ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

1-795

9/411-24

P2-8080

4744 2-74

С.Дубничка, О.В.Думбрайс, М.Сташель

ОПРЕДЕЛЕНИЕ КОНСТАНТ СВЯЗИ КNA И KN Σ на основе данных по дифференциальным сечениям процессов $\overline{p}p \rightarrow K \overline{K}^+$, $\overline{p}p \rightarrow \overline{\Lambda}\Lambda$ и $pp \rightarrow \overline{\Sigma} \overline{\Sigma}^+$

ЛАБОРАТОРИЯ ТЕОРЕТИЧЕСНОЙ ФИЗИНИ

P2-8080

С.Дубничка, О.В.Думбрайс, М.Сташель

ОПРЕДЕЛЕНИЕ КОНСТАНТ СВЯЗИ КNA И KN Σ на основе данных по дифференциальным сечениям процессов $\bar{p}_{P} \rightarrow K \bar{K}^{+}$, $\bar{p}_{P} \rightarrow \bar{\Lambda}\Lambda$ и $p_{P} \rightarrow \bar{\Sigma}^{+}\Sigma^{+}$

Направлено в Physics Letters

Объединенный институт ядерных веследования БИБЛИЮТЕКА

- ² НИИЯФ МГУ.
- ³ Варшавский университет, Польша.

Институт физики Словацкой Академии наук, Братислава, Чехословакия.

Дубничка С., Думбрайс О.В., Сташель М.

Определение констант связи $KN\Lambda$ и $KN\Sigma$ на основе данных по дифференциальным сечениям процессов $\overline{\bar{p}}_{p} \rightarrow K^{-}K^{+}$, $\overline{p}_{p} \rightarrow \overline{\Lambda}\Lambda$ и $\overline{p}_{p} \rightarrow \overline{\Sigma}^{+}\Sigma^{+}$

Определены константы связи КNA и КNΣ на основе существующих данных по дифференциальным сечениям процессов $\overline{p}p \to \overline{K}^-\overline{K}^+$, $\overline{p}p \to \overline{\Lambda}A$ и $\overline{p}p \to \overline{\Sigma}^+\overline{\Sigma}^+$. Метод основан на экстраполяции dσ / d Ω к гиперонному и каонным полюсам, соответственно. Используется техника конформных отображений. Результаты вычислений не противоречат предсказаниям SU(3) симметрии.

Препринт Объединенного института ядерных исследований. Дубна, 1974

Dubnicka S., Dumbrajs O.V., Staszel M. P2-8080

Determination of the Coupling Constants KNA and KNS from Data on the Differential Cross Sections of Processes $\bar{p}_P \rightarrow K^- K^+$, $\bar{p}_P \rightarrow \bar{\Lambda}A$ and $\bar{p}_P \rightarrow \bar{\Sigma}^+ \Sigma^+$

A determination of the coupling constants KNA and KNE from existing differential cross section data for processes $\overline{pp} \rightarrow K^- K^+$, $\overline{pp} \rightarrow \overline{\Lambda}^A$ and $\overline{pp} \rightarrow \overline{\Sigma}^+ \Sigma^+$ has been carried out. The method is based on the extrapolation of $d\sigma/d\Omega$ to the hyperon and kaon poles respectively, exploiting conformal mapping techniques. Calculations result in the values which favor SU(3) predictions.

> Preprint. Joint Institute for Nuclear Research. Dubna, 1974

Определение констант связи KNY интересно с точки зрения проверки предсказаний SU(3) –симметрии. Согласно последней, константы связи KNY и π NN связаны посредством соотношений:

$$g_{K p \Lambda}^{2} = \frac{1}{3} (1 + 2\alpha)^{2} g_{\pi N N}^{2} ;$$

$$g_{K p \Sigma}^{2} = (1 - 2\alpha)^{2} g_{\pi N N}^{2} ,$$
/1/

где $g_{\pi NN}^2 = 14,6$ - обычная константа связи πNN , а параметр α уточняет величину связи F-типа, присутствующую, вследствие наличия двух 8 представлений, в 8×8 представлении SU(3). Связь /1/ становится более строгой, если предположить справедливость SU(6) – симметрии, которая требует $\alpha = 0, 4$. Следовательно.

