

Н.С.Амелин

МОДЕЛЬ ВНУТРИЯДЕРНЫХ КАСКАДОВ С УЧЕТОМ РЕЗОНАНСОВ

P2-80-661

введение

Известно, что модель внутриядерных каскадов /1/ довольно успешно описывает взаимодействие нуклонов и л - мезонов с атомными ядрами. В этой модели во внутриядерный каскад вовлекаются нуклоны и «-мезоны, рождаемые непосредственно в точке взаимодействия. Есть экспериментальные факты, не учтенные в каскадной модели. Например, л -мезоны могут рождаться посредством образования и распада резонансов в нуклон-нуклонных и пион-нуклонных взаимодействиях. При энергии ниже порога рождения новых частиц л-мезоны, взаимодействуя с нуклонами. могут образовывать барионные резонансы*. Резонансы внутри ядра имеют определенный, зависящий от энергии и ширины резонанса пробег в ядре до распада. Можно предположить, что движущийся резонанс способен провзаимодействовать с внутриядерным нуклоном. Поэтому интересно выяснить, как скажется учет рождения и перерассеяния резонансов на каскадных расчетах взаимодействия нуклонов и 7 -мезонов с ядрами,

При попытке реализации даже такой неквантовой трактовки учета резонансов возникают знажительные трудности из-за недостаточной экспериментальной информации о рождении резонансов и взаимодействии их с нуклонами. Ранее проводился учет резонансов в каскадных расчетах²-4[/]. С целью выяснения влияния резонансов на число внутриядерных столкновений резонансы при весьма упрощающих предположениях учитывались в работе^{/2/}. Более точный учет рождения и перерассеямия барионных резонансов с полным моментом 3/2 и изотопическим спином 3/2 /так называемых Δ /3/2, 3/2/-изобар/ внутри ядра был сделан в работах^{/3,4/}.

В данной работе предлагается аналогичный моделям^{73,47} вариант модели внутриядерных каскадов с учетом образования и перерассеяния $\Delta/3/2,3/2/$ -изобар, рожденных как в упругих пион-нуклонных взаимодействиях, так и неупругих пион-нуклонных и нуклон-нуклонных взаимодействиях. Следуя работе⁷⁴⁷, бу-

^{*} Заметим, что резкое резонансное возрастание полного сечения взаимодействия *п*-мезона с нуклоном при кинетической энергии *п*-мезона порядка 200 МэВ приводит к нарушению условий применимости каскадной модели ^{/1/}.

дем называть предложенную модель изобарной. В основу изобарной модели положена "безонная версия" модели внутриядерных каскадов ^{/5/}.

В следующем разделе конкретизируем процесс рождения /3/2, 3/2/-изобар, движения их внутри ядра, взаимодействия с внутриядерными нуклонами, и распада.

Последний раздел посвящен сравнению расчетов по изобарной модели с экспериментальными данными и расчетами по модели⁷⁵⁷.

ИЗОБАРНАЯ МОДЕЛЬ

Рассматривая взаимодействие и -мезонов и нуклонов при возрастающей энергии налетающей частицы, можно видеть, что рождаются различные типы барионных и мезонных резонансов. Однако полные сечения рождения отдельных резонансов нередко трудно выделить. Еще меньше информации о дифференциальных сечениях, Мало или почти ничего не известно о сечениях взаимодействия резонансов с нуклонами. Все же, если ограничить энергию налетающей частицы до порога рождения двух л-мезонов в пион-нуклонных и нуклон-нуклонных взаимодействиях, можно добиться определенного прогресса. В этой энергетической области рождение *п*-мезонов осуществляется в основном через Δ/3/2,3/2/-изобары $^{/8/}$. Известно, что образование $\Lambda/3/2, 3/2/$ -изобар в пион-нуклонных столкновениях при кинетической энергии налетающего 🛛 мезона порядка 200 МэВ четко отделено от образования других барионных резонансов и намного превосходит их по величине сечения. Поэтому предполагается, что каждое неупругое /с рождением одного п-мезона/ пион-нуклонное или нуклон-нуклонное взаимодействие идет через образование $\Delta/3/2, 3/2/-$ изобары, каждое упругое /без рождения л~мезонов/ пион~нуклонное взаимодействие с вероятностью, пропорциональной резонансному сечению $\sigma_{\rm p}$, также происходит через образование $\Lambda/3/2, 3/2/$ -изобары. Если считать, что образование изобар происходит только через состояние с изотопическим спином 3/2 и предполагать некогерентность вкладов парциальных каналов, можно получить парциальные сечения рождения изобар:

