

В.А.Бедняков, Ю.П.Иванов, П.С.Исаев, С.Г.Коваленко

КВАНТОВОХРОМОДИНАМИЧЕСКАЯ МОДЕЛЬ НУКЛОНА С РЕЛЯТИВИСТСКИМ ОСЦИЛЛЯТОРНЫМ ВЗАИМОДЕЙСТВИЕМ МЕЖДУ СОСТАВЛЯЮЩИМИ КВАРКАМИ

Направлено в журнал "Ядерная физика"

1982

введение

К настоящему времени на основе квантовой хромодинамики /КХД/ удалось достичь значительных успехов в понимании динамики жестких взаимодействий лептонов с адронами. Между тем все более актуальным становится вопрос о том, является ли асимптотически свободная теория возмущений /ТВ/, применяемая для получения предсказаний КХД, адекватным методом в области экспериментально измеренных значений передач Q². Существуют серьезные основания ожидать в этой области Q² заметного вклада эффектов, не воспроизводимых в рамках ТВ. Причем роль последних должна возрастать по мере уменьшения Q².Среди этих эффектов наиболее известны степенные $\left(\frac{1}{-Q^2}\right)^n$ поправки к струк-

турным функциям глубоконеупругого рассеяния, обусловленные вкладом вильсоновских операторов высших твистов.

Наряду с твистовыми поправками немаловажную роль при умеренных Q^2 могут играть и другие явления непертурбативного характера. Одно из таких явлений рассмотрено в настоящей работе. Речь идет о проявлениях в глубоконеупругом рассеянии при умеренных значениях Q^2 формирующихся внутри нуклона крупномасшатабных структурных образований типа спектроскопических кварков, дикварков, кластеров других конфигураций. Эти эффекты, в отличие от твистовых, существенны не только при больших значениях x, но и во всей области изменения x ($0 \le x \le 1$).

Оставляя в стороне вопрос о механизме формирования составляющих /спектроскопических/ кварков из токовых кварков и глюонов, рассмотрим в рамках двухуровневой модели следствия гипотезы о существовании в нуклоне указанных структурных образований. Лежащая в основе модели физическая картина в общих чертах соответствует представлениям о многоуровневой структуре нуклона, выдвинутым Когутом и Саскиндом ^{/1/}. Конкретные версии двухуровневой модели развиты в работах ^{/2,3/}.

Остановимся на основных положениях этой модели и поясним специфические черты развиваемой нами версии.

Предполагается, что в нуклоне можно выделить два структурных уровня с существенно различными свойствами. Первый структурный уровень представляет собой три составляющих кварка, потенциальное взаимодействие между которыми обеспечивает конфайнмент. При увеличении Q² начинает проявляться партонная структура составляющих кварков, формирующая второй структурный

1

K XP_H YP_H YP_H

<u>Рис.1</u>. Взаимодействие внешнего тока с нуклоном в рамках двухуровневой модели: $Q^2 = -q^2 = -(k-k')^2$; $x = \frac{Q^2}{2Pq}$; $P = (P_0, P_1) - импульс$ нуклона.

уровень нуклона. Естественно предположить, что свойства второго уровня не зависят от типа адрона и являются универсальными. Нам представляются весьма важными следующие два аспекта двухуровневой модели: во-первых, явный учет невылетания кварков, во-вторых, совмещение партонных и спектроскопических представлений о структуре нуклона.

В изложенном подходе рассеяние внешнего тока на нуклоне описывается диаграммой, представленной на <u>рис.1</u>. В системе бесконечного импульса (IMF) рассматриваемый процесс имеет вероятностную партонную интерпретацию. Это позволяет записать структурные функции в стандартном виде:

$$F_{2}(\mathbf{x}, \mathbf{Q}^{2}) = \mathbf{x} \{ f_{\mathbf{y}}(\mathbf{x}, \mathbf{Q}^{2}) + \frac{20}{9} f_{\mathbf{s}}(\mathbf{x}, \mathbf{Q}^{2}) \},$$

$$F_{3}(\mathbf{x}, \mathbf{Q}^{2}) = -3f_{\mathbf{y}}(\mathbf{x}, \mathbf{Q}^{2}),$$
(1/

где F_2 и F_3 - структурные функции глубоконеупругих процессов $e(\mu) + P \rightarrow e(\mu) + X$ и $\nu(\overline{\nu}) + N$ /изоскалярная мишень/ $\rightarrow \mu^-(\mu^+) + X$; f_y , f_g , $f_g - функции распределения /ФР/ валент$ ных, морских токовых кварков и глюонов в нуклоне.