$$g_{K p}^{2} \Lambda^{\Xi} g_{\pi N N}^{2}$$
;
 $g_{K p \Sigma}^{2} = g_{K p \Lambda}^{2} / 27$. /2/

Было предпринято много попыток /более 50 работ/ определения констант связи KNY. Отметим лишь самые последние $^{1-7}$. Подробное рассмотрение этого вопроса можно найти в обзорах $^{/8-10}$. Для того, чтобы проиллюстрировать недостаточность наших знаний о связи KNY, приведем наименьшие и наибольшие значения из таблиц обзора 10 :

2,3
$$\leq g_{K p \Lambda}^2 \leq 60$$
; $0 \leq g_{K p \Sigma}^2 \leq 3,5$.

3

В настоящей работе мы основываемся на гипотезе об аналитичности амплитуды бинарной реакции в $\cos\theta$ плоскости. Величины констант связи извлекаются при помощи экстраполяции дифференциальных сечений из физической области к полюсам амплитуды рассеяния в $\cos \theta$ плоскости. Этот метод хорошо известен, математическую основу метода и ссылки на предыдущие работы можно найти, например, в /11-13/.

Разрезанная $\cos \theta$ -плоскость отображается в унифокальный эллипс в z-плоскости. При этом область, где существуют измерения, отображается винтервал $-1 \le z \le 1$, а разрезы u – и t-каналов на эллипс. Полюса остаются внутри эллипса. Если устранить их явным образом, то получающееся выражение аналитично внутри эллипса и может быть разложено в сходящийся ряд.

Мы пользовались следующими разложениями:

1/ для процесса $\overline{p}p \rightarrow K^-K^+$

$$(z - z_{\Lambda})^{2} (z - z_{\Sigma})^{2} - \frac{d\sigma(z)}{d\Omega} = \sum_{n=1}^{M} A_{n}B_{n}T_{n}(z) ; /3/$$

2/для процессов $\overline{p}p \rightarrow \overline{\Lambda}\Lambda$ н $\overline{p}p \rightarrow \Sigma^+\Sigma^+$

$$\left(z-z_{K_{1}^{+}K^{\circ}}\right)^{2} \frac{d\sigma(z)}{d\Omega} = \sum_{n=1}^{M} A_{n}B_{n}T_{n}(z) .$$
 /4/

Здесь $T_n(z)$ - полиномы Чебышева, $B_n = (R^{2(n-1)} + R^{-2(n-1)} + R^{-2(n-1)})$

 $+2\delta_{n-1,0})^{-1/2}$, R - сумма полуосей эллипса, A - коэффициенты, получающиеся из подгонки.

Константы связи $g_{Kp}^2 \wedge H g_{Kp}^2 \Sigma$ /изотопинвариантность требует: $g_{Kop}^2 \Sigma^{+=2} g_{K-p}^2 \Sigma^{-}$ / могут быть выражены через величину $\sum_{n=1}^{M} A_n B_n T_n (z_{pole})$ следующим

образом * :

$$g_{K p \Lambda}^{4} = \sum_{n=1}^{M} A_{n} B_{n} T_{n} (z_{\Lambda}) \{ \frac{(z_{\Lambda} - z_{\Sigma})^{2} 10 (h c)^{2}}{32(p^{2} + m_{p}^{2}) q p^{3}} \times (q^{2} p^{2} (1 - \cos^{2} \theta_{\Lambda}) + q^{2} m_{p}^{2} + 2m_{p} (m_{p} + m_{\Lambda}) q p \cos \theta_{\Lambda} + (m_{p} + m_{\Lambda})^{2} p^{2}] (\frac{d z}{d \cos \theta})_{\cos \theta_{\Lambda}}^{2} \}^{-1},$$