$$\sigma (\pi_1 N \to \Delta \pi_2) = K_{\pi} \sigma_{1\pi}^{\pi N};$$

$$\sigma (N_1 N_2 \to \Delta N_3) = K_N \sigma_{1\pi}^{NN}.$$

Здесь N означает нуклон, $\sigma_{4\pi}^{NN}$, $\sigma_{4\pi}^{\pi N}$ - сечения рождения одного *п*-мезона в соответственно нуклон-нуклонных и пион-нуклонных столкновениях, K_{π} , K_{N} - коэффициенты, определяемые с помощью коэффициентов Клебша-Гордона. В случае пион-нуклонных взаимодействий для определения K_{π} необходимо знать отношение между модулями матричных элементов рождения π -мезона через состояния с изотопическим спином 3/2 и 1/2, а также фазовый сдвиг между данными матричными элементами. Эти величины считались не зависящими от кинетической энергии налетающей частицы и брались такими же, как и в работе $^{/8/}$.

Масса, образуемая в неупругом столкновении изобары m_{Δ} , согласно работе ^{/6/}, разыгрывалась по распределению:

$$\frac{\mathrm{d}\mathbf{W}(\mathbf{m}_{\Delta},\mathbf{V})}{\mathrm{d}\mathbf{m}_{\Delta}} \sim \sigma_{\pi^{+}p}^{t} (\mathbf{m}_{\Delta}) \cdot \mathbf{F}(\mathbf{m}_{\Delta},\mathbf{V}).$$

Здесь V – полная энергия сталкивающихся частиц, $\sigma_{\pi^+p}^t$ – полное сечение взаимодействия π^+ мезонов с протонами, F (m_A ,V) – двухчастичный фазовый объем изобары и нуклона или изобары и π -мезона.

Угловое распределение рожденных изобар бралось изотропным в системе центра масс, из~за недостаточной экспериментальной информации.

Резонансное сечение «_R для упругого пион-нуклонного взаимодействия выбрано в релятивистской форме Брейта-Вигнера с параметрами, определенными из данных по пион-нуклонному рассеянию^{/7/}:

$$\sigma_{\rm R} = \frac{8\pi}{p^2} \frac{m_0^2 \Gamma^2(p)}{(m_{\Lambda}^2 - m_0^2)^2 + m_0^2 \Gamma^2(p)} \,.$$

Масса $\Delta/3/2, 3/2/-$ изобары m_A равна:

$$m_{\Delta} = \sqrt{m^2 + p^2} + \sqrt{\mu^2 + p^2}$$
,

где m , μ , p - соответственно масса нуклона, масса π -мезона и трехимпульс π -мезона в системе центра масс π -мезона и нуклона. Масса m_0 равна 1231 МэВ. Ширина изобары $\Gamma(p)$ бралась, согласно работе 77 , в виде:

$$\Gamma(\mathbf{p}) = \Gamma_0 \frac{p^3 [1 + (R_1 p_0)^2 + (R_2 p_0)^4]}{p_0^3 [1 + (R_1 p_1)^2 + (R_2 p_0)^4]}.$$

Здесь $\Gamma_0 = 112$ МэВ, $R_1 = 4,206$ ГэВ⁻¹, $R_2 = 3,142$ ГэВ⁻¹. Средний свободный пробег $\Delta/3/2,3/2/$ -изобары в ядре до распада $\lambda(p)$ определялся через ширину изобары:

$$\lambda(\mathbf{p}) = \beta \cdot \mathbf{\hat{h}} c \left[\Gamma(\mathbf{p}) \left(\mathbf{\hat{l}} - \beta^2 \right)^{\frac{1}{2}} \right]^{-1},$$

где β - скорость изобары в единицах скорости света, \hbar с = = 0,19733 ГэВ \cdot Ферми.

Принцип Паули запрещает изобаре распадаться в состояния, в которых кинетическая энергия нуклона, образованного от распада изобары, ниже максимальной фермиевской энергии нуклонов ядра. Считается, что все уровни, вплоть до уровня с максимальной фермиевской энергией, заняты $^{\prime 1.'}$. Влияние принципа Паули эффективно приводит к увеличению $\lambda(p)$.

Вероятность каналов распада $\Lambda/3/2, 3/2/$ изобары определялась из разложения волновой функции состояния с изотопическим спином 3/2 и соответствующей его проекцией на состояния с изотопическими спинами 1/2 и 1 с соответствующими проекциями изотопических спинов.