Для двухуровневой модели эти функции определяются следующими выражениями:

$$f_{v}(x, Q^{2}) = \int_{0}^{1} dy dz \,\delta(x - yz) \phi_{q}(y) f_{v/q}(z, Q^{2}) = \int_{x}^{1} \frac{dy}{y} \phi_{q}(y) f_{v/q}(\frac{x}{y}, Q^{2}), \qquad /2/$$

$$f_{s}(x, Q^{2}) = \int_{x}^{1} \frac{dy}{y} \int_{q}^{3} \phi_{q}(y) f_{s/q}(\frac{x}{y}, Q^{2}), \qquad /2/$$

$$f_{g}(x, Q^{2}) = \int_{x}^{1} \frac{dy}{y} \int_{q}^{3} \phi_{q}(y) f_{g/q}(\frac{x}{y}, Q^{2}), \qquad /2/$$

непосредственно вытекающими из анализа диаграммы /рис.1/.Здесь введены $\phi_q(y) - \Phi P$ составляющего кварка q в нуклоне по доле продольного импульса y; $f_{v/q}$, $f_{s/q}$, $f_{g/q} - \Phi P$ валентных, морских токовых кварков и глюонов в составляющем кварке q. Функции ϕ_q и $f_{1/q}$ полностью определяются динамикой первого и второго уровней соответственно.

В развиваемой версии двухуровневой модели предполагается, что динамика первого уровня есть квантовомеханическое движение трех составляющих кварков, запертых в нуклоне релятивистским осцилляторным потенциалом парного взаимодействия. Для описания динамики второго уровня применяются стандартные методы КХД-теории возмущений. Последнее означает, что $f_{i/q}$ рассматриваются как решения интегродифференциальных эволюционных уравнений /ЗУ/ Липатова-Алтарелли-Паризи^{/4/}/ЛАП/. Не вычисляемые по ТВ начальные условия ЗУ задаются на основе статистической партонной модели с реджевской асимптотикой ^{/5,6/}.

В разделе 1 получены ФР составляющих кварков, рассчитанные с помощью волновой функции /ВФ/ релятивистского осциллятора. В разделе 2 в рамках КХД проанализирована структура составляющих кварков, для чего приближенно решены ЭУ и найдены в явном виде ФР $f_{i/q}$. В разделе 3 приведены предсказания двухуровневой модели для структурных функций глубоконеупругого е(μ)P-, $\nu(\overline{\nu}$)N -рассеяния и коэффициента продольной асимметрии в рассеянии поляризованных электронов на поляризованной протонной мишени. Показано, что предсказания хорошо согласуются с экспериментальными данными.

1. ФУНКЦИИ РАСПРЕДЕЛЕНИЯ СПЕКТРОСКОПИЧЕСКИХ КВАРКОВ В НУКЛОНЕ

Предположим, что спектроскопические кварки есть тождественные частицы с одинаковыми импульсными распределениями.

Функцию распределения кварка $\phi(y, p_T)$ по поперечному импульсу р $_T$ и доле у продольного импульса нуклона Р $_{\mu}$ в IMF представим в виде

$$\phi(\mathbf{y}, \mathbf{p}_{T}) = \lim_{\substack{\mathbf{p}_{H} \to \infty \\ 3}} \frac{\int d\Gamma \,\delta(\mathbf{y} - \frac{\mathbf{p}_{H3}}{\mathbf{p}_{H}}) \,\delta(\mathbf{p}_{T} - \mathbf{p}_{T3}) |\Phi_{3}(\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3})|^{2}}{\int d\Gamma \,|\Phi_{3}(\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3})|^{2}} .$$
 /3/

Здесь $P = \sum_{i} p_{i} = (P_{0}, 0, 0, P_{\parallel}) - 4$ -импульс нуклона; $p_{1} - 4$ импульс составляющего кварка (i = 1,2,3); $\Phi_{3}(p_{1}, p_{2}, p_{3}) - B\Phi$ внутреннего движения трехкварковой системы; у - доля продоль-

3

ного импульса нуклона. переносимая третьим составляющим кварком*.

Мера dl'имеет вид

 $d\Gamma = \prod_{i=1}^{3} dp_{i}^{4} \delta (P - \sum_{i} p_{i}) \theta(\frac{p_{\parallel i}}{P_{\parallel}}) \frac{1}{P_{\parallel}}.$

Ограничение $x_i = \frac{p_{\parallel i}}{P_{\parallel}} \ge 0$, налагаемое на область интегрирования в выражении /3/, обусловлено подавлением $\frac{1}{P_{\parallel}^2}$ в IMF вклада конфигураций с $x_i < 0^{/7/2}$.