где р = $0.5\sqrt{s-4m_p^2}$, q = $0.5\sqrt{s-4m_K^2}$ множитель $10(\hbar c)^2$ ($\hbar c = 0.1973 \, \phi M \, I \, 3B$ / введен для согласования единиц измерения, когда $d\sigma/d\Omega$ измеряется в $M\delta/$,

$$g_{K^{-}p\Lambda,\bar{K}^{0}p\Sigma^{+}=\sum_{n=1}^{M}A_{n}B_{n}T_{n}(z_{K^{+},K^{0}}) \{\frac{10(\hbar c)^{2}}{16(p^{2}+m_{p}^{2})qp^{3}}[m_{p}^{m}\Lambda,\Sigma^{-} -\sqrt{(p^{2}+m_{p}^{2})(q^{2}+m_{\Lambda,\Sigma}^{2})} + pq\cos\theta_{K^{+},K^{0}}](\frac{d}{d\cos\theta})^{2}\sum_{cos\theta}^{1}K^{+},K^{0}} \sqrt{6}/$$

где $q = 0, 5\sqrt{s - 4m_{\Lambda,\Sigma}^2}$.

Результаты подгонок представлены в табл. 1-3.

На основе табл. 1 можно сделать заключение, что реакция $p_p \rightarrow K^- K^+$ не очень подходит для нашей цели. При низких энергиях полюс находится на значительном расстоянии от физической области. С другой стороны, хорошо известно и отлично видно на рисунках работы /14/, что передний пик с ростом энергии "вымирает" очень быстро. Ввиду тесной связи между передним пиком в дифференциальном сечении и вкладом от обмена гиперонным полюсом в ^t-канале, кажется, что определение константы связи $g_{Kp\Lambda}^2$ на основе данных по этой реакции является трудной задачей. Однако ближайший разрез / $\pi\Lambda$ -обмен/ находится достаточно далеко для проведения стабильного аналитического продолжения к Λ -полюсу. Наши результаты по существу основаны на анализе данных

^{*} Вывод см. в Приложении.

Таблица 1

Результаты подгонки к данным по дифференциальным сечениям процесса $\bar{p}p \rightarrow K^-K^+$ и извлеченные значения константы связи $g^2_{Kp\Lambda}$. Степень ряда (3) определялась на основе критерия сходимости Каткоского (см., например, /11,12/).

Лаб. им- пульс р (Гэв/с)	Область подгонки в соз 8- плоскости	cosΘ _A	Число экспе- римен- тальных точек	М	X²	9крл ± 49крл	Ссыл- ки
0,90	-0,97+0,94	3,0	20	3	57,45	I3,I+I,5	 I4
I,00	-0,94+0,9I	2,77	20	3	40,96	I2,I <u>+</u> I,3	I 4
I,IO	-0,80 +0 ,97	2,58	2I	3	44,27	9,6 <u>+</u> I,I	I4
I,I6	-0,92 +0 ,96	2,49	20	3	36,18	I0,9 <u>+</u> 0,9	14
I,30	-0,9I +0, 96	2,30	19	3	27,9I	8,7+0,9	I4
I,36	-0,99 +0 ,98	2,24	20	3	42, IO	9 ,5<u>+</u>0, 5	14
I,50	-0,9 3+ 0,98	2,10	20	3	45,66	7,7+0,6	I4
I,80	-0,92+0,99	I,8 9	20	4	209,65	I4,2 <u>+</u> 0,6	I4
I,99	-0,94+0,97	I,80	20	4	23,22	II,3 <u>+</u> I,4	I4
2,40	-0,96+0,98	I,64	20	4	156,82	7,8+0,5	14
5,00	-0,92 +0 ,93	I , 29	17	3	24,34	15,3 <u>+</u> 1,1	15

Таблица 2

Результаты подгонок к данным по дифференциальным сечениям процесса $\bar{p}p \rightarrow \bar{\Lambda}\Lambda$ и извлеченные значения константы связи $g^2_{Kp\Lambda/23}$, Данные работ, обозначенных звездочкой, проанализированы в компиляции, которой мы и пользовались. Остальные соглашения такие же, что в табл. 1.

