

Объединенный институт ядерных исследований дубна

3157 2-81

P2-81-217

29/6-8

М.К.Волков

РАСПАДЫ $\eta \to 3\pi$ И $\eta \to \pi^{\circ} \gamma \gamma$ В КИРАЛЬНОЙ ТЕОРИИ

Направлено в "Journal of Physics"

В наших предыдущих работах $^{/1,2/}$ было указано, что ширина распада, вычисленная на основе кирального лагранжиана, более чем на три порядка отличается от приводимого до сих пор в таблицах экспериментального значения $^{/3/}$. Ввиду того, что в настоящее время проводятся новые экспериментальные измерения ширины этого распада^{*}, имеет смысл еще раз вернуться к его теоретическим оценкам с тем, чтобы получить их с большей точностью.

Рассчитывать на получение более точных, чем раньше, оценок можно по следующим причинам. Во-первых, в наших предыдущих работах не учитывалось октет-синглетное смешивание /угол смешивания ф считался равным нулю/. Во-вторых, там была использована схема нарушения киральной группы, предложенная в рабо- $\tau a x^{/4,5/}$. Эта схема интересна тем, что в ней массовая матрица содержит лишь один произвольный параметр, соответствующий массе странного кварка. Масса d-кварка выражается через массу s-кварка и угол Кабиббо по формуле $\mu_{d} = \mu_{s} tg \theta_{c}$, а масса и-кварка считается равной нулю. При использовании такой схемы нарушения можно вполне удовлетворительно описать почти все основные распады псевдоскалярного октета/1/. Исключение составляют распады $\eta \rightarrow 3\pi$ и $\eta \rightarrow \pi^{\circ} \gamma \gamma$, амплитуда которых пропорциональна разности квадратов масс и и d кварков. Поэтому для более точного описания величин этих распадов не следует пренебрегать массой и-кварка.

В этой работе использована массовая матрица с тремя произвольными параметрами, соответствующими массам u , d и s -квар-ков. Угол смешивания также считается отличным от нуля, и оценки сделаны при двух его возможных значениях: старое значение $\phi \approx -10^{\circ 7/8}$ и новое значение $\phi \approx -18^{\circ 7/8}$.

Киральный лагранжиан, соответствующий группе $U(3) \times U(3)$, имеет вид $^{\prime 9/}$

$$\mathfrak{L} = \frac{1}{2} \operatorname{Tr}(\partial_{\mu} U \partial^{\mu} U^{+}) + \frac{F}{2\sqrt{2}} \operatorname{Tr}[M(U+U^{+})] + \frac{aF^{2}}{48} [\ln U - \ln U^{+}]^{2}, /1/$$

где для U можно использовать экспоненциальное представление

*Новые результаты по измерению ширины $\eta \to \pi^{\circ} \gamma \gamma$ уже получены в ИФВЭ в Серпухове^{/11/}. Они не противоречат нашим предсказаниям. Аналогичный эксперимент проводится и в ОИЯИ в Дубне.

ł

$$U = \frac{F}{\sqrt{2}} \exp\left[-\frac{i}{F}\left(\frac{8}{1}\lambda_{i}\phi_{i} + \sqrt{\frac{2}{3}}l\phi_{0}\right)\right].$$
 /2/

Здесь F=95 МэВ - константа распада пиона, λ_i - матрицы Гелл-Манна, ϕ_i - поля мезонного нонета, $M_{ij} = \mu_i^2 \delta_{ij}$ - массовая матрица с тремя произвольными параметрами, соответствующими массам u, d и s-кварков, и последний член соответствует учету глюонной аномалии. Он влияет только на массу синглетного мезона и не пригодится нам в дальнейших вычислениях.

Параметры $\mu_{\rm u}$, $\mu_{\rm d}$ и $\mu_{\rm s}$ можно зафиксировать по массам мезонов ${\rm m}_{\pi^{\circ}}, {\rm m}_{\rm K^{\circ}}$ и ${\rm m}_{\rm K^+}$. При этом следует иметь в виду, что масса заряженного К-мезона, присутствующая в лагранжиане /1/, отличается от истинной физической массы на величину, равную электромагнитной поправке, поскольку электромагнитные взаимодействия не были учтены в лагранжиане /1/. Эта поправка составляет 2,9 МэВ^{/10/}. Без нее масса K⁺ мезона равна ~491 МэВ, ${\rm m}_{\rm K}\sigma^{-4}$ 98 МэВ, ${\rm m}_{\pi^{\circ}}$ =135 МэВ *. Отсюда для параметров $\mu_{\rm f}^2$ имеем

Отношение μ_d/μ_s близко к значению тангенса угла Кабиббо. Отношение μ_u/μ_d близко к тому значению, которое требуется для правильного описания ширины распада $\eta \to 3\pi$, как будет видно ниже. Если фиксировать параметры μ_1^2 без учета электромагнитных поправок к m_{K^+} , то получим $\mu_2^2/\mu_d^2 = 0.66$, что приводит к завышенным оценкам для ширины распада $\eta \to 3\pi$.