ВФ $\Phi_3(p_1, p_2, p_3)$ есть решение релятивизованного уравнения Шре-дингера с осцилляторным потенциалом /8/:

$$\Phi_{3}(\mathbf{p}_{1},\mathbf{p}_{2},\mathbf{p}_{3}) = \frac{9}{\pi^{2}a^{2}} \exp\{\frac{K_{\mu\nu}}{2a} (\xi^{\mu}\xi^{\nu} + \eta^{\mu}\eta^{\nu})\}, \qquad /4/$$

$$\Gamma A = \frac{1}{\sqrt{2}}(\mathbf{p}_{2} - \mathbf{p}_{3}); \quad \eta = \frac{1}{\sqrt{2}}(\mathbf{p}_{2} + \mathbf{p}_{3} - 2\mathbf{p}_{1}); \quad K_{\mu\nu} = g_{\mu\nu} - 2\frac{P_{\mu}P_{\nu}}{M^{2}};$$

 $M^2 = P^2 = P_0^2 - P_u^2$; *а* - осцилляторная константа.

Возникающие при релятивизации нефизические растущие времениподобные моды исключаются в формуле /4/ путем наложения на ВФ условия Такабаящи /9/. Этим обусловлено появления тензора $K_{\mu
u}$, зависящего от 4-импульса P центра масс системы трех кварков.

Подставляя выражение /4/ в формулу /3/, выполняя интегрирование и осуществляя переход к пределу Р → ∞, получаем

$$\phi(\mathbf{y}, \mathbf{p}_{T}) = (2\pi \langle \mathbf{p}_{T}^{2} \rangle)^{-1/2} \exp\{-\frac{\mathbf{p}_{T}^{2}}{2 \langle \mathbf{p}_{T}^{2} \rangle} \} \phi(\mathbf{y}) .$$
 (5)

Здесь

$$\phi(\mathbf{y}) = \phi_{d}(\mathbf{y}) = \phi_{u}(\mathbf{y}) = \frac{e^{-\gamma(1-3\mathbf{y})^{2}} \operatorname{erf} \left[\sqrt{3\gamma}(1-\mathbf{y})\right]}{\int_{0}^{1} e^{-\gamma(1-3\mathbf{y})^{2}} \operatorname{erf} \left[\sqrt{3\gamma}(1-\mathbf{y})\right] d\mathbf{y}}$$
 /6/

есть ФР, проинтегрированная по p_{T} составляющего кварка, $y = \frac{m}{4a}$. Среднеквадратичный поперечный импульс $< p_{T}^{2} > связан$ с осцил-

ляторной константой *а* /параметром у/ соотношением

$$< p_T^2 > = \frac{2a}{18} = \frac{2M^2}{y \cdot 72}$$
. (7/

Отметим, что использование выражения /4/ для ВФ Φ_3 (p_1, p_2, p_3) дает в результате явного предельного перехода P₁ → ∞ гладкую функцию $\phi(y)$ /рис.2/. ВФ нерелятивистского осциллятора привоРис.2. Функция распределения составляющего кварка в нуклоне лля различных эначений параметра У.

дит после явного $P_{\parallel} \stackrel{\rightarrow \infty}{\xrightarrow{}} n$ ерехода к сингулярному распределению $\phi(\mathbf{y})$ кварков $\phi(\mathbf{y}) \approx \delta(\mathbf{y} - \frac{1}{2})$.

2. КХД-СТРУКТУРА СОСТАВЛЯЮЩИХ КВАРКОВ

Найдем ФР токовых кварков $f_{\sqrt[n]{q}}$, $f_{s/q}$ и глюонов в составляющем кварке q. Как отмечалось выше, они представляют собой решения эволюционных уравнений ЛАП /4/:

$$\frac{\mathrm{d}\mathbf{f}_{\mathbf{v}/\mathbf{q}}(\mathbf{x},\mathbf{s})}{\mathrm{d}\mathbf{s}} = \int_{\mathbf{x}}^{1} \frac{\mathrm{d}\mathbf{y}}{\mathbf{y}} \mathbf{f}_{\mathbf{v}/\mathbf{q}}(\mathbf{y},\mathbf{s}) \,\mathcal{P}_{\mathbf{q}\mathbf{q}}(\frac{\mathbf{x}}{\mathbf{y}}),$$

