

Объединенный институт ядерных исследований дубна

582 2-81

9/2-81 P2-80-694

В.С.Барашенков, Н.В.Славин

ДИФФЕРЕНЦИАЛЬНЫЕ И ИНТЕГРАЛЬНЫЕ ХАРАКТЕРИСТИКИ 77-МЕЗОНОВ В ВЫСОКОЭНЕРГЕТИЧЕСКИХ N-N СТОЛКНОВЕНИЯХ

Направлено в "Acta Physica Polonica"

В работах $^{/1,2/}$ получены феноменологические выражения для инклюзивных релятивистски-инвариантных распределений нуклонов и мезонов в неупругих N-N столкновениях, хорошо согласующиеся с экспериментом при энергиях T \gtrsim 5 ГэВ. В настоящей работе аналогичные выражения предлагаются для неупругих π -N взаимодействий.

Распределения "сохраняющихся" частиц /мезона при x > 0и вылетающего в противоположную полусферу нуклона с x < 0/ мы будем описывать выражением, которое с точностью до численных значений коэффициентов совпадает с использовавшимся в работ $e^{/1/}$ выражением для спектра лидирующих частиц в N-N столкновениях. Соответствующие значения коэффициентов указаны в табл.1 и 2*

К "несохраняющимся" частицам в π -N столкновении кроме частиц с изменившимися знаками заряда относятся также нуклон и мезон, сохранившие знак заряда, но вылетающие в полусферы, противоположные направлениям движения соответствующих первичных частиц /например, в случае $\pi^- - p$ взаимодействия это протон с x > 0и π^- -мезон с x < 0 /. Инклюзивный спектр несохраняющихся частиц, мезонов и нуклонов, $E \cdot d^3 \sigma_{nc} / dp^3$ мы также выберем в том же виде, как для N – N столкновений /см. формулу /1/ в работе /2/, где надо считать $x \equiv |x|$ /. Соответствующие значения коэффициентов приведены в <u>табл.3</u>. Эти значения применимы как для x > 0, так и для x < 0 Исключение составляет лишь коэффициент "b", величина которого для x < 0 указана в скобках.

Рис. 1 и 2 иллюстрируют хорошее согласие выбранных аппроксимаций с опытом.

На следующем рисунке и в <u>табл.4</u> приведены данные по средней множественности вторичных частиц

$$\langle n_{\mathbf{x}} \rangle = \sigma_{\mathrm{in}}^{-1} \int (\mathbf{E} \frac{\mathrm{d}^{3} \sigma_{\mathrm{c}}}{\mathrm{d} p^{3}}) \frac{\mathrm{d}^{3} p}{\mathrm{E}} + \sigma_{\mathrm{in}}^{-1} \int (\mathbf{E} \frac{\mathrm{d}^{3} \sigma_{\mathrm{nc}}}{\mathrm{d} p^{3}}) \frac{\mathrm{d}^{3} p}{\mathrm{E}}, \qquad /1/$$

где интегрирование спектров сохраняющихся и несохраняющихся частиц выполняется по соответствующим значениям х /передним

^{*} Мы используем те же стандартные обозначения, что и в работах^{/1,2/}. Далее везде Т - кинетическая энергия налетающей частицы в лабораторной системе координат.

1

Таблица І

Значения коэффициентов для расчета спектров сохраняющихся *п*-мезонов и нуклонов в области | **x** | <0.7

Коэфф.	[
Реакция	а	b	с	đ	f	g	ע	u	v
$\pi^{t} \rho \rightarrow \pi^{t} + \cdots$									
	85	15	-0,6	6,4	0,3	-3,2	I,26	5	0,04
π [±] p p +	2 , I	0,16	0,04	6,2	0,I	5,5	I,26	1,3	-0,25

Таблица 2

Значения коэффициентов для расчета спектров сохраняющихся *п* −мезонов и нуклонов в области | x| ≥0,7

Од вс	инако ех ре	овые) Сакций	цля 1:	π [±] p →	£ [±] +	π ^t p → p +			
	A			-		I,5			
	R	R – U.U2			,02				
	a	2		_		υ,	8		
i	طر	βi	8i	G _i	^R i	^G i	R _i		
I	Ű	υ	I,5	3,7	I,7	32	I,I		
2	0,5	-0,5	I,5 ·	6,5	4,6	36	5,3		
3	υ	-I,U	0,2	0,1	I,4	-	-		