Лаб. им- пульс р (Гэв/с)	Область подгонки в соз 6 - плоскости	cos O _K t	Число эксп. точек	M	χ^{2} q^{2}_{Kph} $\pm \Delta q^{2}_{Kph}$	Ссыл- ки
2,19	-0,80 + I,0	I,34	II	3	2,93 4,8+0,2	I6 ^{*)}
2,43	-0,90+0, 99	I,26	I 9	4	I5,52 5,7 <u>+</u> 0,6	17 ^{*)}
2,70	0 , 33 + 0,98	I,2I	14	4	4,I7 I0,9 <u>+</u> 2,0	18 ^{*)}
3,60	0,2I + 0,99	I,I2	30	5	70,34 I2,0 <u>+</u> 0,7	19
3,66	0 ,56+I,00	I,I2	2I	4	15,14 7,7 <u>+</u> 1,5	20 [*]
3,66	0,64 + 0,95	I,I2	7	4	5,92 II,3 <u>+</u> I,9	21 *)
5,70	0,54 + 0,99	I,06	3 9	4	5I,46 8,0 <u>+</u> 0,6	22 ^{¥)}

ŋ

Таблица 3

+ \mathbf{M} $\overline{p}\,p\to\Sigma^+$ 4TO данным по дифференциальным сечениям процесса такие же, 8"-_{р∑}.Соглашения извлеченные значения константы связи Результаты подгонок к 3 табл. ыn

- CHJI-	21*) [9 22*)
2 C(KpΣ° KI Δgkpz°	3+0,2 2 7+0,2 3 9+0,3 2
- do +i	ннн
×2	19,27 81,14 26,96
W	ແຕຍ
Число эксп. точек	12 31 34
ବ୍ୟୁ ୪୦୨	I,I7 I,I6 I,07
Область подтонки в соз 6 - плоскости	0,44+0,97 0,07+0,99 0,59+1,00
JIao. zm- nynbc $\overline{\overline{\rho}}$ (Tab/c)	3, 50 3, 60 5, 70

только одной работы, где они представлены в графической форме. Поэтому вполне могло случиться, что мы занизили величины экспериментальных ошибок. Было бы желательно иметь больше хороших данных об этой реакции при различных энергиях.

По-видимому, реакции $\bar{pp} \rightarrow \bar{\Lambda}\Lambda$, $\bar{p}p \rightarrow \bar{\Sigma}^+ \Sigma^+$ более благоприятны для извлечения констант связи: полюса находятся ближе, а передний пик /обмен каонами/ с энергией "вымирает" значительно медленнее.

Наши значения среднего арифметического $g_{Kp\Lambda}^2 = 10,1$ и $g_{Kp\Sigma}^2 = 1,6$ подтверждают предсказания SU(3) симметрии /8/.

В итоге, нам кажется, что еще раз продемонстрирована пригодность этого метода извлечения констант связи. Не следует забывать, что он свободен от многих предположений и модельно-зависящих факторов, которые присущи дисперсионным соотношениям и другим методам.

Мы благодарны М.Шептицкой за некоторые полезные замечания.

Приложение

Полюсные вклады в инвариантные амплитуды процессов $\bar{p}_{P} \rightarrow K^{-}K^{+}$, $\bar{p}_{P} \rightarrow \Lambda \Lambda$ $\bar{p}_{P} \rightarrow \Sigma^{+}\Sigma^{+}$, соответствующие обменам частицами Λ , K и K^{0} в t-канале, имеют следующий вид:

$$M(s,t)_{\Lambda} = -\frac{m_{p}}{2} \frac{G_{Kp\Lambda}^{2}}{t - m_{\Lambda}^{2}} \{ \overline{v}(p_{1}) (\gamma q_{2}) u(p_{2}) + (m_{p} + /A.1) \}$$

+
$$m_{\Lambda}$$
) $\bar{v}(p_{1}) u(p_{2})$ };
 $M(s,t)_{K^{+},K^{0}} = m_{p}m_{\Lambda,\Sigma^{+}} \frac{G_{K p\Lambda,K p\Sigma}^{2}}{t - m_{K^{+},K^{0}}^{2}} \times /A.2/$

 $\times \overline{\mathbf{v}}(\mathbf{p}_1) \ \gamma_5 \mathbf{v}(\mathbf{q}_1) \ \overline{\mathbf{u}}(\mathbf{q}_2) \ \gamma_5 \mathbf{u}(\mathbf{p}_2)$.