$$\frac{\mathrm{d}\Sigma(\mathbf{x},\mathbf{s})}{\mathrm{d}\mathbf{s}} = \int_{\mathbf{x}}^{1} \frac{\mathrm{d}\mathbf{y}}{\mathbf{y}} \{\Sigma(\mathbf{y},\mathbf{s}) \,\mathcal{P}_{\mathbf{q}\mathbf{q}}(\frac{\mathbf{x}}{\mathbf{y}}) + \mathbf{f}_{\mathbf{g}/\mathbf{q}}(\mathbf{y},\mathbf{s}) \,\mathcal{P}_{\mathbf{q}\mathbf{g}}(\frac{\mathbf{x}}{\mathbf{y}})\}, \qquad /8/$$

$$\frac{\mathrm{d}\mathbf{f}_{\mathbf{g}/\mathbf{q}}(\mathbf{x},\mathbf{s})}{\mathrm{d}\mathbf{s}} = \int_{\mathbf{x}}^{1} \frac{\mathrm{d}\mathbf{y}}{\mathbf{y}} \{\Sigma(\mathbf{y},\mathbf{s}) \,\mathcal{P}_{\mathbf{g}\mathbf{q}}(\frac{\mathbf{x}}{\mathbf{y}}) + \mathbf{f}_{\mathbf{g}/\mathbf{q}}(\mathbf{y},\mathbf{s}) \,\mathcal{P}_{\mathbf{g}\mathbf{g}}(\frac{\mathbf{x}}{\mathbf{y}})\},$$

где $\Sigma = 3f_v + 8f_g$ - синглетная комбинация кварковых ΦP ; s = $\ln \frac{\overline{g}^2(Q_0^2)}{\overline{g}^2(Q_0^2)}$ - эволюционная переменная; $\overline{g}^2(Q_0^2)$ - константа связи кварк-глюонного взаимодействия, рассчитанная по ТВ:

$$\frac{\bar{g}^{2}(Q^{2})}{16\pi^{2}} = \frac{1}{\beta_{0} \ln Q^{2}/\Lambda^{2}} \left(1 - \frac{\beta_{1}}{\beta_{0}^{2}} - \frac{\ln \ln Q^{2}/\Lambda^{2}}{\ln Q^{2}/\Lambda^{2}}\right),$$

 $\beta_{0} = 11 - \frac{2}{3}n_{f}; \beta_{1} = 102 - \frac{38}{3}n_{f}, n_{f} = 4 - число кварковых ароматов; $\Lambda - KXA$ параметр. Функции расщепления \mathcal{P}_{11} известны /10/.$

Для решения ЭУ необходимо задать начальные условия, то есть ФР кварков и глюонов $f_{i/q}$ при фиксированном значении $Q^2 = Q_0^2$. Начальные условия не являются предметом ТВ, как правило, они определяются из параметризаций экспериментальных данных /11/.

Однако гораздо предпочтительнее воспользоваться для этой цели моделью, согласующейся с основными положениями КХД.В данной работе для задания начальных условий воспользуемся статистической кварк-глюонной моделью с реджевской асимптотикой. развитой нами ранее в ряде работ /5,6/

^{*} По предположению, распределения всех трех кварков эквивалентны, поэтому рассмотрение можно проводить для любого из них, в частности для 3-го.

В основе модели лежит предположение о возможности восстановления ФР $f_{1/q}$ (z, Q_0^2) в интервале $0 \le z \le 1$ при фиксированном $Q^{\varrho_{ex}}Q_0^{\varrho}$ исходя из поведения этих функций в реджевской области ($z \sim 0$):

$$f_{i/q}(z, Q_0^2) = \hat{A}_i(\vec{f} | z)', \quad f_{i/q}(z, Q_0^2) \xrightarrow{}_{z \to 0} \vec{f}_i(z).$$

Экстраполирующий оператор \widehat{A}_1 строится в рамках статистического подхода Бьеркена-Паскоса $^{/12/}$ и Кути-Вайскопфа $^{/13/}$ и имеет вид

$$\hat{A}_{v}(\vec{f}|z) = \vec{f}_{v}(z) \frac{a^{(0)}(f|z)}{a^{(1)}(\vec{f}|0)},$$
$$\hat{A}_{s,g}(\vec{f}|z) = \vec{f}_{s,g}(z) \frac{a^{(1)}(\vec{f}|z)}{a^{(1)}(\vec{f}|0)}$$

где

$$a^{(\mathbf{k})} (\overline{f} | z) = \int_{-\infty}^{+\infty} da e^{-ia(1-z)} \times (\int_{0}^{\infty} d\beta e^{-i\beta a} \overline{f}(\beta))^{\mathbf{k}} \exp\{\int_{0}^{\infty} d\gamma e^{-i\gamma a} (8\overline{f}_{s}(\gamma) + \overline{f}_{g}(\gamma))\}.$$

На основе реджевского анализа амплитуды виртуального комптон-эффекта функции f, выбраны в виде

$$\vec{f}_{v}(z) = \frac{1}{\sqrt{z}}, \quad \vec{f}_{g}(z) = \frac{z}{8z}, \quad \vec{f}_{g}(z) = \frac{z}{z}e^{-\beta z}$$

где r, a, $\tilde{\beta}$ - свободные параметры модели.

