

сообщения объединенного института ядерных исследований дубна

9/8-82

P2-82-338

М.К.Волков

МАССА И РАСПАДЫ А₁ -МЕЗОНА В МОДЕЛИ С КВАРКОВЫМИ ПЕТЛЯМИ

В последнее время были проведены новые измерения массы A_1 -мезона и ширин его распадов^{/1/}. В этой связи представляет определенный интерес теоретическое исследование поведения этого мезона, которое можно провести на базе недавно предложенной нами модели^{/2/}. Эта модель основана на рассмотрении четырехкварковых взаимодействий, с помощью которых можно описывать взаимодействия мезонов различных типов. В работе^{/2/} были рассмотрены четырехкварковые взаимодействия со скалярной, псевдоскалярной и векторной связями. Для описания A_1 -мезона к этим связям следует добавить еще псевдовекторную связь. Тогда исходный четырехкварковый лагранжиан примет вид

$$\mathfrak{L}(\bar{q},q) = \bar{q}(i\partial - m_0)q + \frac{G_1}{2}[(\bar{q}q)^2 + (\bar{q}i_{\gamma_5}\dot{\tau}q)^2] - \frac{G_2}{2}[(\bar{q}\gamma_{\mu}q)^2 + (\bar{q}\gamma_{\mu}\dot{\tau}q)^2 + (\bar{q}\gamma_{\mu}\dot{\tau}q)^2].$$
 /1/
Здесь $q = (\overset{u}{d}) -$ поля кварков, имеющих три цвета. По цветовым
индексам предполагается суммирование; $m_0 -$ затравочная масса
кварка; G_1 и $G_2 -$ две константы связи *. Вводя бозонные, скаляр-
ные, псевдоскалярные, векторные и псевдовекторные поля, можно
линеаризовать лагранжиан /1/ и в соответствующем ему произво-
дящем функционале провести интегрирование по кварковым петлям,
подобно тому, как это делалось в работе^{/2/}. В результате полу-
чаем

$$W(\bar{\eta},\eta) = \int d\epsilon_0 d\bar{\pi}_0 d\omega_0 d\bar{\rho}_0 d\bar{A}_1 \exp\{i\left[-\frac{\delta\mu^2}{2}(\epsilon_0^2 + \bar{\pi}_0^2) + \frac{\delta M^2}{2}(\omega_0^2 + \bar{\rho}_0^2 + \bar{A}_1^2) - i\operatorname{Tr} \ln\{1 + \frac{1}{i\partial - m_0}[g_1(\epsilon_0 + i\gamma_5 \bar{\tau}_0) + g_2(\hat{\omega}_0 + \bar{\tau}_0 \hat{\rho}_0 + \bar{\tau}_1 \hat{A}_{10} \gamma_5)]\} - /2/$$

$$-\eta \frac{1}{i\hat{\partial} - m_0 + g_1(\epsilon_0 + i\gamma_5 \vec{\tau} \cdot \vec{\pi}_0) + g_2(\hat{\omega}_0 + \vec{\tau} \cdot \vec{\rho}_0 + \vec{\tau} \cdot \vec{A}_{1_0} \cdot \gamma_5)} \eta \dot{i},$$

CONVERSE CONTRACTORY

1

^{*} Используя преобразования Фирца и некоторые дополнительные предположения, можно найти связь между константами G_1 и G_2 : $G_1 = 2G_2$. Следующие отсюда предсказания для величин масс векторных мезонов обсуждались в работе ^{/2/}.

где $\overline{\eta}$ и η - внешние источники; $g_1^2/\delta\mu^2 = G_1$; $g_2^2/\delta M^2 = G_2$; $\vec{r}_{0}, \vec{r}_{0}, \omega_{0}, \vec{\rho}_{0}$ и \vec{A}_{1} – поля соответствующих мезонов; $\hat{a} = \gamma_{\mu} a^{\mu}$. Рассматривая расходящиеся кварковые петли с двумя внешними концами и проводя перенормировку полей подобно тому, как это делалось в работе /2/, приходим к следующему эффективному лагранжиану:

$$\begin{split} & \mathcal{L} = -\frac{m_{\pi}^2}{2} \vec{\pi}^2 - \frac{(m_{\pi}^2 + 4m_q^2)}{2} \epsilon^2 + \frac{m_{\rho}^2}{2} (\omega_{\mu}^2 + \vec{\rho}_{\mu}^2) + \frac{(m_{\rho}^2 + 6m_q^2)}{2} \vec{A}_1^2 + \\ & + \frac{1}{2} [(\partial_{\mu} \vec{\pi})^2 + (\partial_{\mu} \epsilon)^2] - \frac{1}{4} [(\omega_{\mu\nu})^2 + (\vec{\rho}_{\mu\nu})^2 + (\vec{A}_{\mu\nu})^2] - \end{split}$$

$$-i\operatorname{Tr} \ln \{1 + \frac{1}{i\partial - m_q} [g(\epsilon + i\gamma_5 \vec{\tau} \vec{\pi}) + \frac{g_{\rho}}{2} (\hat{\omega} + \vec{\tau} \hat{\rho} + \vec{\tau} \hat{A}_1 \gamma_5)]\}$$

Здесь $g = \sqrt{2\pi}$, $g_{\rho} = \sqrt{6}g$, $m_q = gF_{\pi} = 240$ МэВ, $F_{\pi} = 95$ МэВ*. Из формулы /3/ можно получить грубую оценку для массы та:

$$m_{A_1} = \sqrt{m_{\rho}^2 + 6 m_q^2} \approx 1 \ \Gamma \Im B.$$
 /4/

Более точную оценку массы. Аз-мезона можно получить при совместном изучении распадов $A_1 \to \pi \rho$ и $A_1 \to \epsilon \pi$. Амплитуда первого распада /рис.1/ равна

$$T_{A_1^+ \rightarrow \rho^+ \pi^\circ} = 4 m_q g g_\rho^2 I_2 \overset{\rightarrow}{\epsilon_A \epsilon_\rho} = F_\pi g_\rho^2 \overset{\rightarrow}{\epsilon_A \epsilon_\rho}, \qquad (5)$$

где $\vec{\epsilon}_i$ - поляризации A_1 -и ρ -мезонов. Здесь в амплитуде оставлен только расходящийся интеграл I_2 и для его оценки использован распад $ho o 2\pi$, как это делалось в нашей предыдущей работе^{/2/}:

$$I_{2}^{\text{per}} = -i \frac{3}{(2\pi)^{4}} \int \frac{d^{4}k}{(m_{q}^{2} - k^{2})_{\text{per}}^{2}} = \frac{1}{4g^{2}}$$
 /6/

Из амплитуды /5/ получается следующая формула для ширины распада $A^+ \rightarrow \rho^+ \pi^\circ$:

$$\Gamma_{(A_{1}^{+},\rho^{+}\pi^{\circ})}^{(A_{1}^{+},\rho^{+}\pi^{\circ})} = \frac{4\pi a_{\rho}^{2} F_{\pi}^{2}}{3m_{A_{1}}^{3}} \sqrt{m_{A_{1}}^{4} - 2m_{A_{1}}^{2}(m_{\rho}^{2} + m_{\pi}^{2}) + (m_{\rho}^{2} - m_{\pi}^{2})^{2}} .$$
 (77)

* В отличие от работы ^{/2/}, в формуле /3/ под знаком логарифма оставлены расходящиеся петли, соответствующие нелинейным взаимодействиям бозонных полей.

Приведем здесь три возможных значения для ширины $\Gamma_{A^+_{a} \rightarrow \rho} + \pi^{\circ}$ при трех различных значениях масс та,

$\Gamma_{\mathbf{A}_{1}^{+} \rightarrow \rho^{+} \pi^{\circ}}$	149 МэВ	156 МэВ	159 МэВ	/8/
^m A ₁	1150 МэВ	1200 МэВ	1250 МэВ	

Все эти оценки не очень сильно отличаются друг от друга и от экспериментального значения /1,3/

эксп.

$$\Gamma_{A_{1}^{+}} \rho^{+} \pi^{\circ} = 150 \text{ МэВ.}$$
 /9/

в том же приближении из лагранжиана /3/ для амплитуды распада $A_{1} \rightarrow \epsilon \pi$ получаем выражение /рис.2/

$$T_{A_{1}^{+} \epsilon \pi^{+}} = i 4g^{2} g_{\rho} I_{2} (p-q)^{\mu} \epsilon_{\mu} = i g_{\rho} (p-q)^{\mu} \epsilon_{\mu} , \qquad /10/$$

