

Объединенный институт ядерных исследований дубна

P2-80-79

1

2/6-80

2396 2-80

THE N

Л.Н.Абесалашвили, Н.С.Амаглобели, Н.К.Куциди, А.Н.Сисакян, Л.А.Слепченко, Э.Т.Цивцивадзе, М.С.Чаргейшвили

ЭНЕРГЕТИЧЕСКАЯ ЗАВИСИМОСТЬ РАСПРЕДЕЛЕНИЙ МЕЗОНОВ В КВАРКОВЫХ СТРУЯХ

Направлено в ЯФ

Недавние исследования показали, что представления о кваркглюонной структуре адронов, проявляющейся в глубоконеупругих лептон-адронных столкновениях, составляют весьма удобный подход к пониманию инклюзивных процессов в адрон-адронных соударениях при высоких энергиях с большими и малыми поперечными импульсами /1-4/.

При этом изучение множественного рождения частиц в адронных процессах приобретает новые аспекты. Один из них - кваркглюонный механизм элементарного акта взаимодействия адронов, определяющий структуру и состав многочастичных конечных состояний. Второй - струйная картина продуктов реакции: наблюдаемые вторичные частицы в основном коллимированы вдоль осей сталкивающихся составляющих. Поэтому при изучении кварковой структуры адронов и динамики кварковых взаимодействий оказывается весьма полезным привлечь экспериментальную информацию, накопленную в инклюзивном подходе к множественному рождению частиц в адронных столкновениях.

В данной работе мы обратимся к возможной связи между импульсными /х/-распределениями быстрых адронов в области фрагментации адронных соударений и в глубоконеупругом рассеянии лептонов с адронами*. В частности, будет сделана феноменологическая попытка объяснения того, как эффекты кварк-глюонного взаимодействия, нарушающие скейлинг в глубоконеупругой области. могут маскировать истинные распределения адронов в кварковых струях.

§1. Рассмотрим инклюзивное одночастичное распределение адрона с в области фрагментации адронов A(B).

 $\mathbf{F}^{\mathbf{A}(\mathbf{B}) \mathbf{+} \mathbf{c}} (\mathbf{x}) = \frac{\mathbf{x} d\sigma^{\mathbf{A}\mathbf{B} \mathbf{+} \mathbf{c}}}{\sigma \, \mathrm{d} \mathbf{x}} = \frac{1}{\sigma} \int \frac{2\mathbf{E}}{\pi \sqrt{\mathbf{B}}} \frac{d\sigma^{\mathbf{A}\mathbf{B} \mathbf{+} \mathbf{c}}}{d^2 \mathbf{p}_{\perp} \, \mathrm{d} \mathbf{x}} d^2 \mathbf{p}_{\perp} .$

Основные закономерности инклюзивных процессов, в частности их масштабные свойства, могут быть поняты на основе соображений физического подобия и анализа размерностей ^{/5/}.

В рамках кварк-партонной модели вклад области фрагментации в одночастичный спектр АВ+СХ возникает из некогерентной суммы распадов валентных кварков, которые по предположению ^{/0-8/}

^{*}Ссылки на литературу по этим вопросам можно найти в обзорах /1,2/ и работах /8-8/.

несут основную долю импульса адрона А. Более того, функция $F^{A(B) \to C}(\mathbf{x})$ может быть представлена сверткой распределения вероятности $f_i^{A}(\mathbf{x}_i)$ составляющих і переносить долю \mathbf{x}_i полного импульса P_A и распределения последующей фрагментации составляющей і в адрон $C, D_i^C(\mathbf{x}_p)$:

$$\mathbf{F}^{\mathbf{A}(\mathbf{B}) \to \mathbf{C}} = \sum_{i} \iint d\mathbf{x}_{1} d\mathbf{x}_{2} \mathbf{f}_{1}^{\mathbf{A}}(\mathbf{x}_{i}) \mathbf{D}_{i}^{\mathbf{C}}(\mathbf{x}_{2}) \delta(\mathbf{x}_{1} \mathbf{x}_{2} - \mathbf{x}) . \qquad /1/$$