Окончательные выражения для Φ^{P} при фиксированном $Q^{2} = Q_{0}^{2}$ имеют вид

$$f_{\psi/q}(z, Q_0^2) = \frac{z^{-\frac{1}{4}}(1-z)^{r-1}}{B(\frac{1}{2}, r)} \frac{\Phi(a, r; -\beta_q(1-z))}{\Phi(a, r+\frac{1}{2}; -\beta_q)},$$

$$f_{g/q}(z, Q_0^2) = \frac{r-a}{8z}(1-z)^{r-\frac{1}{4}} \frac{\Phi(a, r+\frac{1}{2}; -\beta_q(1-z))}{\Phi(a, r+\frac{1}{2}; -\beta_q)}, /9/$$

$$f_{g/q}(z, Q_0^2) = \frac{a}{z} e^{-\beta_g z}(1-z)^{r-\frac{1}{4}} \frac{\Phi(a, r+\frac{1}{2}; -\beta_g(1-z))}{\Phi(a, r+\frac{1}{2}; -\beta_g)},$$

где $\beta_q = \beta_g = \beta$; $\Phi(a, \beta; z)$ - вырожденная гипергеометрическая функция.

Эти выражения есть не что иное, как начальные условия ЭУ, заданные при $Q^2 = Q^2_2$.

Решение ЭУ будем йскать в явном виде с помощью вариационного метода пробных функций. Выберем пробные функции в аналитической форме начальных условий /9/. Предположим, что вся Q^2 -зависимость / s-зависимость/ заключена в параметрах r, a, β_q , β_g . Ограничиваясь линейным по в приближением, запишем

$$a(s) = a^{(0)} + a^{(1)} \cdot s,$$

$$r(s) = r^{(0)} + \frac{16}{25} \cdot s,$$
 /10/

$$\beta_{q,g}^{(s)}(s) = \beta^{(0)} + \beta_{q,g}^{(1)} \cdot s.$$

Константы $a^{(0)}$, $r^{(0)}$, $\beta^{(0)}$ определяют начальные условия ЗУ в точке Q_0^2 . Константы $a^{(1)}$, $\beta_q^{(1)}$, $\beta_q^{(1)}$ задают эволюцию ФР по Q_q^2 и определяют приближенное решение ЗУ для данных $a^{(0)}$, $r^{(0)}$, $\beta^{(0)}$. Все константы в соотношениях /10/ и параметр γ , не зависящий от Q^2 , определим из условия минимума функционала:

$$\overline{\chi}^{2}[\mathbf{f}] = \overline{\chi}^{2}_{Hy} + \overline{\chi}^{2}_{3y} . \qquad (11)$$

Здесь

$$\chi_{Hy}^{2} = \sum_{i=2,8}^{\infty} \frac{1}{N_{i}} \sum_{j=1}^{N_{i}} \left\{ \frac{F_{i}(x_{j}, Q_{j}^{2}) - F_{i}(a, \gamma | x_{j}, Q_{j}^{2})}{\Delta F_{i}(x_{j}, Q_{j}^{2})} \right\}^{2}, /12/$$

$$\chi_{3y}^{2} = \sum_{j=v, \Sigma, g}^{s} \int_{0}^{s} ds \int_{0}^{1} dx \left\{ L_{j}(f_{i/q}(a | x, s)) - R_{j}(f_{i/q}(a | x, s)) \right\}^{2}, /13/$$

где $a = (a, r, \beta_q, \beta_g);$ $F_i(x_j, Q_j^2) u \Delta F_i(x_j, Q_j^2)$ - экспериментальное значение и ошибка структурной функции в ј-й точке для i=2 (FNAL^{/14}), i=3 (CDHS^{/16}) в области 1 ГэВ²/с² $\leq Q_j^2 \leq \leq (15 \ \Gamma 3B^2/c^2; F_i(a, y|x, Q))$ - структурная функция, рассчитанная по формулам /1/ в рамках двухуровневой модели с использованием выражений /2/, /6/, /9/, /10/. В формуле /13/ L_j и R_j - левая и правая части ЭУ /8/ после подстановки в них пробных функций /9/.

