

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

16/8-82

P2-82-404

В.Н.Стрельцов

РЕЛЯТИВИСТСКИЕ ОПЕРАТОРЫ ЦЕНТРА ИНЕРЦИИ И ДИПОЛЬНОГО МОМЕНТА

1. ВВЕДЕНИЕ

Применение требований специальной теории относительности к квантовой механике было чрезвычайно плодотворным. Характерным примером тому является уравнение Дирака, с помощью которого удалось описать спин, магнитный момент электрона, предсказать существование античастиц и др.

Однако до сих пор в релятивистской квантовой механике еще сохраняются некоторые элементы нековариантного описания. Это касается выражений для гамильтониана, производных по времени и т.д. С другой стороны, не нашли полного применения релятивистские операторы, соответствующие величинам, описывающим движение центра инерции и дипольный момент. Ниже мы введем релятивистски-инвариантный оператор Гамильтона, производную по собственному времени и оператор 4-тензора электромагнитного дипольного момента. Кроме того, мы коснемся вопроса об экспериментальной проверке релятивистской формулы преобразования длины.

2. КОВАРИАНТНЫЙ ГАМИЛЬТОНИАН

2.1. Рассмотрим классический ковариантный /скалярный/ гамильтониан для частицы массы m в электромагнитном поле /см., например, ^{/1/} /:

$$H = \frac{1}{2m} g^{ii} (p_i - eA_i)^2.$$
 /1/

Здесь і = 0,1,2,3, $g^{00} = -g^{\alpha\alpha} = 1$ ($\alpha = 1,2,3$), $P_i = 4$ -импульс частиц, $A_i = 4$ -вектор потенциала электромагнитного поля, c = 1. При этом ковариантные канонические уравнения Гамильтона будут иметь вид:

$$\frac{\partial H}{\partial p_i} = \frac{dx^i}{dr}, \quad \frac{\partial H}{\partial x_i} = -\frac{dp^i}{dr}, \qquad (2/$$

где *г* - инвариантное /собственное/ время. Привлекая релятивистски-инвариантные скобки Пуассона

$$[\mathbf{A}, \mathbf{B}] = \frac{\partial \mathbf{A}}{\partial \mathbf{x}^{1}} \cdot \frac{\partial \mathbf{B}}{\partial \mathbf{p}_{i}} - \frac{\partial \mathbf{B}}{\partial \mathbf{x}^{1}} \frac{\partial \mathbf{A}}{\partial \mathbf{p}_{i}}$$

$$(3)$$

БИБЛИОТЕКА

1

и полагая B_H для ковариантной производной величины A по /собственному/ времени, найдем

$$\frac{dA}{d\tau} = [A, H].$$
 (4/

2.2. Чтобы совершить переход к квантовой механике, заменим, как обычно, 4-импульс р, оператором

$$p_i \rightarrow \hat{p}_i = i\hbar \partial/\partial x^i$$
. (5)

В результате для релятивистски-инвариантного оператора Гамильтона получим:

$$\hat{H} = \frac{1}{2m}(\hat{p}_i - eA_i)(\hat{p}^i - eA^i).$$
 (6/

С помощью /6/ уравнение Клейна-Гордона для волновой функции ψ может быть записано в виде

$$\hat{H}\psi = \frac{1}{2}m\psi. \qquad (7)$$

Если опираться на данную гамильтонову форму волнового уравнения, то по аналогии с обычным подходом на основании уравнения Дирака для частиц со спином 1/2 получим:

$$\hat{H}_{\rm D} = \frac{1}{2} \gamma^{\rm i} \left(\hat{p}_{\rm i} - e \, A_{\rm i} \right). \tag{8}$$

С учетом /4/ для ковариантной производной оператора орбитального момента будем иметь:

$$i\hbar \frac{d\hat{L}_{x}}{d\tau} = i\hbar \frac{d\hat{L}^{23}}{d\tau} \hat{L}^{23} \hat{H} - \hat{H} \hat{L}^{23}.$$
 /9/