Параметр а фиксируется по сумме масс m_{η}^2 . и m_{η}^2 . Из лагранжиана /1/ получаем

$$a \approx 0.73 \ \Gamma 3B^2$$
, $\phi \approx -18^\circ$. /4/

В дальнейших расчетах будет использовано и другое значение угла смешивания $\phi \approx -10^\circ$.

Для вычисления ширин распадов $\eta \rightarrow 3\pi$ необходима следующая часть лагранжиана /1/:

 * На этом этапе массы ${
m m}_{\pi^\circ}$ и ${
m m}_{\pi^\pm}$ считаются равными, по-

$$\begin{split} \widetilde{\mathfrak{L}} &= \frac{1}{6F^2} \left[\left(\vec{\pi} \partial_\mu \vec{\pi} \right)^2 - \vec{\pi}^2 (\partial_\mu \vec{\pi})^2 \right] + \frac{m_\pi^2}{24F^2} \left[\left(\vec{\pi}^2 + \eta^2 \right)^2 - \frac{8}{9} \eta^4 \right] + \\ &+ \frac{\mu^2}{\sqrt{3}} \pi^\circ \eta \left[1 - \frac{1}{6F^2} (\vec{\pi}^2 + \frac{\eta^2}{3}) \right], \end{split}$$

где $\eta = \eta_8 + \sqrt{2}\eta_0$ и $\mu^2 = (\mu_d^2 - \mu_u^2)/2$.

Из этого лагранжиана в древесном приближении для ширины распада $\eta \rightarrow 3 \pi^{\circ}$ получаем

$$\Gamma_{(\eta \to 3\pi^{\circ})}^{(\phi = -18^{\circ})} = 0.28 \text{ k}_{3}B , \quad \Gamma_{(\eta \to 3\pi^{\circ})}^{(\phi = -10^{\circ})} = 0.22 \text{ k}_{3}B , \quad /6/$$

что вполне согласуется с экспериментальными данными

$$\Gamma_{(\eta \to 3\pi^{\circ})} = 0.25 \pm 0.04 \text{ k}_{3B}$$
 . /7/

Для ширины распада $\eta \to \pi^+ \pi^- \pi^\circ$ в том же приближении получаем

$$\Gamma_{(\eta \to \pi^+ \pi^- \pi^\circ)}^{(\phi = -18^\circ)} = 0.17 \text{ k} \Rightarrow B , \quad \Gamma_{(\eta \to \pi^+ \pi^- \pi^\circ)}^{(\phi = -10^\circ)} = 0.14 \text{ k} \Rightarrow B , \quad /8/$$

в то время как эксперимент дает

$$\Gamma_{(\eta \to \pi^{+}\pi^{-}\pi^{\circ})} = 0.20 \pm 0.03 \text{ k} \Rightarrow B.$$
 /9/

Перейдем теперь к вычислению ширины распада $\eta \neq \pi^{\circ} \gamma \gamma$. Поскольку расчет этого процесса подробно описан в работе /2/, здесь мы остановимся лишь на тех изменениях, которые надо внести в полученные там формулы для вывода более точных оценок.

Прежде всего напомним, что ширину распада $\eta \to \pi^{\circ} y y$ следует вычислять на основе процесса $\eta \to \pi^{+}\pi^{-}\pi^{\circ}$, где заряженные пионы образуют петлю, испуская при этом два фотона в одной или двух разных точках. Суммируя вклады таких диаграмм, получаем следующее выражение для амплитуды

$$T_{(\eta \to \pi^{\circ} \gamma \gamma)} = \sqrt{\frac{2}{3}} \frac{e^{2} \mu^{2}}{3F^{2}} \frac{\epsilon_{1}^{\mu} \epsilon_{2}^{\nu}}{(\Delta^{2} - 1)} (\cos \phi - \sqrt{2} \sin \phi) [6 \Delta \frac{\omega}{m_{\pi}} - 3 \Delta^{2} + 1 + /10/ + \sin^{2} \phi - \sqrt{2} \sin 2 \phi + \epsilon] \int_{\mu\nu} (q_{1}, q_{2}).$$

Здесь q_1 , q_2 , ϵ_1^{μ} , ϵ_2^{ν} - импульсы и поляризации фотонов, $\Delta = m_{\eta}/m_{\pi}$, ω - энергия пиона, ϵ - вклад от диаграмм, где η -мезон переходит сначала в $\eta' \pi^+ \pi^-$, затем $\pi^+ \pi^-$ аннигилируют с испусканием двух фотонов, а η' превращается

скольку их разность имеет полностью электромагнитное происхождение $^{10/}$.