Минимизация функционала /11/ позволяет задать начальные условия ЭУ из сравнения с экспериментальными данными во всей указанной области \mathbf{Q}^2 . Из условия минимума функционала /13/ вычисляются параметры приближенного решения ЭУ $\mathbf{a}^{(1)}$, $\boldsymbol{\beta}^{(1)}_{g}$, $\boldsymbol{\beta}^{(1)}_{g}$ для заданных начальных условий.

Значения констант, полученные в результате решения ЭУ в главном логарифмическом приближении (LO) и в следующем порядке ТВ (NO), приведены в таблице.

* В определении ФР по /16/ эволюция глюонных ФР в NO определена некорректно, подробнее см. в /6/.

Погрешность воспроизведения функциями /9/ КХД эволюции как в LO, так и в NO приближении невелика, однако растет с ростом Q^2 и при $Q^2 = 400$ ГэВ²/с² достигает 5÷10%.

Итак, нами получены решения ЭУ - ФР $f_{i/q}$ (z,Q^2), определяющие КХД структуру составляющих кварков. Одновременно с этим зафиксирован параметр у, характеризующий ФР составляющих кварков в нуклоне $\phi(\mathbf{v})$.

Таким образом, согласно формулам /1/ полностью определены ΦP токовых кварков и глюонов в нуклоне f_v , f_s , f_g .

3. СРАВНЕНИЕ ПРЕДСКАЗАНИЙ ДВУХУРОВНЕВОЙ МОДЕЛИ С ЭКСПЕРИМЕНТОМ

Сравнение предсказаний модели будем проводить в области умеренных значений Q².

На рис. 3,4 приведены результаты сравнения предсказаний модели с экспериментальными данными для структурных функций $\mathbf{F}_{\mathbf{p}}$ и F_3 глубоконеупругого μp - и $\nu(\overline{\nu}) N$ -рассеяния. Сплошные кривые соответствуют решению ЭУ в главном логарифмическом приближении, пунктирные - решению ЭУ в следующем порядке ТВ. Поправки к LO-приближению невелики, однако их учет улучшает согласие с экспериментом.

Источником важной дополнительной информации о структуре нуклона служат эксперименты по глубоконеупругому рассеянию поляризованных электронов на поляризованной протонной мишени /17/. В этих экспериментах был измерен коэффициент асимметрии:

$$A_1(x, Q^2) = \frac{\sigma_{1/2} - \sigma_{3/2}}{\sigma_{1/2} - \sigma_{3/2}},$$

где $\sigma_{1/2(3/2)}^{0/2+0}$ - сечение поглощения виртуального фотона в спиральном состоянии 1/2(3/2) в s-канале. В рамках партонной мо-

Рис. 3. Структурная функция F2 глубоконеупругого µр -рассеяния. Данные из работы / 14 /. Сплошные кривые - предсказания двухуровневой модели в LO -приближении, пунктирные - в NO -приближении.

Рис.4. Структурная функция хF3 глубоконеупругого v(v)N -рассеяния. Данные из работы /15/. Кривые предсказания двухуровневой модели в LO-приближении. 🕶

гис. . коэффициент продольной асимметрии. Данные из работы/17/. Кривая - предсказание двухуровневой модели в LO-приближении.

дели A₁ выражается через ФР следующим образом /18/:

$$A_{1}(x,Q^{2}) = \frac{5}{9} \frac{f_{v}(x,Q^{2})x}{F_{g}(x,Q^{2})}.$$
 /14/

На рис.5 предсказания двухуровневой модели, полученные на основе формулы /14/, сравниваются с экспериментальными данными /17/ При x<0.3 предсказания модели согласуются с данными. Однако для x>0,3 экспериментальные точки лежат выше теоретической кривой, которая при x = 1 достигает значения A₁ = 5/9. Это число характерно для всякой партонной модели с ненарушенной

SU(6) - симметрией. Возможность учета эффекта нарушения SU(6) - симметрии в рамках предложенной модели исследуется в настоящее время.

Нами учтен вклад поправок к структурным функциям, связанных с ненулевой массой мишени. Этот вклад в области малых **х** оказался, как и предполагалось, незначительным.