Подставляя в /9/ гамильтониан /8/ и принимая во внимание, что в случае центрального поля ($A_0 = \phi(r)$, $A_\alpha = 0$) оператор \vec{L} коммутирует со сферически-симметричной функцией $\phi(r)$, получим

$$i\hbar \frac{d\hat{L}^{23}}{d\tau} = \frac{1}{2}\hbar (\gamma^3 \hat{p}^2 - \gamma^2 \hat{p}^3).$$
 /9 /

Вводя "матричный тензор спина"

$$\sigma^{\alpha\beta} = \frac{i}{2} \left(\gamma^{\alpha} \gamma^{\beta} - \gamma^{\beta} \gamma^{\alpha} \right), \qquad /10/$$

найдем, что

$$\hat{\mathbf{h}} \frac{d\sigma^{23}}{d\tau} = \sigma^{23} \hat{\mathbf{H}} - \hat{\mathbf{H}} \sigma^{23} = -(\hat{\mathbf{p}}^2 \gamma^3 - \hat{\mathbf{p}}^3 \gamma^2).$$
 /11/

Из /9/ и /11/ следует, что сохраняется величина $\hat{L}^{a\beta} + \hbar \sigma^{a\beta}/2$, являющаяся полным моментом количества движения. При этом оператор

$$\mathbf{s}^{\alpha\beta} = \frac{1}{2} \hbar \sigma^{\alpha\beta} - \frac{1}{2} \hbar \sigma^{\alpha\beta} -$$

ковариантный спиновый момент количества движения.

3. ОПЕРАТОР ДВИЖЕНИЯ ЦЕНТРА ИНЕРЦИИ, ДИПОЛЬНЫЙ МОМЕНТ ЧАСТИЦЫ

5

11

3.1. В рамках специальной теории относительности момент импульса некоторого объекта /системы/ определяется пространственными компонентами антисимметричного 4-тензора /второго ранга/ углового момента. При этом его временные компоненты описывают движение центра инерции рассматриваемого объекта.

На основании этого факта в рамках релятивистской квантовой механики оператор орбитального момента $\hat{L}^{\alpha\beta}$ должен представлять собою пространственные компоненты антисимметричного 4-тензорного оператора $\hat{L}^{ik/2\ell}$. Его же компоненты

$$\hat{\mathbf{L}}^{0\alpha} = i\hbar \left(\mathbf{x}^0 \frac{\partial}{\partial \mathbf{x}_0} - \mathbf{x}^\alpha \frac{\partial}{\partial \mathbf{x}_0}\right)$$
 /13/

должны определять движение центра инерции данного квантовомеханического объекта. На основании /9/ и /8/ будем иметь

$$i\hbar \frac{d\hat{L}^{0a}}{dr} = \frac{1}{2}\hbar (\gamma^{a}\hat{p}^{0} - \gamma^{0}\hat{p}^{a}) = -\frac{i}{2}\hbar^{2}\frac{d\sigma^{0a}}{dr}.$$
 (14)

Отсюда по аналогии с результатами п.2 заключаем, что интегралом движения является суммарная величина $\hat{L}^{0\alpha} + \hbar \sigma^{0\alpha}/2$, учитывающая также движение собственного центра инерции частицы $S^{0\alpha}$. Подобно наличию тесной связи между механическим и магнитным моментами должна существовать такая же связь между $S^{0\alpha}$ и электрическим дипольным моментом. В соответствии с определением оператора магнитного момента на основе выражения

$$\hat{\mu}^{\alpha\beta} = \Sigma \quad \underline{\underline{e}}_{m} (\mathbf{x}^{\alpha} \ \hat{\mathbf{p}}^{\beta} - \mathbf{x}^{\beta} \hat{\mathbf{p}}^{\alpha})$$

$$/15/2$$

для оператора релятивистского электрического дипольного момента будем иметь

$$\hat{\mu}^{0\alpha} = \Sigma \frac{\mathbf{e}}{\mathbf{m}} (\mathbf{x}^0 \hat{\mathbf{p}}^\alpha - \mathbf{x}^\alpha \hat{\mathbf{p}}^0). \qquad (16)$$