Заметим, что выражение /1/ может быть получено на базе общих представлений для инклюзивных сечений, построенных в кварк-партонной модели ^{/97} в предположении точной масштабной инвариантности и малой виртуальности составляющих, пренебрежении поперечным движением, а также когерентными эффектами. Функции $f_i(x_1)$ и $D_i(x_2)$ представляют собой функции распределений и фрагментации кварков i = u, d, s, c соответственно и определяются из экспериментов по глубоконеупругому рассеянию лептонов на адронах.

В области фрагментации кварков функции распределений f(x) и D(z) ведут себя при x + 1 как $(1-x)^{\pm}$, где величина показателя в определяется * правилами кваркового счета $^{10,11/}$. В частности, эти правила предсказывают поведение $(1-x)^{-3}$ для фрагментации протона и $(1-x)^{-1}$ – для фрагментации π -мезона соответственно в согласии с экспериментом /поведение f $_{q}^{\pi}(x) \sim ~(1-x)^{-5}$ было подтверждено недавно в опытах по образованию дилептонов в π^{N} -соударениях $^{13/}/$.

С учетом того, что предположение об универсальном характере кварковых распределений /14/подтверждается рядом результатов, представляет интерес проверить предсказания правил кваркового счета в анализе инклюзивчых сечений множественного образования частиц в нормальных /не предполагая больших поперечных импульсов/ адрон-адронных столкновениях. Однако непосредственное сравнение формулы /1/ с экспериментальными распределениями по продольным импульсам (х) конечных адронов в адронных соударениях показывает их значительное расхождение /1-2/. В ряде работ /6-8/ выходы из этой трудности искались на пути более подробного рассмотрения актов кварковых взаимодействий в различных областях х-переменной /процессов фрагментации вперед-назад/. Дело оказалось в необходимости различать эти акты фрагментации при 🗴 👌 и соответственно характер кварковых взаимодействий. В частности, в предельном случае фрагментации /?/, когда кварк, участвующий в процессе столкновения, несет большую часть всего импульса адрона, функция /1/. ока-

^{*}С использованием связи между упругими и неупругими формфакторами адронов /см., например, /12//.

зывается, в основном зависит от функции фрагментации /распада/ кварка $\mathbf{F}^{AB+C}(\mathbf{x}) \propto D_{q/A}(\mathbf{x})$, и, наоборот, в случае так называемой рекомбинации кварков ⁷⁸⁷ в конечном состоянии должна наблюдаться малоструйная картина и $\mathbf{F}^{AB+C}(\mathbf{x}) \propto \mathbf{f}_{q/A}(\mathbf{x})$. Отметим, однако, что подобный подход обладает рядом недостатков. В частности, для согласования результатов приходится вводить большое число феноменологических параметров и произвольных функций вероятностей кварковых распределений, при этом не делается предположений о вкладе глюонов и их взаимодействий с кварками.

Рассмотрим случай, соответствующий модели фрагментации, т.е. $f(x) = \delta(x-1)$ и, следовательно,

$$\mathbf{F}^{\mathbf{A}\mathbf{B} \to \mathbf{C}}(\mathbf{x}) \approx \sum_{\mathbf{q}} D_{\mathbf{q}}^{\mathbf{C}}(\mathbf{x}), \qquad /2/$$

и проиллюстрируем его на примере πp -соударений. $/\pi^{-}p \rightarrow \pi^{+} + X$, $\pi p \rightarrow K_{s}^{o} + X$ при $P_{,a6.} = 40$ ГзВ/с/. Известно, что полный опыт по глубоконеупругому рассеянию лептонов с учетом изото-пических симметрий позволит, вообще говоря, определить структурные функции кварков / u(x), d(x), s(x); u(x), d(x), $\bar{s}(x)$ / в адронах.

