

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

466 82

2-82 P2-81-70

Н.С.Амелин, В.С.Барашенков, А.М.Задорожный, Б.Ф.Костенко

РЕЛЯТИВИСТСКАЯ МОДЕЛЬ ВЗАИМОДЕЙСТВИЯ МНОГОКВАРКОВЫХ СИСТЕМ

При неупругом столкновении высокоэнергетических адронов образуются резко выделенные по энергии лидирующие частицы и противоположно направленные /в системе центра масс/ узко коллимированные пучки остальных вторичных частиц, взаимодействие между которыми настолько велико, что в течение некоторого времени их можно рассматривать как единые образования многокварковые системы /"файрболы", рис.1/. Если столкновение происходит внутри ядра, то, прежде чем разлететься на отдельные частицы, такие системы могут успеть провзаимодействовать со следующими внутриядерными нуклонами. Оценки показывают, что при энергиях T >10 ГэВ * обмен файрболами дает значительный вклад /1/ и является одной из причин завышения по сравнению с экспериментом множественности частиц, рассчитанной с помощью обычного механизма внутриядерных каскадов /когда каскад рассматривается как "дерево" кинематически связанных двухчастичных взаимодействий/ /1,2/.

Рис.1. Схема образования лидирующих частиц и узко коллимированных пучков вторичных частиц при неупругом столкновении высокоэнергетических адронов.

Многокварковые файрболы могут образовываться также при многочастичных взаимодействиях, когда с нуклоном ядра взаимодействует сразу несколько частиц, мезонов и нуклонов, родившихся в предшествующих внутриядерных столкновениях ^{/3/}.

Во всех этих случаях для расчета внутриядерных процессов необходимо знать сечения взаимодействия файрболов, которые зависят от плохо известных свойств многокварковых систем; фактически здесь приходится решать обратную задачу - подбирать эти сечения, сравнивая каскадные расчеты с экспериментальными данными. Однако предварительные представления о величине сечений, а главное - о характере их зависимости от энергии и свойств сталкивающихся объектов, можно получить с помощью релятивист-

* Здесь и ниже Т – кинетическая энергия налетающей частицы /или системы в расчете на один кварк/ в системе координат, где частица-мишень неподвижна.

Д

ского обобщения дифракционной теории Глаубера⁷⁴.Эти представления подсказывают определенные подходы к феноменологическому описанию взаимодействий многокварковых систем.

Если рассматривать определенную форму распределения кварков в файрболе, то в соответствии с выражениями, приведенными в работе^{/4/},величина теоретически полученного сечения упругого рассеяния N-кваркового файрбола определяется его массой M_N, среднеквадратичным радиусом < t_N^2 ^{1/2} и амплитудой упругого кварк-кваркового взаимодействия:

$$\mathcal{J}(\mathbf{q}) = (\alpha + \mathbf{i}\beta) e^{-\gamma \mathbf{q}^2} \qquad /1/$$

/можно считать, что при высоких энергиях кварки и антикварки взаимодействуют одинаково/.

Мы будем предполагать, что пространственное, а точнее релятивистски инвариантное пространственно-временное распределение каждого кварка в файрболе описывается лоренц-инвариантной гауссовской волновой функцией. Это отвечает 4-мерному осцилляторному потенциалу между кварками - приближению, которое в настоящее время используется во многих теоретических работах.

Что касается массы файрбола, то эта величина, как и число входящих в состав файрбола валентных кварков, является "задаваемым параметром", определяемым конкретной моделью образования файрболов при неупругих столкновениях высокоэнергетических адронов. Однако, если импульсы частиц, вылетающих при распаде файрбола, как это подсказывают опыты, проведенные при высоких энергиях, близки между собой по величине и направлению, то масса файрбола выражается через массы вторичных частиц:

$$M_N^2 = (\Sigma m_i)^2 = (nm + n_b m_b)^2$$
, /2/

где n и n_b - множественности рождающихся мезонов и барионов; m и m_b - их массы. Поскольку в области высоких энергий мезоны рождаются в основном через распад резонансов, то n \simeq n_{π}/2, где n_{π} - число вторичных *π*-мезонов, а m и m_b можно приближенно считать равными массе ρ -мезона и нуклона. Радиус файрбола $< t_{2}^{2} > \frac{12}{2}$ можно оценить, основываясь на пред-

Радиус файрбола < $r_N^2 > 2$ можно оценить, основываясь на предположении о том, что в момент, предшествующий адронизации кварковой системы, плотность вещества в ней приблизительно постоянна, независимо от числа рождающихся адронов*. В частности, $V_N / N = V_3 / 3 / V$ - объем/, откуда следует

$$< r_N^2 > \frac{1/2}{N} = (\frac{N}{3})^{1/3} [< r^2 > -\frac{6}{M^2}]^{1/2} = 4.2N^{1/3} \cdot 10^{-14},$$
 /3/

где < r^{2} >^{1/2}и М – экспериментально наблюдаемый среднеквадратичный радиус и масса нуклона /см. формулы /23/ и /24/ в /1//.