Вместе /15/ и /16/ образуют антисимметричный 4-тензорный оператор электромагнитного дипольного момента. При этом их связь с соответствующими трехмерными величинами определяется выражениями

$$\hat{\vec{\mu}}(\hat{\mu}_{\alpha}) = \frac{1}{2} \epsilon_{\alpha\beta\gamma} \hat{\mu}^{\beta\gamma}, \quad \hat{\vec{d}}(\hat{d}_{\alpha}) = \hat{\mu}^{0\alpha}, \qquad /17/$$

где $\epsilon_{\alpha\beta\gamma}$ символ Леви-Чивита. Нетрудно видеть, что соответствующее /16/ классическое выражение с учетом $p^i = mu^i$, где $u^i = 4$ -скорость, в нерелятивистском пределе ($u^a \rightarrow dx^a/dt$, $u^0 \rightarrow 1$), действительно, переходит в известное выражение $d_a \rightarrow \Sigma$ (-e) x^a , где мы также положили $x^0 = 0$.

Специальная теория относительности не может дать ответа на вопрос о наличии собственного электрического дипольного момента у частицы. Однако согласно этой теории существование собственного магнитного момента должно приводить к появлению у движущейся /со скоростью $\vec{v} = \vec{u}/u^0$ / частицы дополнительного взаимодействия с электрическим полем \vec{E} вида $\vec{dE} = d_a E_a$, где $\vec{d} = -[\vec{u}\vec{\mu}]^*$. Напомним, что этот результат, в частности, следует из квадрирования уравнения Дирака. При этом необходимо подчеркнуть, что в представлении Майораны добавочные члены к гамильтониану /6/, описывающие взаимодействие частицы с магнитным и электрическими полями, полностью симметричны:

$$\hat{\mathbf{H}}' = \hat{\vec{\mu}} \, \vec{\mathbf{H}} + \hat{\vec{\mathbf{d}}} \, \vec{\mathbf{E}} = \mathbf{e} \, \mathbf{h} \, \sigma^{\, \mathbf{i} \, \mathbf{k}} \, \mathbf{F}_{\mathbf{i} \, \mathbf{k}} \quad . \tag{18}$$

3.2. Остановимся детальнее на формулах преобразования для компонент $\vec{\mu}$ и \vec{d} , когда в одной /собственной/ системе отсчета К' $\vec{d'} = 0$, $\mu'_x = \mu'_y = 0$, а $\mu'_z \neq 0$. С точки зрения другой системы отсчета – К, движущейся относительно К' со скоростью – v_x , будем иметь две отличные от нуля компоненты:

$$\mu_{z} = \mu_{z}^{\prime} \gamma, \quad d_{y} = v_{x} \mu_{z}^{\prime} \gamma, \qquad /19a, 6/$$

где $\gamma = (1 - v_x^2)^{-\frac{1}{2}}$.

Именно с таким случаем мы по сути дела сталкиваемся при изучении элементарных частиц ** Последующий же переход к ядрам,ато-

** Действительно, условие $\vec{d}'=0$ можно рассматривать фактически как следствие экспериментально установленного в настоящее время факта^{/4/} что верхний предел для собственного электрического дипольного момента нейтрона примерно на десять порядков меньше его магнитного момента. Исследование подобного типа /см., например,^{/5/}/можно считать также практической проверкой формулы /196/ при малых V_x. мам, молекулам и т.д. позволяет в принципе рассматривать формулы /19/ применительно и к макроскопическим объектам.

Напомним теперь, что изначально магнитный дипольный момент был введен как величина произведения тока на площадь /контура/. Поскольку ток определялся изменением количества электричества в единицу собственного времени J = dQ/dr, то Ј является инвариантной величиной. Поэтому выражение /19а/ фактически представляет собою релятивистскую формулу преобразования площади (σ_{xy}) :

$$\sigma_{\mathbf{x}\mathbf{y}} = \sigma_{\mathbf{x}\mathbf{y}}^{\prime} \gamma \quad . \tag{20}$$

С учетом того, что поперечные размеры (ℓ_y) не изменяются в результате движения, на основани /20/ придем к следующей релятивистской формуле преобразования продольных размеров:

$$\ell_{\mathbf{x}} = \ell'_{\mathbf{x}} \gamma \,. \tag{21}$$

Таким образом, экспериментальныл факт отсутствия собственного электрического дипольного момента ($\mu^{0\alpha'_{\pm}0}$) у элементарных частиц /при $\mu^{\alpha\beta'} \neq 0$ / может рассматриваться по сути дела как косвенный опыт, свидетельствующий в пользу "формулы удлинения" /21/*.