8

9

Здесь $p_1 p_2$ и q_1, q_2 означают четырехмерные импульсы частиц в начальном и в конечном состояниях соответственно, v(p) - биспинор Дирака, описывающий античастицы, u(p) - биспинор Дирака, описывающий частицы, а G_{KNV} - константы связи

$$G_{KNY}^2 = 4\pi \cdot g_{KNY}^2 \cdot /A.3/$$

Подставив /А.1-2/ в дифференциальное сечение для бинарных реакций

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{\mathrm{q}}{\mathrm{p}} \frac{1}{16 \pi^2 \mathrm{s}} \sum_{\mathbf{s}_i, \mathbf{s}_f} |\mathrm{M}(\mathbf{s}, \mathbf{t})|^2, \qquad /A.4/$$

где $q = |\vec{q}_1| - |\vec{q}_2|$, $p = |\vec{p}_1| = |\vec{p}_2|$ и перейдя в формулах /3/ и /4/ к пределу $z \to z_{pole}$, получаем выражения, из которых при помощи элементарных алгебранческих операций приходим к формулам /5/ и /6/.

Литература

- 1. E.Pietarinen and C.P.Knudsen, Nucl. Phys., B67, 637 (1973).
- 2. N.Sznajder Hald, J.L.Petersen and G.Nenciu, Nucl.Phys., B59, 93 (1973).
- 3. C.Lopez and F.J.Yndurain, Nucl.Phys., <u>B64</u>, 315 (1973).
- 4. A.Cruz and A.Mabres, University of Zaragoza preprint, August, 1973.
- 5. T.Kariya. Progr. Theor. Phys., 50, 891 (1973).
- 6. O.V.Dumbrajs and M.Staszel. JINR preprint P2-7823 (1974), submitted to Nucl. Phys.
- 7. P.Baillon et al. CERN/D.Ph.II/Phys. 74-6, submitted to Phys.Lett.
- 8. B.R.Martin. Springer Tracts in Modern Physics, 55, 73 (1970).
- 9. A.D.Martin. Springer Tracts in Modern Physics, 55, 142 (1970).
- 10. N.M.Queen, M.Restignoli and G.Violini. Fortschr. Phys., 21, 651 (1973).
- 11. S.Dubnička, O.V.Dumbrajs and F.Nichitiu. Nucl. Phys., A217, 535 (1973).
- 12. O.V.Dumbrajs, Kh.Chernev and Z.Zlatanov. Nucl. Phys., B69, 336 (1974).
- 13. S.Dubnička, O.V.Dumbrajs. JINR preprint E2-7731 (1974).
- 14. E.Eisenhandler et al. Phys.Lett., 47B, 531 (1973).
- 15. A.Eide et al. Nucl. Phys., B60, 173 (1973).
- 16. N.Kwak et al. Phys. Rev., 186, 1392 (1969).
- 17. J.Badier et al. Phys.Lett., 25B, 152 (1967).
- 18. G.P.Fisher et al. Phys.Rev., 161, 1335 (1967).
- 19. H.W.Atherton et al. Nucl. Phys., B69, 1 (1974).
- 20. C.Balthay et al. Phys.Rev., 140, B1027 (1965).
- 21. B.Musgrave et al. Nuovo Cimento, 35, 735 (1965).
- 22. H.W.Atherton et al. Phys.Lett., <u>30B</u>, 494 (1969).
- 23. J.E.Enstrom et al. Lawrence Berkeley Laboratory. LBL-58, May, 1972.

Рукопись поступила в издательский отдел 9 июля 1974 года.

10