и задним полусферам вылета частиц/. Расчетные кривые близки к экспериментальным точкам. При T $\gtrsim 100$ ГэВ экспериментальные значения <n_{ch} > систематически располагаются несколько выше расчетной кривой. Это обусловлено тем, что измеряемая на опыте суммарная множественность всех заряженных частиц на величину множественности странных частиц и антипротонов <n_s,p > больше расчетных значений <n* > = <n_p> + <n_{\pi} ± > Как и в случае p - p взаимодействий /см. /2/, наибольшей

Как и в случае p - p взаимодействий /см. ²²/, наибольшей оказывается множественность частиц сохраняющегося знака заряда. Не зависящей от заряда множественность мезонов становится лишь при очень высоких энергиях: T $\gtrsim 10^{3}$ ГэВ. Вместе с тем доля рож-

Таблица 3 Значения коэффициентов для спектра несохраняющихся

частиц

Коэффиц.	$\pi^{\mathbf{T}}\mathbf{p} \longrightarrow \pi^{\mathbf{t}} + \dots$	π^t p → π ^e +	π [±] p→p+	$\pi^{t}p \longrightarrow \pi^{t}+\ldots$
a	20	22	I,5	20
b	1,8(2,6)*	I,7(2)*	4	2,6
с	0,02	0,01	-0,02	0,02
đ	2,2	I,4	I,5	I ,4
f	0,01	0,04	-0,I	0,0I
ġ	I,6	0,55	I,8	I,6
h	II	II	6	6

*Для области x < 0.

Таблица 4

Относительная величина множественности нейтральных и заряженных мезонов в неупругих $\pi^- p$ -взаимодействиях

- E-P	$\langle n_{x^o} \rangle / \langle n_{\pi^{\pm}} \rangle$				
т, 195	расчет	опыт			
7	0,41	0,40 <u>+</u> 0,12 [5-7]			
IU	0,44	-			
2 5	0 ,4 6	0,47 <u>+</u> 0,05 [8]			
40	0,46	0,45 <u>+</u> 0,01 [9]			
100	0,47	0,46 <u>+</u> 0,06 [18] *			
205	0,48	0,56 <u>+</u> 0,09 [I9] *			
103	0,49	-			

* С использованием значения $< n_{\pi^{\pm}} > = < n_{ch} >_{exp} - < n_{p \ theor}$

<u>Рис.1.</u> Дифференциальные распределения заряженных частиц в неупругих π - N столкновениях. Точки - расчет для T =16 ГэВ. Экспериментальные кривые взяты из работ /3.4/. Около кривых указаны соответствующие значения p_{\perp} /ГэВ/с/. Теоретические спектры протонов при x < 0и π^- -мезонов при x > 0 рассчитаны по формуле для сохраняющихся частиц. Оставшиеся части спектров этих частиц и спектр π^+ -мезонов выполнены по формуле для несохраняющихся частиц.

Рис.2. Дифференциальные распределения π° -мезонов, рождающихся в π^{-} -р столкновениях при энергии Т. Кривые – расчет. Экспериментальные точки взяты из работы /5/. Около кривых указаны значения P_{\perp} /ГэB/с/.

дающихся π° -мезонов во всем интервале энергий T >>1 ГэВ остается почти постоянной: <n $_{\pi^{\circ}}$ >/<n $_{\pm}$ \geq 40-50%.

Средние поперечные импульсы со́храняющихся нуклонов и мезонов оказываются заметно большими по сравнению с практически одинаковыми поперечными импульсами остальных частиц /см. табл.5, где в качестве примера рассмотрено $\pi^- p$ взаимодействие/. Энергетическая зависимость <p_1> очень слабая.

Выделенный характер сохраняющихся частиц проявляется и в величине их энергии, которая значительно, особенно для нуклона, превосходит энергию остальных частиц. Например, в случае $\pi^- - p$ взаимодействий средняя энергия протонов в системе центра масс $\langle T_p \rangle \ge T^{\frac{1}{2}}$ подобно тому, как это имеет место при p-pстолкновениях. В то же время энергия мезонов ~ T^a , где $a \simeq 0.3$; при этом $\langle T_{\pi^+} \rangle \simeq \langle T_{\pi}^\circ \rangle$, а энергия π^- -мезонов, среди которых наряду с сохраняющимися имеются быстрые лидирующие частицы, оказывается приблизительно в полтора раза большей /см. рис. 4/.

При одной и той же первичной энергии T кинетическая энергия вторичных мезонов в $\pi - N$ столкновениях в среднем на 10-20% больше, чем в случае N - N взаимодействий /в системе центра масс/.

