния адронов на легких ядрах эта разность составляет всего лишь около 1%: Полное сечение взаимодействия σ_{tot} , выражающееся через амплитуду упругого рассеяния при t=0, в релятивистской теории точно такое же, как и в нерелятивистском приближении.

Относительная величина релятивистской поправки в случае рассеяния протонов на ядрах углерода и гелия при энергии 1 ГэВ/нуклон.

Релятивистские поправки становятся существенными лишь при больших значениях t /см. <u>рисунок</u>/, где само приближение многократного дифракционного рассеяния, рассмотренное в работах^{1,2/}, становится уже весьма неточным ^{5,8/}. Резкое изменение величины поправок вблизи дифракционных минимумов обусловлено смещением этих минимумов вследствие изменения эффективного радиуса ядра, вызванного релятивистским сжатием. В случае взаимодействия ядер релятивистские расчеты значительно усложняются из-за необходимости учета большого числа структурных матриц, описывающих различные комбинации сталкивающихся нуклонов ^{/4/}. Однако рассмотрение относительно простого случая взаимодействия двух *а*-частиц показало, что релятивистские поправки оказываются такими же малыми, как и для адрон-ядерного рассеяния.

Таким образом, модель многократного дифракционного рассеяния оказывается очень устойчивой к релятивистским эффектам.

ЛИТЕРАТУРА

- 1. Glauber R.J. In: Lectures in Theoretical Physics. Interscience Publishers, N.Y., 1959, vol.1.
- 2. Ситенко А.Г. Укр.физ.журн., 1959, т.4, с.152.
- 3. Голоскоков С.В. и др. ЯФ, 1981, т.33, вып.5, с.1349; Kuleshov S.P. et al. Hadronic Journal, 1981, vol.4, No.6, pp.1916-1933.
- 4. Амелин Н.С. и др. ОИЯИ, Р2-81-615, Р2-81-709, Р2-81-710, Дубна, 1981.
- Wallace S.J. Ann.of Phys., 1973, vol.78, p.190; Phys.Rev., 1975, vol.Cl2, p.179.
- 6. Auger J.P., Lombard R.J. Ann.of Phys., 1978, vol.115, p.442.

Рукопись поступила в издательский отдел 2 июля 1982 года.

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги,

если они не были заказаны ранее.

.

.

Д13-11182	Труды IX Международного симпозиума по ядерной злект- ронике. Варна, 1977.	5	р.	00	к.
Д 17-11490	Труды Международного симпозиума по избранным пробле- мам статистической механики. Дубна, 1977.	6	р.	00	к.
Д6 -11574	Сборник аннотаций XV совещания по ядерной спектроско- пии и теории ядра. Дубна, 1978.	2	р.	50	к.
Д3-11787	Труды III Международной школы по нейтронной физике. Алушта, 1978.	3	p.	0 0	к.
Д13-11807	Труды III Международного созещания по пропорциональ- хным и дрейфовым камерам. Дубна, 1978.	6	p.	00	к.
	Труды VI Всесоюзного совещания по ускорителям заря- женных частиц. Дубна, 1978 /2 тома/	7	р.	40	ĸ.
Д1,2-12036	Труды V Международного семинара по пробленан физики высоких энергий. Дубна, 1978	5	р.	00	к.
Д1,2-12450	Труды XII Международной школы молодых ученых по физике высоких энергий. Приморско, НРБ, 1978.	3	p.	00	к.
	Труды VII Всесоюзного совещания по ускорителям заря- женных частиц, Дубна, 1980 /2 тома/	8	р.	00	к.
Д11-80-13	Труды рабочего совещания по системам и методам аналитических вычислений на ЗВМ и их применению в теоретической физике, Дубна, 1979	3	р.	50	к.
д4-80-271	Труды Международной конференции по проблемам нескольких тел в ядерной физике. Дубна, 1979.	3	p .	00	к.
д4-80-385	Труды Международной школы по структуре ядра. Алушта, 1980.	5	p.	00	к.
д2-81-543	Труды VI Международного совещания по проблемам кван- товой теории поля. Алушта, 1981	2	р.	50	к.
Д10,11-8 1-622	Труды Международного совещания по проблемам математи- ческого моделирования в ядерно-физических исследова- ниях. Дубна, 1980	2	р.	50	к.
Д1,2-81-728	Труды VI Международного семинара по проблемам физики высоких энергий. Дубна, 1981.	3	р.	60	к.
Д17-81-758	Труды II Международного симпозиуна по избранным проблемам статистической механики. Дубна, 1981.	5	р.	40	к.
Д1,2-82-27	Труды Международного симпозиума по поляризационным явлениям в физике высоких энергий. Дубна, 1981.	3	р.	20	к.
P18-82-117	Труды IV совещания по использованию новых ядерно- физических методов для решения научно-технических и народнохозяйственных задач. Дубна, 1981.	3	р.	80	к.

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79 Издательский отдел Объединенного института ядерных исследований

Барашенков В.С. и др.	P2-82-511
Релятивистские поправки	и к модели многократного
дифракционного рассеян	ия частиц и ядер на ядрах
Показано, что при и ядер на ядрах слабо Их учет совершенно не дифференциального сечен дифракционного минимум. и уменьшается ~ 1/M ² поправки существенны // мых импульсах t ≥ 0,2 япер M - масса наиболе	ближение Глаубера для рассеяния частиц чувствительно к релятивистским эффектал влияет на полное сечение σ _{tot} .Увеличение ния dσ _{el} /dt в области до первого а составляет в среднем около процента с ростом массы ядра М. Релятивистские ≥10%/ лишь при очень больших передавае M ² /ГэВ/с/ ² /В случае столкновения двуз е легкого ядра/.
Работа выполнена и и автоматизации ОИЯИ.	в Лаборатории вычислительной техники
Препринт Объединенного	института ядерных исследований. Дубна 1982
Barashenkov V.S. et al Relativistic Correction Model	P2-82-511 ns to the Multiple Scattering
It is stated that	
sensible to relativist effects does not chang. The increase in the difficult of the order of a few p the increase of nucleum are essential ($\geq 10\%$) $t \geq 0.2 M^2 (GeV/c)^2$. (In	the Glauber approximation is slowly ic effects. Taking into account these e the total cross section σ_{tot} at all. fferential cross section $d\sigma_{el}/dt$ an the first diffractional minimum is percent and decreases ~ $1/M^2$ with s mass M. The relativistic corrections only at very high transfer momenta n the case of two nucleus collision M bteat puelos

Preprint of the Joint Institute for Nuclear Research. Dubna 1982

Перевод О.С.Виноградовой.