Угловое распределение продуктов распада $\Lambda/3/2, 3/2/-изобары$ в системе, где она покоится, определялось с помощью экспериментального углового распределения продуктов упругого пионнуклонного столкновения.

Считалось, что движущаяся в ядре изобара находится под действием реального ядерного потенциала. Использовался тот же самый потенциал, что и для каскадных нуклонов в работе ⁵⁵.

В работе ⁷⁸⁷ было предложено два механизма взаимодействия Л /3/2,3/2/-изобары с нуклоном ядра:

1. Захват $\Lambda/3/2, 3/2/-$ изобары. Схематически эта реакция вида $\Lambda N_1 \rightarrow N_2 N_3$. Характеристики процесса захвата могут быть вычислены Эси знании экспериментальных характеристик обратного процесса $N_2 N_3 \rightarrow \Delta N_1$ и использовании принципа детального баланса⁷⁸⁷. В данной работе для определения дифференциального и полного сечения реакции захвата изобары использовалась модель однопионного обмена с феноменологическим формфактором, описывающим сход π -мезона с массовой поверхности ⁴.

Образование $\Lambda/3/2, 3/2/$ -изобары и ее захват нуклоном ядра приводят к механизму поглощения π -мезона. В работах ^(1,5) поглощение π -мезона в ядре происходит на паре нуклонов. Сечение поглощения π -мезона парой определяется из экспериментального сечения поглощения π -мезона дейтронами с поправкой, привлекающей дополнительные теоретические соображения об образовании в ядре движущихся ассоциаций. Определение различий между двумя механизмами поглощения π -мезона - тема отдельных теоретических исследований. Однако можно сказать, что поглощение

п-мезона парой нуклонов является феноменологией по отношению к более детализированному механизму поглощения *п*-мезона через изобару.

2. Обменное рассеяние $\Lambda/3/2, 3/2/$ -изобары. Схематически его можно записать как $\Lambda_1 N_1 \rightarrow \Lambda_2 N_2$. Процесс можно представить так: сначала происходит распад начальной изобары, затем π -мезон, полученный вследствие распада, взаимодействуя с нуклоном, образует конечную изобару. Масса и заряд $\Lambda/3/2, 3/2/-$ изобары могут изменяться в процессе такого взаимодействия. Для простоты считалось, что изменяется только заряд изобары. Полные, парциальные и дифференциальные сечения обменного рассеяния изобары аналогичны работе $^{3}/3$.

<u>Рис.1</u>. Распределение по числу внутриядерных столкновений в протон-ядерных взаимодействиях при 640 МэВ. Сплошная линия - расчет по изобарной модели, штриховая расчет по модели ⁷⁵⁷, штрих-пунктирная линия - распределение по числу рожденных изобар.

Продолжение подробного описания модели внутриядерных каскадов с учетом $\Delta/3/2$, 3/2/-изобар можно найти в работе $^{9/}$.

СРАВНЕНИЕ РАСЧЕТОВ ПО ИЗОБАРНОЙ МОДЕЛИ С ЭКСПЕРИМЕНТАЛЬНЫМИ Данными и расчетами по модели ⁷⁵⁷

Из сравнения результатов расчета по изобарной модели с экспериментальными данными и результатами расчета по модели, не учитывающей рождение изобар, хотелось бы получить ответы на следующие вопросы: во-первых, есть ли существенное отличие от расчетов по обычной каскадной модели; во-вторых, правильно ли изобарная модель описывает экспериментальные данные.

В настоящей работе рассматривались реакции, где налетающий протон с энергией 640 МэВ взаимодействует с ядрами углерода и меди.

Расчет взаимодействия *п*-мезонов с ядрами будет рассмотрен в следующей работе.

Прежде всего, сравнивались распределения по числу внутриядерных столкновений, рассчитанные по изобарной модели и модели . Они приведены на рис.1. Видно, что распределения не различаются.

Рис.2. Энергетические и угловые распределения вылетевших протонов в протон-ядерных взаимодействиях при 640 МэВ /л.с./. Обозначения аналогичны указанным на рис.1.

Очевидно, совпадение распределений является следствием того, что число рожденных резонансов еще мало. Как показывает расчет, около 30% рожденных резонансов распадаются, даже не провзаимодействовав.

Условия применимости изобарной модели ограничивают энергию налетающей частицы до 1 ГэВ, когда количество упругих взаимодействий в ядре значительно превосходит количество неупругих взаимодействий, которые и определяют в основном число рожденных резонансов.