Однако ввиду фрагментарности имеющихся экспериментальных данных до сих пор в описании участвует некоторое число дополнительных предположений. Число этих дополнительных предположений /и соответственно степень произвола/ возрастает при исследовании функций фрагментации кварков $D_q^h(z)$. Например, в подходе ^{/4/} при большом числе оговорок их число /для мезонов/ сводится к четырем:

$$D_{q}^{h} \equiv D_{u}^{\pi^{+}} = \dots D, \qquad D' \equiv D_{u}^{\pi^{-}} = D_{d}^{\pi^{+}} = (D_{u}^{\pi^{+}} = D_{d}^{\pi^{-}}), \\ K = D_{u}^{K^{+}} = D_{d}^{K^{\circ}} = (D_{d}^{K^{-}} = D_{d}^{K^{\circ}}), \qquad K' \equiv D_{d}^{K^{+}} = D_{u}^{K^{\circ}} = (D_{u}^{K^{-}} = D_{d}^{K^{\circ}}),$$

и практически отсутствует экспериментальная информация о барионных функциях фрагментации. На puc.1 /см. также рис. 1 работы $^{15/}$ приведены результаты сравнения экспериментальных данных по реакциям $\pi^- p \rightarrow K_s^o + X$ и $\pi^- p \rightarrow \pi^+ + X$ с функциями фрагментации кварков в **ж**.К-мезоны, полученными в подходе $^{4/}$ с использованием экспериментальных результатов по e^+e^- -аннигиляции в адроны и глубоконеупругому электророждению. Анализировалась совокупность мировых экспериментальных данных /см. работу $^{/16/}$ и ссылки, содержащиеся в ней/. В качестве

^{*}По поводу результатов и трудностей на этом пути см. обзовы /1,2/.

Рис.1. **х** -спектры K_{s}° -мезонов в π - р-взаимодействии при $P_{\pi a \bar{b}}$.≈ = /18,5; 40; 250/ ГэВ/с. Сплошная линия - функция фрагментации /4/ $D^{K_{o}}(z)$ в параметризации работь /4/.

оригинального экспериментального материала в работе были использованы данные по *π*[¬]р ~взаимодействиям при Р_{Лаб.}≈5 ГэВ/с и Р_{Лаб.}≈ 40 ГэВ/с, полученные на однометровой водородной и двухметровой пропановых камерах ОИЯИ. Для реакции *π*[−]р → *π*⁺ + Х

$$P^{\pi \to \pi^{+}} = D' \approx D_{u}^{\pi} = D_{d}^{\pi^{+}} = /3/2$$
$$= (D_{u}^{\pi^{+}} = D_{d}^{\pi^{-}})$$

$$F^{\pi \to K_{g}^{o}} = \beta \left[\frac{3}{4} D' + \frac{1}{4} D \right], \qquad /4/$$

rge
$$\beta = \mathbf{K}/\mathbf{D} = \mathbf{K}'/\mathbf{D}'$$

 $\mathbf{M} \quad \mathbf{K} = \mathbf{D}_{u}^{\mathbf{K}^{+}} = \mathbf{D}_{d}^{\mathbf{K}^{\circ}} = (\mathbf{D}_{\overline{u}}^{\mathbf{K}^{-}} = \mathbf{D}_{\overline{d}}^{\mathbf{K}^{\circ}}),$
 $\mathbf{K}' = \mathbf{D}_{d}^{\mathbf{K}^{+}} = \mathbf{D}_{u}^{\mathbf{K}^{\circ}} = (\mathbf{D}_{\overline{d}}^{\mathbf{K}^{-}} = \mathbf{D}_{d}^{\mathbf{K}^{\circ}})$
 $= \mathbf{D}_{u}^{\mathbf{K}^{-}} = \mathbf{D}_{d}^{\mathbf{K}^{\circ}} = \mathbf{D}_{u}^{\mathbf{K}^{+}} = \mathbf{D}_{u}^{\mathbf{K}^{-}} = \mathbf{D}_{\overline{d}}^{\mathbf{K}^{\circ}}$