Другую возможность проверки выражения /21/ дают нам эксперименты по репятивистской ядерной физике, касающиеся измерения пространственных размеров области взаимодействия в процессах множественного рождения /см., например, ^{/7,8/} / в различных системах отсчета **.

4. ЗАКЛЮЧЕНИЕ

Использование релятивистски-инвариантного гамильтониана позволило ввести ковариантную производную по /собственному/ времени. Применение указанной производной в случае частиц со спином 1/2 показало, например, что сохраняется сумма орбитального и спинового моментов, где последний определяется "матричным тензором спина".

Были рассмотрены операторы 4-тензора механического момента и тесно связанного с ним 4-тензора электромагнитного дипольного момента, пространственные компоненты которого описывают

^{*}На практике /см., например, ^{/3/} /рассматривается взаимодействие магнитного момента с магнитным полем, являющимся результатом преобразования данного электрического поля в собственную систему частицы.

^{*}В этой связи см., например,^{/6/}.

^{**} Очевидно, что согласно /21/ продольные размеры области взаимодействия должны быть минимальными в собственной системе отсчета.

магнитный, а временные - электрический момент. Отмечено, что обладающая собственным магнитным моментом движущаяся частица должна вести себя так, как будто бы она имеет также электрический дипольный момент. Равенство нулю последнего в собственной системе отсчета может рассматриваться как указание в пользу релятивистской "формулы удлинения".

Автор благодарит профессора М.И.Подгорецкого за замечание о возможности проверки "формулы удлинения" в экспериментах по интерференции тождественных частиц, профессора В.Г.Гришина и М.С.Хвастунова за полезные обсуждения, а В.Л.Любошица за ценные критические замечания.

ЛИТЕРАТУРА

- 1. Голдстейн Г. Классическая механика. "Наука", М., 1975, §7, с.3.
- 2. Широков Ю.М. ЖЭТФ, 1951, 21, с.748.
- 3. Golub R., Pendlebury J.M. Contemp.Phys., 1972, 6, p.519.
- 4. Altarev I.S. et al. Phys.Lett., 1981, 102B, p.13.
- 5. Baird J.K. et al. Phys.Rev., 1969, 179, p.1285.
- 6. Стрельцов В.Н. ОИЯИ, Р2-10912, Дубна, 1977; Р2-82-43, Дубна, 1982.
- 7. Локтионов А.А. и др. ЯФ, 1978, 27, с.1556.
- 8. Ангелов Н. и др. ЯФ, 1981, 33, с.1257.

Рукопись поступила в издательский отдел 1 июня 1982 года.

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги,

если они не были заказаны ранее.