в пион *. Функция $\int_{\mu\nu} (q_1, q_2)$, описывающая вклад двух пионных петель, равна

$$\mathcal{J}_{\mu\nu}(q_1,q_2) = i\pi^2 \frac{(g^{\mu\nu}q_1q_2 - q_1^{\nu}q_2^{\mu})}{q_1q_2} \left\{ \frac{2m_{\pi}^2}{q_1q_2} \left[\arccos(\frac{2m_{\pi}^2}{q_1q_2} - 1)^{\frac{1}{2}} \right]^2 - 1 \right\}. /11/$$

Из /10/ для ширины распада $\eta \to \pi^{\circ} \gamma \gamma$ получаем

$$\Gamma_{(\eta \to \pi \gamma \gamma)} = \frac{m_{\pi}}{3\pi^{5}\Delta} \left[\frac{a\mu^{2}(\cos\phi - \sqrt{2}\sin\phi)}{2F^{2}\Delta(\Delta^{2} - 1)} \right]^{2} I, \qquad /12/$$

где $\alpha = e^2/4\pi$, а фазовый интеграл I равен

$$I = \int_{0}^{(\frac{\Delta-1}{2})^{2}} dt [t - (4 + \sin^{2}\phi - \sqrt{2}\sin 2\phi + \epsilon)/12]^{2} [(\frac{\Delta+1}{2})^{2} - t]^{\frac{1}{2}} [(\frac{\Delta-1}{2})^{2} - t]^{\frac{1}{2}} f(t)$$

$$f(t) = \int_{0}^{1} [t^{-1} \arctan^{2}\phi \sqrt{t/(1-t)} - 1]^{2}, \quad t \le 1$$

$$f(t) = \int_{0}^{1} [(\ln^{2}x + 4t - \pi^{2})^{2} + (2\pi \ln x)^{2}] |t| = t \ge 1$$

$$\mathbf{x} = \left(\sqrt{\mathbf{t}} + \sqrt{\mathbf{t}} - 1\right) / \left(\sqrt{\mathbf{t}} - \sqrt{\mathbf{t}} - 1\right).$$

Численная оценка интеграла I при $\phi = -18^{\circ}$ дает значение I = II. Подставляя его в /12/, получаем

$$\Gamma_{(\eta \to \pi^{\circ} \gamma \gamma)}^{(\phi = -18^{\circ})} = 1.6 \cdot 10^{-3} \text{ 3B.}$$
 /13/

При $\phi = -10^\circ$ приходим к несколько меньшему значению для ширины этого распада

$$\Gamma_{(\eta \to \pi^{\circ} \gamma \gamma)}^{(\phi = -10^{\circ})} = 1.3 \cdot 10^{-3} \text{ 3B.}$$
 /13'/

Полученные величины существенно меньше предыдущих грубых теоретических оценок $^{2/}$ и на четыре порядка отличаются от старых экспериментальных данных $^{3/}$. Однако последние измерения, проведенные в ИФВЭ /Серпухов//11/, не противоречат этим предсказаниям.

ЛИТЕРАТУРА

- 1. Волков М.К. ЭЧАЯ, 1979, 10, с.693.
- 2. Волков М.К., Эберт Д. ЯФ, 1979, 30, с.1420.
- 3. Particle Data Group. Rev. Mod. Phys., 1980, 52, No.2.
- Gell-Mann M., Oakes R.J., Renner B. Phys.Rev., 1968, 175, p.2195.
- 5. Oakes R.J. Phys.Lett., 1969, B29, p.683.
- 6. Isgur N. Phys.Rev., 1975, D12, p.3770.
- 7. Apel W.D. et al. Phys.Lett., 1979, B83, p.131.
- 8. Филиппов А.Т. ЯФ, 1979, 29, с.1035.
- 9. Di Vecchia P. et al. CERN Preprint TH-2898, 1980.
- 10. Socolow R.H. Phys.Rev., 1965, 1378, p.1221.
- 11. Бинон Ф. и др. Препринт ИФВЭ, 81-12, 03Ф SERP-E-140, Серпухов, 1981.

Рукопись поступила в издательский отдел 31 марта 1981 года.

^{*} ϵ = 0,33 соответствует значению ϕ = -18°. При ϕ = -10° получаем ϵ = 0,47.Члены, содержащие синусы и ϵ , малы по сравнению с величиной 3 Λ^2 .