Обращает на себя внимание отклонение от масштабной инвариантности распределений, т.е. зависимость от энергии функций $D_q(x)$. Из сравнения приведенных на *рис.* 1,2 функций D_{π} , D_{K^0} , определенных для области сравнительно небольших энергий, видно, что они хорошо согласуются с экспериментальными данными по реакции $\pi p \rightarrow \pi, K + X$ лишь при относительно низких энергиях и расходятся с ними с ростом энергии.

§2. Известно, что в рамках кварк-партонной модели асимптотическая форма инклюзивных сечений образования адронов в глубоконеупругом рассеянии лелтонов в области фрагментации кварков имеет вид

$$\frac{d\sigma^{\ell_{p}} + \ell' + h + X}{dx dz} \propto \frac{\alpha^{2}}{G^{2}} \sum_{q} \ell_{q} f_{q}(x) D_{q}(z), \qquad (5)$$

где $\mathbf{x} = \mathbf{x}_{Bj}$, \mathbf{Q}^2 - квадрат передачи импульса, $\mathbf{z} = \mathbf{p}_b / \mathbf{p}_p$. Сечение /5/ представляет вклад нулевого /по взаимодействию кварков/ порядка и обладает следующими свойствами: 1/ скейлингом структурных функций $\mathbf{f} = \mathbf{f}(\mathbf{x})_{,}$, $\mathbf{D} = \mathbf{D}(\mathbf{z}),$ 2/ факторизацией, 3/ независимостью от $\mathbf{k}_{\perp}(\phi)$ и $< \mathbf{p}_{,}^2 > \neq \mathbf{f}(\mathbf{Q}^2)$. Все эти свойства нарушаются в квантовой хромодинамике /КХД/ динамическими поправками кварк-глюонного взаимодействия.

В настоящей работе мы сосредоточим внимание на учете отклонений структурных функций от масштабной инвариантности, т.е. на том, что отклонения показателей (п) кварковых распределений по продольным импульсам в адронных соударениях от значений, диктуемых правилами кваркового счета, вызваны эффектами нарушения скейлинга *.

На *рис.1,2* /см. также рис. 1 работы ^{/15}// приведены экспериментальные данные по продольным распределениям в реакциях $\pi^{-}p \rightarrow \pi^{+}, K_{\rm B}^{\circ}, \dots$ в широком диапазоне энергий. Экспериментальные данные фитировались зависимостью $(1-x)^{\rm B}$. Значения показателя в приведены в *тасбл.1* /для сравнения в ней приведены также параметры в для реакций $\pi^{+}p \rightarrow \pi^{-}$ и $pp \rightarrow K_{\rm S}^{\circ}$ /. Отметим, что значения параметра χ^{-2}/N находятся в разумной области 2,0÷0,8.

В результате было замечено, что степенной показатель п обнаруживает некоторую зависимость от начальной энергии сталкивающихся адронов. Обращает на себя внимание тот факт, что без учета зависимости n=n(s) от энергии трудно сдепать однозначный вывод о вероятности реализации того или иного механизма из рассмотренных выше. Качественно данные свидетельствуют о малости вклада процессов с фрагментацией или рекомбинацией в чистом виде в реакциях $\pi^- p \rightarrow \pi$, K° и полном отсутствии механизма фрагментации в процессе центрального образования $pp \rightarrow \pi$, K° . При этом энергетическая зависимость продольных спектров становится с ростом энергии все более значительной и начиная с $P_{лаб, \geq}$ 40 ГзВ/с проявляется в заметном росте показателя n; x-распределения сужаются с возрастанием энергии при x +1 и пик распределений при малых значениях x растет с увеличением энергии.

Таким образом, все это свидетельствует о глубокой аналогии поведения рассмотренных х-распределений с характерными эффектами нарушения бьерновского скайлинга структурных функций лептон-адронных реакций в глубоконеупругой области.