<u>Рис.3</u>. Двойные дифференциальные сечения образования протонов в протон-ядерных взаимодействиях при 640 МэВ /л.с./. Гистограммы - расчет по изобарной модели. • - экспериментальные данные / 10/.

7

Таблица

Среднее число внутриядерных столкновений, полное сечение неупругого взаимодействия, средние характеристики рожденных нуклонов, *п*-мезонов и ядраостатка в протон-ядерных взаимодействиях при 640 МэВ. Расчет производился по изобарнсй модели (INCCD) и модели ^{/5/} (INCC-78).

Тип кода	ЯАро Нап	Gin /MO/	/M3B/	Ñ	Ā	Ż	Πp	ĺΝ̈́n	Îπ-	ñ۳	Ñπ+
INCC-78	C ¹²	243,70	52,39	346	10,62	5,10	1,530	1,143	Q0410	0,1161	0,1674
	Cu ⁵⁴	796,8 5	98,72	641	61 ,64	27,91	1,779	1,892	Q0458	Q1101	Q1333
INCCD	C ¹²	24919	50,48	3 55	10,54	5 0 5	1,617	1,159	d0368	0,1003	0,1292
	C64	789,49	95,42	6 ,56	61,66	27 8 4	1,785	1,901	0,0512	0,0847	Q0 98 1

 σ_{in} - полное сечение неупругого взаимодеиствия, Е* - средняя энергия возбуждения ядра-остатка, N - среднее число внутриядерных столкновений, A, Z - атомный номер и заряд ядраостатка соответственно, \overline{n}_p , \overline{n}_n - соответственно среднее число рожденных протонов и нейтронов, \overline{n}_{π^-} , \overline{n}_{π^0} , \overline{n}_{π^+} соответственно среднее число рожденных π^- , π^0 и π^+ -мезонов. Статистическая ошибка менее 1%.

Энергетические и угловые распределения вылетевших протонов, как видно из рис.2, фактически не различаются.

На <u>рис.3</u> представлены рассчитанные по изобарной модели энергетические спектры протонов, вылетающие под углами 18°, 24° и 30°, которые сравниваются с экспериментальными данными работы^{/10/}. Выбор углов определяется тем, что для углов, меньших 18°, становится существенным дифракционное рассеяние, не учитываемое в каскадных расчетах, для углов, больших 30°, существенны предравновесные и равновесные процессы в ядреостатке^{/1/}, которые не учитывались в расчете. Из <u>рис.3</u> видно, что имеется вполне удовлетворительное согласие с экспериментальными данными, правильно передается изменение спектров с изменением угла регистрации и с изменением атомного номера ядра-мишени.

Совпадение распределений по числу внутриядерных столкновений, а также энергетических и угловых распределений прото-

Рис.4.Энергетические и угловые распределения вылетевших *т* -мезонов в протон-ядерных взаимодействиях при 640 МэВ /л.с./. Обозначения аналогичны показанным на рис.1.

Рис.5. Двойные дифференциальные сечения образования π⁺ /верхняя гистограмма/ и π⁻ -мезонов /нижняя гистограмма/ при взаимодействии протонов 640 МэВ с ядрами ¹²С. Гистограммы - расчет по изобарной модели. • - экспериментальные данные^{/11'}.

нов приводит к тому, что рассчитанные по изобарной модели и модели ⁷⁵⁷ средние характеристики ядра-остатка и вылетевших протонов,представленные в таблице, одинаковы.

Рис.6. Двойные дифференциальные сечения образования протонов при взаимодействии протонов 640 МэВ с ядрами ¹²С. Гистограммы - расчет по изобарной модели. о - экспериментальные данные работы ^{/12/}.

Иное дело, когда рассматривается выход *т*-мезонов, рождение и поглощение которых целиком связано с образованием $\Lambda/3/2, 3/2/$ изобар. Из <u>таблицы</u> видно, что средняя множественность вылетевших *т*-мезонов, рассчитанных по изобарной модели, заметно ниже, чем средняя множественность вылетевших *т*-мезонов, рассчитанных по модели без учета изобар^{5/}. Энергетические распределения, представленные на рис.4, являются более жесткими, угловые - более асимметричными, чем распределения, рассчитанные по обычной каскадной модели