В экспериментальных работах часто рассматривается коэффициент неупругости < K >, характеризующий затраты энергии на образование новых частиц. В случае $\pi - N$ взаимодействий этот коэффициент определяется менее однозначно, чем для N - N взаимодействий. В соответствии с его физическим смыслом коэффициент < K > следовало бы определить как

$$= 1 - \{ + + M_N + M_{\pi} \} / \sqrt{s}$$
, /2/

где <T_N > и <T_{πLID}> - средние кинетические энергии вторичного нуклона и лидирующего π -мезона, M_N и M_{π} - их массы. Однако в настоящее время нет общепринятых критериев выделения лидирующей частицы среди других сохраняющихся частиц и соотношение /2/ часто заменяется формулой

 $\langle K \rangle = \langle \Delta E_{\pi} \rangle / \sqrt{s}$, /3/

где $<\Delta E_{\pi} > -$ суммарная средняя энергия всех вторичных мезонов в системе центра масс за вычетом средней энергии одного вторичного мезона $< E_{\pi} \pm > = < T_{\pi} \pm > + M_{\pi} \pm$. Рассчитанные таким образом для случая $\pi - p$ взаимодействий значения < K > вместе с известными экспериментальными данными приведены в табл.6.

Величина <K>, определенная по формуле /2/, почти вдвое превосходит коэффициент неупругости N-N взаимодействий /см.

5

работу /1// и возрастает при увеличении энергии первичной частицы Т.Это обусловлено большим вкладом лидирующего мезона.

Таблица 5

Средний	поперечный	импу	льс	вторичных	частиц	в	неупругом
	• 77	p	взан	имодействи	н		

т,ГэВ	<₽₁₽> , ГэВ/с	⟨₽₄ я⁻ > , ГэВ/с	< Р⊥ <i>π*</i> , <i>π°</i> > , ГэВ/с
10	U,42	0,36	0,30
	(0,42 <u>+</u> 0,03)[23,24]*		(0,30 <u>+</u> 0,02) [23,24]
20	0,43	0,37	0,32
	(0,42 <u>+</u> 0,04) [22]	(0,37 <u>+</u> 0,0I) [25,26]	
40	0,43	0,38	0,33
		(0,356 <u>+</u> 0,004) [27]	(0,369 <u>+</u> 0,004)[27]
102	0,44	0,39	0,34
103	0,45	0,40	0,35
5xI0 ³	0,46	0,42	0,36

* В скобках указаны экспериментальные данные.

Та	бл	и	цa	6	
_	_	_			

Коэффициенты неупругости *п* р взаимодействий в системе центра масс

Т, ГэВ	< K _p >	< K >			
		Расчет	0пыт /28/		
7	0,30	0,47	0,49 <u>+</u> 0,08		
10	0,30	0,48	0,57 <u>+</u> 0,05		
16	0,30	0,51	0,56 <u>+</u> 0,06		
10 ²	0,29	0,59	-		
10 ⁸	0,26	0,67	-		

Рис.3. Средняя множественность частиц, рождающихся в неупругих π^{-} -р взаимодействиях. Сплошные кривые – расчетные значения $\langle n_p \rangle$ и $\langle n_{ch}^* \rangle$. Штрих-пунктирная, точечная и пунктирная кривые – расчетные значения $\langle n_{a} \rangle \langle n_{a} \rangle$

<u>Рис.4.</u> Средняя кинетическая энергия вторичных частиц в неупругих $\pi - p$ -взаимодействиях /система центра масс/. Сплошная кривая – энергия протонов. Верхняя и нижняя пунктирные кривые – соответственно $\langle T_{\pi} \rangle$ и $\langle T_{\pi} \rangle$. Точечная кривая – средняя энергия заряженных мезонов. Значками \blacktriangle нанесены усредненные экспериментальные данные для заряженных мезонов, значки о – экспериментальные данные для протонов /25,28-81/.

Таблица 7

Относительная доля энергии, затрачиваемая в $\pi^{-\perp} p$ взаимодействиях на образование π° -мезонов в лабораторной системе координат

Т, ГэВ	Расче	т Опыт
10,5 18,5 40 10 ² 10 ³ 5•10 ³	0,19 0,20 0,23 0,24 0,26 0,27	0,22 <u>+0,01 /32/</u> 0,21 <u>+0,01/33,34/</u> 0,25 <u>+0,01/34/</u> - -

Проще обстоит дело с парциальными коэффициентами неупругости, относящимися ко вторичному нуклону и π_ мезонам, заряд которых отличен от заряда первичного мезона

 $<K_{x}>= <n_{x}>\{<T_{x}>+M_{x}\}/\sqrt{s}./4/$

Неоднозначность этих коэффициентов связана лишь с выбором системы координат. Как и в случае N-N взаимодействий, протонный коэффициент неупругости < K_p > практи-

чески не зависит от энергии T, мезонные коэффициенты неупругости очень медленно увеличиваются с ростом T /см. табл.6 и 7/. При всех энергиях T>10 ГэВ отношение коэффициентов неупругости несохраняющихся мезонов различных знаков заряда /например, $<K_{\pi^0} > /< K_{\pi^+} >$ в случае $\pi^- p$ столкновений/ с точностью до нескольких процентов равно единице.