*Учет влияния поперечного движения кварков на х-распределения адронов проведен в работе ^{/15/}.

Рис.2. x -спектры π^+ -мезонов в $\pi^- p$ -соударениях при P_{ABG} = 16 и 100 Гэ8/с. Сплошные линии - результаты аппроксимации зависимостью $(1-x)^{nc}$, где $n_p(x<0) -3, 2\pm0, 1$; значения n_{π} взяты из таблицы.

 $Ta \delta nu ya$ $F^{AB \rightarrow C} (x) = (1 - x)^{n}$

Р _{лаб.} /ГэВ/с	:/ 18,5	40	250	
$\pi^- p \rightarrow K_s^\circ, n$	1,72 <u>+</u> 0,14	2,15+0,34	5,25+0,5	5
Р _{лаб,} /ГэВ/с/	19 21	102	205	300
$pp \rightarrow K_s^{\circ}$	4,07+0,15 3,94+0),37 4,40 <u>+</u> 1,	85 4,36 <u>+</u> 0,45	7,50+2,72
Р _{лаб.} /ГэВ/с/	16	100		
π ⁺ p → π ⁻	1,97 <u>+</u> 0,17	4,40 <u>+</u> 0	,12	
$\pi^- p \rightarrow \pi^+$	2,21 <u>+</u> 0,02	3,67 <u>+</u> 0	,12	

Действительно, в рамках квантовой хромодинамики /см., например, $^{/17/}$ / учет кварк-глюонного взаимодействия ведет к простой картине нарушения х-скейлинга: с ростом величины Q² и при малых х структурная функция $F_{2N}\left(x,\hat{Q}^2\right)\equiv \sum x\left(q(x)+\bar{q}(x)\right)$ растет, а в области больших значений х /вплоть до х $^{-1}$ / - убывает. Эти эффекты довольно хорошо видны в опытах по глубоко-неупругому рассеянию лептонов $^{/18/}$.Количественно это оказывается удобным проверять в анализе зависимости от Q^2 структурных функций $F_{2N}\left(x,Q^2\right)$ и их моментов $^{/18,19/}$.

$$M_N(Q^2) \propto \int_0^1 dx \ x^{N-2} \ F_2(x, Q^2).$$
 /6/

Квантовая хромодинамика для больших значений Q² предсказывает[•] логарифмическое падение функции /6/

$$M_N(Q^2) \propto [\log(Q^2/\Lambda^2)]^{-d_N}$$
, /7/

где $\Lambda ~~ 0,5$ ГэВ/с и d_N – аномальная размерность нуклона. Выяснение конкретного вида автомодельных асимптотик, равно как и слабых /логарифмических/ поправок к ним, нуждается в дополнительной информации, определяемой динамикой взаимодействия. Важной задачей здесь является изучение квантовохромодинамических эффектов. Весьма удобным оказывается проводить такое рассмотрение в рамках трехмерных квазипотенциальных уравнений $^{/20/}$ для составных частиц в переменных светового фронта $^{/21/}$.

Что будут означать правила кваркового счета для структурных функций адронов в картине с нарушением скейлинга?

Согласно изложенному выше с возрастанием величины Q^2 показатель N $(1-x)^N$ при x $\rightarrow 1$ должен увеличиваться. При этом истинное распределение кварков $F_2(x) = x(q(x) + q(x))$ будет определяться суммой таких распределений с коэффициентами, зависящими от Q^2 :

$$xq(x) \propto \sum_{N \ge n_0} c_N(Q^2) (1-x)^N$$
,

ⁿ₀ - значение, определяемое кварковым счетом. С увеличением квадрата передачи импульса от лептона к адрону Q² в этой сумме будут доминировать члены с большими коэффициентами с_N(Q²), что эффективно приведет к изменению формы /сужению/ структурных функций в области х → 1.

$$xq(x) \approx (1-x)^{N_{3}} \frac{\varphi_{\varphi}(Q^{2})}{p},$$

$$N_{3} \frac{\varphi_{\varphi}}{p}, > N = n_{0} + \Delta_{g}.$$
/8/

Рис. 3. Зависимость функции F(x,s) для $\pi^{\pm} p \to \pi^{\mp}$ реакций от энергии начальных $\pi^{\pm} - me$ зонов для фиксированных интервалов переменной x.