Жесткость энергетических спектров и резкая вытянутость вперед угловых распределений вызваны конечным временем жизни $\Delta/3/2, 3/2/$ -изобар и их способностью выживать в реакции $\Delta_1 N_1 \rightarrow \Delta_2 N_2$. На <u>рис.5</u> приведены рассчитанные по изобарной модели энергетические спектры π^+ и π^- -мезонов, вылетающих под углами 24° и 56° при взаимодействии протонов с энергией 640 МэВ с ядрами углерода. Рассчитанные спектры сравниваются с экспериментальными данными ¹¹⁷. Несмотря на удовлетворительное описание положения максимумов и отношения выходов π^+ и π^- -ме зонов, из <u>рис.5</u> видно, что асимметрия в угловом распределении вылетающих <u>ж-</u>мезонов /см.<u>риг.4</u>/ является чрезмерной. Если правильно учесть экспериментальную угловую зависимость рожден-

Рис.7. Двойные дифференциальные сечения образования протонов при взаимодействии протонов 640 МэВ с ядрами ¹²С и ⁶⁴ Сu. Гистограммы - расчет по изобарной модели. о - экспериментальные данные работы ¹².

ных ∆/3/2,3/2/-изобар в нуклон-нуклонных и пион-нуклонных взаимодействиях, возможно, удастся улучшить согласие с экспериментом.

В настоящей работе предпринята попытка описать с помощью изобарной модели инклюзивные двойные дифференциальные сечения образования протонов, испускаемых назад, в протон-ядерных взаимодействиях при 640 МэВ^{/12/}.

С помощью модели^{/13/} учитывались предравновесные и равновесные процессы в ядре-остатке после прохождения каскадной стадии.

Экспериментально измеренные и рассчитанные по изобарной модели сечения приведены на <u>рис.6</u> и <u>7</u>. Сравнение показывает, что правильно передаются как угловая зависимость сечений для ядра углерода /<u>рис.6</u>/, так и зависимость от атомного номера ядра-мишени для угла регистрации протонов 140° /<u>рис.7</u>/. Заметное расхождение с экспериментом, наблюдаемое для низкоэнергетических протонов, отчасти связано с несовершенным учетом автором данной работы предравновесной стадии распада ядра-остатка.

ЗАКЛЮЧЕНИЕ

Проведенный анализ показывает, что предложенная изобарная модель в общем удовлетворительно описывает экспериментальные данные. Она может с успехом применяться для расчета неупругих взаимодействий нуклонов с атомными ядрами. Учет $\Delta/3/2,3/2/-$ изобар в модели внутриядерных каскадов заметно сказывается на выходе *т*-мезонов. Имеет смысл провести дополнительный анализ и более тщательное сравнение выхода *т*-мезонов с экспериментальные выхода *т*-мезонов с экспериментальные и более тщательное сравнение выхода *т*-мезонов с экспериментальными данными.

Необходимо отметить, что включение $\Delta/3/2, 3/2/$ -изобар в каскадную лавину позволяет естественным образом описать данные по выходу энергичных протонов назад.

Автор считает приятным долгом поблагодарить В.С.Барашенкова, Г.И.Лыкасова и В.И.Комарова за полезные обсуждения.

ЛИТЕРАТУРА

- 1. Барашенков В.С., Тонеев В.Д. Взаимодействие высокоэнергетических частиц и атомных ядер с ядрами. Атомиздат, М., 1972.
- 2. Ильинов А.С., Тонеев В.Д. ОИЯИ, Р2-5546, Дубна, 1970.
- Harp G.D. et al. Phys.Rev., 1973, C8, p.581; Phys.Rev., 1974, C10, p.2387.
- 4. Cinocchio S.N. Phys.Rev., 1978, C17, p.195.
- 5. Амелин Н.С., Барашенков В.С. ОИЯИ, Р2-12616, Дубна, 1979; ОИЯИ, Б1-2-12985, Дубна, 1979.
- Sternheimer R.M., Lindenbaum S.I. Phys.Rev., 1961, 123, p.333; Phys.Rev., 1958, 109, p.1723; Phys.Rev., 1957, 105, p.1874.
- 7. Rittenberg A. et al. Rev.Mod.Phys., 1971, 43, p.5114.
- 8. Frankel Z. Phys.Rev., 1963, 130, p.2407.
- 9. Амелин Н.С. ОИЯИ, 51-2-80-667, Дубна, 1980.
- 10. Ажгирей Л.С. и др. ЖЭТФ, 1959, т.36, вып.6, с.1029.
- 11. Мещеряков М.Г. и др. ЖЭТФ, 1956, т.31, вып.1,с.53; Ажгирей Л.С. и др. ЖЭТФ, 1958, т.34, вып.5, с.1357.
- 12. Komarov V.I. et al. JINR, E1-11513, Dubna, 1978.
- 13. Гудима К.К. и др. ОИЯИ, Р4-7821, Дубна, 1974.