Как видно, размеры файрболов, соответствующих средним множественностям частиц в области энергий, не превышающих нескольких ТэВ /см. ниже/, близки к размерам адронов; в то же время для взаимодействий с большой множественностью рождающихся частиц эти размеры становятся уже сравнимыми с межнуклонными расстояниями в атомных ядрах.

Для амплитуды /1/ можно использовать значения, найденные в результате кваркового анализа упругого нуклон-нуклонного рассеяния. Для численных оценок мы будем использовать следующие параметры:

/ Т - в ГэВах/, которые являются комбинацией данных, полученных в работах ^{/8,9/} путем анализа нуклон-нуклонного рассеяния в области энергий Т ~ 0,1÷0,7 ТэВ/кварк *.

На рис.2 приведены результаты расчета сечения упругого рассеяния файрбола на нуклоне $\sigma_{ef} = \pi \int |M(t)|^2 dt$, соответствующего полного сечения $\sigma_t = 4\pi \operatorname{Im}(M(0))$ и суммарного сечения неупругих процессов $\sigma_{in} = \sigma_t - \sigma_{ef}$ при двух значениях энергии T = 0,1 и 0,7 ТэВ/кварк. Расчеты выполнены для файрболов с барионным числом B = 0 и B = 1, однако из рисунка видно, что сечения практически не зависят от барионного числа файрбола и определяются лишь числом содержащихся в нем кварков.

При N = 2 и N = 3 теоретически полученные сечения приблизительно на 20% меньше экспериментальных сечений π -N и N-N взаимодействий, что обусловлено использованием кварковых параметров /4/. С увеличением числа кварков N сечения возрастают, при

*В работах /8,9/ эти параметры определялись исходя из требования согласия с экспериментальными данными для $\sigma_{eff}(t)$ при значениях t > 1 ГэВ/с. Однако уже из анализа адрон-ядерного рассеяния известно, что с помощью простых параметризаций амплитуды $\mathcal{J}(\mathbf{q})$ нельзя получить хорошее согласие с экспериментальными данными одновременно для малых и больших значений t. Более оправдано параметры амплитуды /4/ определялись при малых t, дающих основной вклад в интегральные сечения σ_{eff} и σ_t , а в области больших t использовать более детальную параметризацию.

^{*}Это предположение соответствует идее И.Я.Померанчука о том, что равновесный пространственный объем, в котором происходит рождение частиц, пропорционален их числу ^{/5,6/}.

этом их зависимость от энергии ${\bf T}$ оказывается весьма слабой. Примечательно, что значения $\sigma_{\rm in}({\bf N})$ удовлетворяют той же самой зависимости

$$\sigma_{\rm in} = \pi r_0^2 (N^{1/3} + N^{1/3} - b)^2$$

/N_t - число кварков в системе-мишени/, что и сечения адронных и ядерных взаимодействий π +N, N+N, адрон + ядро, ядро + + ядро. Различие между полученными нами /<u>рис.2</u>/ и использованными в^{/7/} постоянными r₀, b, описывающими эти взаимодействия, составляет не более 20%, что опять можно приписать неточности использованных параметров /4/.

Сечения $\sigma_t(N)$ и $\sigma_{el}(N)$ можно описать аналогичными зависимостями.

Что касается дифференциального сечения $\sigma_{ef}(t)$, то при небольших t оно имеет типично дифракционный вид: ~ $\exp(t/4R^2)$,

с наклоном, который определяется эффективным радиусом, равным сумме радиусов сталкивающихся систем $r(N_1) + r(N_2)$. Эти радиусы, как видно из <u>рис.3</u>, удовлетворяют соотношению /3/.

Из-за приближенного характера использованных констант и модельных соображений численные значения рассчитанных сечений следует рассматривать лишь как грубую прикидку. Однако подсказываемая теорией универсальная зависимость сечений от числа участвующих во взаимодействии кварков может послужить основой для феноменологического описания взаимодействий файрболов с помощью констант, определенных по данным для адронных и ядерных взаимодействий.

,ЛИТЕРАТУРА

- 1. Барашенков В.С. и др. ОИЯИ, Р2-12933, Дубна, 1979.
- 2. Barashenkov V.S. et al. Nucl. Phys., 1979, vol.A338, p.413.
- 3. Барашенков В.С., Тонеев В.Д. Взаимодействие высокоэнергетических частиц и атомных ядер с ядрами. Атомиздат, М., 1972.
- 4. Барашенков В.С. и др. ОИЯИ, Р2-12083, Дубна, 1978.
- 5. Померанчук И.Я. ДАН СССР, 1951, т,78, с.889.
- 6. Тяпкин А.А. ЭЧАЯ, 1977, т.8, с.544.
- 7. Ставинский В.С. ОИЯИ, 2-80-66, Дубна, 1980.
- 8. Goloskokov S.V. et al. JINR, E2-12565, Dubna, 1979.
- 9. Kuleshov S.P. et al. JINR, E2-81-50, Dubna, 1981.

Рукопись поступила в издательский отдел 12 ноября 1981 года.