Действительно, расчеты по теории возмущений и анализ методом ренормгруппы в КХД дают такое поведение, например, ^{/22/}

$$\frac{F(x,Q^2)}{F(x,Q^2)} \approx \frac{\exp(0,69\,Gs)(1-x)^{4Gs}}{\Gamma(1+\alpha+4Gs)}, \qquad (9/$$

где G=4/25 для 4-х ароматов кварков и $\bar{s} = \log[\log Q^2/\Lambda^2 / \log Q_0^2/\Lambda^2].$

В настоящей работе проводился поиск эффектов нарушения скейлинга в распределениях по продольному импульсу вторичных мезонов в адронных соударениях. В частности, было проанализировано, как отклонение от правил кваркового счета (1-х) п может быть объяснено за счет зависимости от энергии инклюзивных распределений F(x,s).Качественно на эту зависимость указывают зависимости от энергии F=F(x,s) и моментов

$$<\mathbf{x}^{N}>F(\mathbf{x},\mathbf{s})=\int_{0}^{1}\mathbf{x}^{N}F(\mathbf{x},\mathbf{s})\,d\mathbf{x},$$
 /10/

представленные на puc.3 и 4 соответственно. Из рисунков видно, в частности, что отмеченный выше режим структурных функций наступает в сечениях адронных реакций $d\sigma/dx(mp \rightarrow \pi, K)$ в области энергий серпуховского ускорителя / $P_{\pi ab} \propto 40-60$ ГэВ/с// одновременно с изменением в режиме поведения полных сечений ^{/23/}. При подгонке этих распределений по формуле, аналогичной /9/,

 $F(x, s) = A(\log s)^{\alpha} (1-x)^{\beta + \gamma \log \log s/s_0}$

оказалось, что параметры α,β,γ находятся в разумном согласии с формой струйного распределения мезонов D(z) « $(1-z)^2$ и значениями β,γ , предсказанными в рамках КХД для валентных кварков /см., в частности, ^{/22/}/.

$$\pi^{+}\mathbf{p} \rightarrow \pi^{-}: \quad \alpha = 0,404 \pm 0,059, \quad \beta = 0,391 \neq 0,011, \quad \gamma \ll 2,$$

$$\pi^{-}\mathbf{p} \rightarrow \mathbf{K}_{g}^{\circ}: \quad \alpha = 0,14 \pm 0,11, \quad \beta = 0,10 \pm 0,02, \quad \gamma \propto 2.$$

См. также *рис.5*.

В заключение отметим, что результаты настоящего анализа позволяют сделать вывод о том, что характер отклонения зависимости распределений по продольным импульсам в адронных соударениях от значений, диктуемых правилами кваркового счета, может быть объяснен частично в рамках эффектов нарушения масштабной инвариантности в глубоконеупругом рассеяния лептонов. Отметим также, что учет другого важного источника подобного отклонения - вклада внутреннего поперечного импульса взаимодействующих кварков и глюонов - рассматривается в работе ⁽¹⁵⁾.

Авторы глубоко благодарны Н.Н.Боголюбову и Д.Н.Тавхелидзе за постоянную научную поддержку, В.Г.Гришину, А.Н.Квинихидзе, В.А.Матвееву, Ю.В.Тевзадзе за обсуждение результатов, а также Р.А.Кватадзе, М.М.Куталия за помощь в расчетах.