Д13-11182	Труды IX Международного симпозиума по ядерной элект- ронике. Варна, 1977.	5	р.	00	к.
Д17-11490	Труды Международного симпозиуна по избранным пробле- мам статистической механики. Дубна, 1977.	6	р.	00	к.
Д6-11574	Сборник амнотаций XV совещания по ядерной спектроско- пии и теории ядра. Дубна, 1978.	2	р.	50	к.
Д3-11787	Труды III Международной школы по нейтронной физике. Алушта, 1978.	3	р.	00	к.
Д13-11807	Труды III Международного совещания по пропорциональ- ным и дрейфовым камерам. Дубна, 1978.	6	р.	00	к.
	Труды VI Всесоюзного совещания по ускорителям заря- женных частиц. Дубна, 1978 /2 тома/	7	p.	40	к.
Д1,2-12036	Труды V Международного семинара по проблемам физики высоких энергий. Дубна, 1978	5	р.	00	к.
Д1,2-12450	Труды XII Международной школы молодых ученых по физике высоких энергий. Приморско, НРБ, 1978.	3	p.	00	к.
	Труды VII Всесоюзного совещания по ускорителям заря- женных частиц, Дубна, 1980 /2 тома/	8	p.	00	к.
Д11-80-13	Труды рабочего совещания по системам и методам аналитических вычислений на ЭВМ и их применению в теоретической физике, Дубна, 1979	3	р.	50	к.
Д4-80-271	Труды Международной конференции по проблемам нескольких тел в ядерной физике. Дубна, 1979.	3	р.	00	к.
д4-80-385	Труды Международной школы по структуре ядра. Алушта, 1980.	5	р.	00	к.
Д2-81-543	Труды VI Международного совещания по проблемам кван- товой теории поля. Алушта, 1981	2	р.	50	к.
Д 10,11-81-622	Труды Международного совещания по проблемам математи- ческого моделирования в ядерно-физических исследова- ниях. Дубна, 1980	2	р.	50	к.
Д1,2-81-728	Труды VI Международного семинара по проблемам физики высоких энергий. Дубна, 1981.	3	р.	60	к.
A17-81-758	Труды II Международного симпозиума по избранным проблемам статистической механики. Дубна, 1981.	5	р.	40	к.
Д1,2-82-27	Труды Международного симпозиума по поляризационным явлениям в физике высоких энергий. Дубна, 1981.	3	p.	20	к.
P18-82-117	Труды IV совещания по использованию новых ядерно- физических методов для решения научно-технических и народнохозяйственных задач. Дубна, 1981.	3	p.	80	к.

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79 Издательский отдел Объединенного инсьитута ядерных исследований

ТЕМАТИЧЕСКИЕ КАТЕГОРИИ ПУБЛИКАЦИЙ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Индекс	Тематика	
1. 3	Экспериментальная физика высоких энергий	
2.	Теоретическая физика высоких энергий	
3. :	Экспериментальная нейтронная физика	
4.	Теоретическая физика низких энергий	
5. 1	Математика	1-2
6. 1	Ядерная спектроскопия и радиохимия	
7.	Физика тяжелых ионов	-
8.	Криогеника	
9. :	Ускорители	-
10.	Автоматизация обработки экспериментальных данных	
11.	Вычислительная математика и техника	
.12.	Химия	1
13.	Техника физического эксперимента	41
14.	Исследования твердых тел и жидкостей ядерными методами	
15.	Экспериментальная физика ядерных реакций при низких энергиях	
16.	Дозиметрия и физика защиты	
17.	Теория конденсированного состояния	
18.	Использование результатов и методов фундаментальных физических исследований в смежных областях науки и техники	
19.	Биофизика	

TANKAL TAK THE PRODUCT A TAK THE ATTRACT TO THE LETTER AND THE TAKEN THE TAKEN

Стрельцов В.Н. Релятивистские операторы центра инерции и дипольного момента

В рамках релятивистской квантовой механики вводятся ковариантный гамильтониан и ковариантная производная по /собственному/ времени. Рассмотрены операторы 4-тензора механического момента и тесно связанного с ним 4тензора электромагнитного дипольного момента, пространственные компоненты которого описывают магнитный, а временные - электрический момент. Отмечается, что следствием существования собственного магнитного момента должно быть появление у движущейся частицы электрического дипольного момента, отсутствие которого в собственной системе отсчета можно считать указанием в пользу релятивистской "формулы удлинения".

P2-82-404

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1982

Strei tsov V.N. P2-82-404 Relativistic Center of Inertia and Dipole Moment Operators

In the framework of relativistic quantum mechanism covariant Hamiltonian and covariant (proper) time derivative are introduced. Operators of 4tensor of mechanical moment and of 4-tensor of electromagnetic dipole moment closely connected, space components of which describe magnetic moment, time components - electric moments are considered. It is noted that the consequence of the existence of proper magnetic moment is the appearance of a moving particle electric dipole moment. Its absence in the proper frame of reference could be an indication in favour of the relativistic "elongation formula".

The investigation has been performed at the Laboratory of High Energies, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1982

Перевод О.С.Виноградовой.