Величина среднего квадрата поперечного импульса кварков в нуклоне связана по формуле /7/ с параметром у. Для y = 0,02имеем $<\mathbf{p}_T^{2} > = 1,4$ ГэВ²/с². Несколько завышенное значение $<\mathbf{p}_T^{2} >$ объясняется, на наш взгляд, сильным запирающим воздействием осцилляторного потенциала.

ЗАКЛЮЧЕНИЕ

.

В работе развита новая версия двухуровневой модели нуклона. В рамках модели объединяется кварк-глюонная КХД картина нуклона с представлением о нуклоне как объекте, состоящем из трех спектроскопических кварков. Последние считаются запертыми в нуклоне релятивистским осцилляторным потенциалом.

Явный учет запирающего взаимодействия, приводящего к возникновению у кварков поперечного импульса, позволяет расширить область применения результатов ТВ в сторону умеренных значений Q².

В настоящей работе мы ограничились относительно малыми значениями $x (0 \le x \le 0.3)$, так как при $x \ge 0.3$ в области умеренных Q^2 заметную роль начинают играть не учтенные нами степенные /твистовые/ и резонансные эффекты.

В двухуровневой модели партонная структура составляющего кварка считается универсальной для всех адронов и рассчитывается в рамках КХД. Все различие между адронами заключено в количестве спектроскопических кварков и характере их взаимодействия. Это дает возможность в рамках изложенной модели описывать глубоконеупругую структуру различных адронов.

В области применимости по x и Q²($0 \le x \le 0.3$, 1 (ГэВ/с)² $\le Q^2 \le 15$ (ГэВ/с)²) развитая нами версия двухуровневой модели хорошо согласуется с имеющимися экспериментальными данными.

Авторы благодарят С.А.Бунятова за постоянный интерес к работе.

ЛИТЕРАТУРА

- 1. Kogut J., Susskind L. Phys.Rev., 1974, D9, p.3391.
- Altarelli G. et al. Nucl.Phys., 1974, B69, p.531;
 Cabibbo N., Petronzio R. Nucl.Phys., 1978, B137, p.395.

- 3. Kanki T. Progr. Theor. Phys., 1976, 56, p. 1885.
- 4. Липатов Л.Н. ЯФ, 1974, 20, с.181; Altarelli G., Parisi G. Nucl.Phys., 1977, B126, p.298.
- 5. Isaev P.S., Kovalenko S.G. Hadronic Journal, 1980, 3, p.919; Златев И.С. и др. ЯФ, 1982, 35, с.454.
- 6. Бедняков В.А. и др. ОИЯИ, Р2-81-557, Дубна, 1981.
- Фейнман Р. Взаимодействие фотонов с адронами. "Мир", М., 1972.
- Kizukuri Y., Namiki M., Okano K. Progr.Theor.Phys., 1979, 61, p.559; Han D., Kim Y.S. Progr.Theor.Phys., 1980, 64, p.1852; Kim Y.S., Noz M.E., Oh S.H. J.Math.Phys., 1979, 20, p.1341.
- 9. Takabayashi T. Phys.Rev., 1965, 139, p.1381.
- 10. Dokshitzer Yu.L., Dyakonov D.I., Troyan S.I. Phys.Lett., 1978, 79B, p.290,2969.
- Buras A.J., Gaemers K. Nucl.Phys., 1978, B132, p.249;
 Owens J.F., Reya E. Phys.Rev., 1976, D17, p.3003;
 Gluck M., Reya E. Nucl.Phys., 1977, B130, p.78.
- 12. Bjorken J.B., Pschos E. Phys.Rev., 1969, 185, p.1975.
- 13. Kuti J., Weisskopf V.F. Phys.Rev., 1971, D4, p.3418.
- 14. Gordon B.A. et al. Phys.Rev., 1979, B20, p.2645.
- 15. De Groot J.G.H. et al. Z.Phys.C., 1979, 1, p.143.
- Altarelli G., Ellis R.K., Martinelli G. Nucl.Phys., 1978, B143, p.521.
- 17. Alguard M.J. et al. Phys.Rev.Lett., 1978, 41, p.70; Schuler K.P. XX Int.Conf., Madison, Wisconsin, 1980, part 1, p.781; Baum G. et al. Phys.Rev.Lett., 1980, 45, p.2000.
- 18. Gourdin M. Nucl.Phys., 1972, B38, p.418.

Рукопись поступила в издательский отдел 2 июня 1982 года.

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги,

если они не были заказаны ранее.

.