где р и q - импульсы пиона и ϵ -мезона соответственно и ϵ_{μ} поляризация A_1 -мезона. Отсюда для ширины распада $A_1^+ arrow \epsilon \pi^+$ следует формула

$$\Gamma_{A_{1}^{+} \epsilon \pi^{+}}^{+} = \frac{\alpha_{\rho} [m_{A_{1}}^{2} - 2(m_{\epsilon}^{2} + m_{\pi}^{2})]}{12 m_{A_{1}}^{3}} \sqrt{[m_{A_{1}}^{2} - (m_{\epsilon} + m_{\pi})^{2}][m_{A_{1}}^{2} - (m_{\epsilon} - m_{\pi})^{2}]}. \quad /11/$$

При тех же, что и выше, значениях масс m_{A_1} получаем оценки /m_e = 770 M₃B/:

$$Γ_{A_1^+ \epsilon \pi^+}$$
11 MэB25 MэB40 MэB m_{A_1} 1150 MэB1200 MэB1250 MэB

Легко видеть, что значение этой ширины распада очень чувствительно к малейшему изменению значения массы A_1 -мезона. Заметим, что из /11/ можно получить также следующее неравенство для квадратов масс A_{-} , $\epsilon -:$ и π -мезонов:

$$m_{A_1}^2 > 2(m_{\epsilon}^2 + m_{\pi}^2).$$
 /13/

В заключение заметим, что приведенные здесь расчеты имеют оценочный характер, поскольку при выводе выражений для амплитуд распадов $\mathbb{A}_1 \Rightarrow \rho \pi$ и $\mathbb{A}_1 \Rightarrow \epsilon \pi$ в формулах /5/ и /10/ удерживались лишь члены, содержащие расходящийся интеграл /6/, конечные же члены отбрасывались. Однако мы надеемся, что и при более точном вычислении амплитуд значения для соответствующих ширин не изменятся слишком сильно.

ЛИТЕРАТУРА

- 1. Bellini G. et al. Preprint CERN-EP/81-98, 1981; EP/81-110, 1981.
- Волков М.К., Эберт Д. ОИЯИ, Р2-81-836, Дубна, 1981;
 Ebert D., Volkov М.К. Berlin-Zeuthen Preprint, PHE 82-3, 1982.
- 3. Particle Data Group. Rev.Mod.Phys., 1980, 52, No.2.

Рукопись поступила в издательский отдел 11 мая 1982 года.

Волков М.К. Р2-82-338 Масса и распады А₁-мезона в модели с кварковыми петлями

В модели, основанной на рассмотрении четырехкварковых взаимодействий, вычислены распады A_1 -мезона $A_1 arrow n$ и $A_1 + \epsilon \pi$ и дана оценка для его массы. Обнаружено, что величина ширины распада $A_1 + \rho \pi$ не очень чувствительна к изменению значений массы A_1 -мезона в пределах от 1150 до 1250 МэВ и равна $\Gamma_{A_1 + \rho \pi}$ = 150 МэВ. В то же время ширина распада $A_1 + \epsilon \pi$ резко меняется в зависимости от изменения значений масс $A_1 - и \epsilon - mезонов$. Поэтому более точные оценки значений масс $A_1 - u \epsilon$ -мезонов. Получено также строгое неравенство для значений квадратов масс $A_1 - \epsilon u \epsilon \pi$ мезонов.

Работа выполнена в Лаборатории теоретической физики ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1982

P2-82-338

Volkov M.K.

The Mass and the Decays of A1-Meson in the Model with Quark Loops

Based on the effective Lagrangian with four-quark interaction we calculate the widths of the decays $A_1 \rightarrow \rho \pi$ and $A_{1} \rightarrow e \pi$ and make estimates of the A_1 mass. It is discovered that the value of the decay width $A_{1} \rightarrow \rho \pi$ is insensitive to the change of the mass value of the A_1 -meson in the limits from 1150 to 1250 MeV and is equal to $\Gamma_{A_1 \rightarrow \rho \pi} = 150$ MeV. On the contrary,

the decay width $A_1 \rightarrow \epsilon \pi$ changes quickly with changing masses of the A_1 -and ϵ -mesons. Therefore, a more accurate measurement of the decay width $A_1 \rightarrow \epsilon \pi$ allows us to obtain more exact estimates of the A_1 and ϵ masses. The rigorous inequality is also received for the squares of the $A_1 \rightarrow \epsilon \pi$ and π -meson masses.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1982

Перевод автора.