ЛИТЕРАТУРА

- 1. Cl e F.E. Rapp. Talk at the XIX int. Conf. on High Energy Physics, Tokyo, 1978.
- Diebold R. Rapp. Talk at the XIX Int. Conf. on High Energy Physics, Tokyo, 1978. Satz H. Inv. Talk at the International Conf. on High Energy Physics, Budarest, 1977.
- Matveev V.A. Inv. Taik at the XIX Int. Conf. on High Energy Physics, Tokyo, 1978; Matveev V.A., Slepchenko L.A., Tavkhelidze A.N. JINR, E2-11894, Dubna, 1978.
- Feynman R.P., Field R.D. Phys.Rcv., 1977, 015, p.2590; Field R.D. Rapp. Talk at the XIX int. Conf. on High Energy Physics, Tokyo, 1978.
- Матвеев В.А., Мурадян Р.М., Тавхелидзе Н. ОИЯИ, Р2-4572, Дубна, 1968.
- 6. Ochs W. Nucl. Phys., 1977, B118, p.397.
- 7. Anderson B., Gustafson G., Peterson C. Phys.Lett., 1977, 69B p.221.

- 8. Hwa R.C. Inv. Talk at the EPS Conf. on High Energy Physics, Geneva, 1979; Das K.P., Hwa R.C. Phys.Lett., 1977, 68B, p.459; Duke D., Taylor F. Phys.Rev., 1978, D17, p.1788.
- 9. Квинихидзе А.Н., Сисакян А.Н., Слепченко Л.А., Тавхелидзе А.Н. ЭЧАЯ, 1977, вып. 3, с. 478.
- Matveev V.A., Muradyan R.M., Tavkhelidze A.N. Lett. Nuovo Cim., 1973, 7, p.719; Brodsky S., Farrar G. Phys.Rev. Lett., 1973, 31, p.1153.
- 11. Gunion J. Phys.Rev., 1976, D10, p.242.
- 12. Drell S.D., Yan T.M. Phys.Rev.Lett., 1970, 24, p.181; West G.B Phys.Rev.Lett., 1970, 24, p.1206.
- 13. Lederman L. Rapp. Talk at the XIX Int.Conf. on High Energy Physics, Tokyo, 1978.
- 14. Логунов А.А., Мествиришвили М.А., Петров В.А. ИФВЭ, СТФ 74-66, Серпухов, 1974.
- Абесалашвили Л.Н., Амаглобели Н.С., Куциди Н.К., Сисакян А.Н., Слепченко Л.А., Цивцивадзе Э.Т., Чаргеишвили М.С. ОИЯИ, Р2-8080, Дубна, 1980.
- 16. Cutts D. et al. Phys.Rev.Lett., 1979, 43, p.319.
- Field R. Rapp.Talk at the XIX Int.Conf. on High Energy Physics, Tokyo, 1978; Ellis J. Applications of QCD. SLAC-PUB-2121, Stanford, 1978.
- Gabathuler E. Proc. of the EPS Conference on High Energy Physics, Geneva, 1979; Fox G. Nucl.Phys., 1977, 8131, p.101; 1978, B134, p.269.
- Nachtmann O. Nucl.Phys., 1974, 863, p.237; 1974, B78, p.455. Proc. of the Int. Symp. on Lepton-Hadron Interactions, Hamburg, 1977.
- 20. Logunov A.A., Tavkhelidze A.N. Nuovo Cim., 1963, 29, p.380.
- Матвеев В.А., Мурадян Р.И., Тавхелидзе А.Н. ТМФ, 1979, 40, с.329; Матвеев В.А., Слепченко Л.А., Тавхелидзе А.Н. Доклад на II Межд. семинаре по физике высоких энергий и теории поля. Серпухов, 1979.
- 22. Buras A.J., Gaemers K. Nucl.Phys., 1978, B132, p.249.
- 23. Бушнин Ю.5. и др. ЯФ, 1969, 10, с.585.

Рукопись поступила в издательский отдел 4 февраля 1980 года.