Д13-11182	Труды IX Международного симпозиума по ядерной элект- ронике. Варна, 1977.	5	р.	00	к.
д17-11490	Труды Международного симпозиума по избранным пробле- мам статистической механики. Дубна, 1977.	6	р.	00	к.
Д6-11574	Сборник аннотаций XV совещания по ядерной спектроско- пии и теории ядра. Дубна, 1978.	2	р.	50	к.
ДЗ-11787	Труды III Международной школы по нейтронной физике. Алушта, 1978.	3	р.	00	к.
Д13-11807	Труды III Международного совещания по пропорциональ- ным и дрейфовым камерам. Дубна, 1978.	6	р.	00	к.
	Труды VI Всесоюзного совещания по ускорителям заря- женных частиц. Дубна, 1978 /2 тома/	7	р.	40	к.
Д1,2-12036	Труды V Международного семинара по проблемам физики высоких энергий. Дубна, 1978	5	р.	00	к.
Д1,2-1 2 450	Труды XII Международной школы молодых ученых по физике высоких энергий. Приморско, НРБ, 1978.	3	р.	00	к.
	Труды VII Всесоюзного совещания по ускорителям заря- женных частиц, Дубна, 1980 /2 тома/	8	р.	00	к.
Д11-80-13	Труды рабочего совещания по системам и методам аналитических вычислений на ЭВМ и их применению в теоретической физике, Дубна, 1979	3	р.	50	к.
Д4-80-271	Труды Международной конференции по проблемам нескольких тел в ядерной физике. Дубна, 1979.	3	р.	00	к.
Д4-80-385	Труды Международной школы по структуре ядра. Алушта, 1980.	5	р.	00	к.
Д2-81-543	Труды VI Международного совещания по проблемам кван- товой теории поля. Алушта, 1981	2	р.	50	к.
Д10,11-81-622	Труды Международного совещания по пробленам математи- ческого моделирования в ядерно-физических исследова- ниях. Дубна, 1980	2	р.	50	к.
Д1,2-81-728	Труды VI Международного семинара по проблемам физики высоких энергий. Дубна, 1981.	3	р.	60	к.
Д17-81-758	Труды II Международного симпозиума по избранным проблемам статистической механики. Дубна, 1981.	5	р.	40	к.
A1,2-82-27	Труды Международного симпозиума по поляризационным явлениям в физике высоких энергий. Дубна, 1981.	3	р.	20	к.
P18-82-117	Труды IV совещания по использованию новых ядерно- Физических методов для решения научно-технических и народнохозяйственных задач. Дубна, 1981.	3	р.	80	к.

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79 Издательский отдел Объединенного института ядерных исследований

Бедняков В.А. и др.	P2-82-4
Квантовохромодинамическая модель нуклона с релятивистским осцилляторным взаимодействи между составляющими кварками	ем
Предложена новая версия двухуровневой м первый уровень — три составляющих кварка, за релятивистским осцилляторным потенциалом; вт ная партонная структура составляющих кварков которой решаются эволюционные уравнения кван ки. На основе модели описаны экспериментальн сти умеренных эначений Q ² (1 ГэВ ² ≤ Q ² ≤ 10 Гэ хорошее согласие с экспериментом.	юдели нуклона: пертые в нукло орой — универс , для определе товой хромодин ые данные в об В ²),Получено
Работа выполнена в Лаборатории ядерных	проблем ОИЯИ.
Препринт Объединенного института ядерных исследо	ваний. Дубна 198
Bednyakov V.A. et al. QCD Nucleon Model with Relativistic Oscillat Interaction between Constituent Quark	P2-82-40 or
Bednyakov V.A. et al. QCD Nucleon Model with Relativistic Oscillat Interaction between Constituent Quark A new version of two-level nucleon mode The first level-three constituent quarks, wh up in nucleon by relativistic oscillator pot cond level is universal constituent quark pa which is determined by solving QCD evolution predictions are used for describing experime rate Q^2 region (1 GeV ² $\leq Q^2 \leq 10$ GeV ²).Good experiment is obtained.	P2-82-40 or 1 is suggested ich are locked ential. The se rton structure equations. Mo ntal data in m agreement with
Bednyakov V.A. et al. QCD Nucleon Model with Relativistic Oscillat Interaction between Constituent Quark A new version of two-level nucleon mode The first level-three constituent quarks, wh up in nucleon by relativistic oscillator pot cond level is universal constituent quark pa which is determined by solving QCD evolution predictions are used for describing experime rate Q^2 region (1 GeV $^2 \leq Q^2 \leq 10$ GeV 2).Good experiment is obtained. The investigation has been performed at of Nuclear Problems, JINR.	P2-82-40 or 1 is suggested ich are locked ential. The se rton structure equations. Mo ntal data in m agreement with the Laborator