Из приведенных данных видно, что аппроксимирующие выражения для дифференциальных распределений сохраняющихся и несохраняющихся частиц $\operatorname{E} d^3 \sigma / d p^3$ позволяют "свернуть" большие объемы экспериментальной информации. С помощью этих выражений можно получить достаточно точные оценки различных величин в тех областях кинематических переменных, для которых еще нет измерений.

ЛИТЕРАТУРА

- 1. Barashenkov V.S., Slavin N.V. Acta Phys.Pol. (in print); ОИЯИ, P2-80-533, Дубна, 1980.
- 2. Barashenkov V.S., Slavin N.V. Acta Phys.Pol. (in print); ОИЯИ- Р2- 80-694, Дубна, 1980.
- Dentschman M. Amsterdam Int.Conf. on Elementary Particles, Amsterdam, 1971, p.153.
- 4. Ferbel T. Report of Rochester Univ. UR-408, Rochester, 1973.
- 5. Donaldson C. et al. Phys. Rev., 1978, B73, p.375.
- 6. Биргер Н.Г. и др. ЖЭТФ, 1961, 41, с.1461.
- 7. Любимов В.Б. и др. ОИЯИ, Р-974, Дубна, 1962.
- 8. Айнутдинов М.С. и др. ЖЭТФ, 1963, 44, с.413.

- 9. Elbert J.W. et al. Nucl.Phys., 1970, B19, p.85.
- 10. Абдурахимов А.У. и др. ЯФ, 1973, 17, с.1235.
- 11. Binkley M.E. et al. Phys.Lett., 1973, B45, p.295.
- 12. Bogert D. et al. Phys.Rev.Lett., 1973, 31, p.1271.
- 13. Berger E.L. et al. Nucl. Phys., 1974, B77, p.365.
- 14. Fong D. et al. Phys.Rev.Lett., 1976, 37, p.736.
- 15. Elias J.E. Fermilab-Pub-79/47-Exp, Batavia, 1979.
- 16. Ангелов Н.С. и др. ЯФ, 1977, 25, с.591.
- 17. Бацкович С. и др. ЯФ, 1978, 27, с.1225.
- 18. Erwin J. et al. Phys.Rev.Lett., 1974, 32, p.254.
- 19. Berger E.L. et al. Report CERN/D.Ph./Phys., 74-27, Geneva, 1974.
- Bogert D. et al. Report NAL-Conf.-74/55-Exp., Batavia, 1974.
- 21. Hagopian S. et al. Report FSU HEP 76-12, Florida, 1976.
- 22. Antinucci M. et al. Lett.Nuovo Cim., 1973, 6, p.121.
- 23. Bigi A. et al. Proc. of the XI Int.Conf. on High Energy Phys., 1962, CERN, p.247.
- 24. Ferbel T., Taft H. Nuovo Cim., 1963, 28, p.1214.
- 25. Goldsack S.J. et al. Nuovo Cim., 1962, 23, p.941.
- 26. Ferrero M.I. et al. Nuovo Cim., 1963, 27, p.1066.
- 27. Абдурахимов А.У. и др. ЯФ, 1973, 18, с.545.
- 28, Barashenkov V.S. et al. Fort.d.Phys., 1967, 15, p.435.
- 29. Grote G. et al. Proc. of the XI Int.Conf. on High Energy Phys., 1962, CERN, p.64.
- 30. Боос Э.Г. и др. Материалы XII Международной конференции по физике высоких энергий, Дубна, 1964.
- Heider G. Report Int. f
 ür Radiumforschung und Kernphysik, Wien, 1963.
- 32. Elliot J.R. et al. Proc. of the XVII Int. Conf. on High Energy Phys., London, 1974.
- 33. Biswas N.N. et al. Proc. of the XVII Int. Conf. on High Energy Phys., London, 1974.
- 34. Ангелов Н.С. и др. ЯФ, 1976, 23, с. 365.

Рукопись поступила в издательский отдел 30 октября 1980 года.

9