

объединенный ИНСТИТУТ ядерных исследований дубна

6106/2-80

22/12-80 P2-80-659

А.В.Ефремов, С.В.Иванов, С.В.Михайлов

ГЛУБОКОНЕУПРУГОЕ КОМПТОНОВСКОЕ РАССЕЯНИЕ КАК ТЕСТ НА МОДЕЛИ С ЦЕЛОЗАРЯДНЫМИ КВАРКАМИ

Направлено в "Письма в ЖЭТФ"

Несмотря на то, что в последние годы ведется активное теоретическое и экспериментальное изучение жестких процессов, до сих пор не выяснено, является ли цветовая $SU_c(3)$ симметрия точной или нарушенной и, следовательно, нет однозначного ответа на вопрос - чему равен электрический заряд кварка? Исследования, проведенные в рамках объединенных моделей '1.2', свидетельствуют о том, что совокупность данных по глубоконеупругому рассеянию лептонов и e^+e^- -аннигиляции в адроны не позволяет отдать предпочтение ни одной из существующих теорий. Измерения лептон-лептонных сечений и аномального магнитного момента мюона накладывают жесткие ограничения на параметры модели. Является необходимым выполнение неравенства $\frac{4\alpha(|q^2| < \mu^2)}{3\alpha_e(|q^2| < \mu^2)}$ 10

/а - синглетный инвариантный заряд, а_в - октетный инвариант-

ный заряд/. В работе ^{/3/} было показано, что эти ограничения удовлетворяются, если токовые массы глюонов $\mu \leq 0,3$ ГэВ. Наиболее перспективны для выяснения электромагнитных свойств кварков исследования глубоконеупругих реакций с участием реальных γ -квантов. Процессы $\gamma N \rightarrow \mu^+\mu^- X$, $\gamma \gamma^* \rightarrow jets$, $ep \rightarrow e\gamma X$, $e^+e^- \rightarrow \gamma + jets$ рассматривались рядом авторов ^{/4-9/}. Все отмеченные реакции содержат лишь один реальный фотон, что позволяет, как было показано в работе Виттена ^{/4/}, даже при не слишком точном измерении определить истинный заряд кварка.

В этой работе мы сформулируем критерий применимости партонной модели для реакции $\gamma N \rightarrow \gamma X$, выясним возможность интерпретации экспериментальных данных $^{/10/}$ в рамках КХД и объединенной модели с целозарядными кварками $^{/2'}$, определим характеристики, измерение которых было бы наилучшим тестом на альтернативные кварковые модели.

Для выяснения кинематической области партонного подпроцесса рассмотрим диаграмму /puc.la/, U, t, S - мандельстамовские переменные. Необходимыми условиями выделения партонного подпроцесса в неупругом комптоновском рассеянии являются:

1.
$$xS \gg m_N^2$$

2. $x(1-y) \gg \frac{m_N^2}{S}$, $(t \gg m_N^2)$
3. $(1-y)(1-x) \gg \frac{m_N^2}{S}$, $(m_x^2 \gg m_N^2)$
4. $xy \gg \frac{m_N^2}{S}$, $(xU \gg m_N^2)$,

S где m_x - инвариантная масса конечного состояния $y = \frac{U}{S}$, $x = \frac{t}{S-U}$. Для выделения области пионизации, которая не рассчитывается в рамках стандартной Т.В. и описывается диаграммами типа б/, надо рассматривать струйные процессы с большими k_{\perp} ,следовательно, получаем условие

5.
$$x = \frac{E_1 y}{m_N(1-y)} [1 - (1 - \frac{k_\perp^2}{E_1^2 y^2})^{\frac{1}{2}}]; \quad x = \frac{k_\perp^2}{2m_N(1-y) yE_1}; (\frac{k_\perp^2}{E_1^2 y^2} << 1).$$

CALLER TO THE ADDRESS OF THE MENT

1

График, определяющий область, общую для всех кинематических ограничений, изображен на рис.2. Таким образом. для экспериментальных данных /10/ условия $E_1 \approx 21 \ \Gamma 3B >> m_N$, E₂ ≃ 10 ГэВ >> m_N, Е₁-Е₂-10 ГэВ >> m_N фактически выполнены, но значение $k_{\perp}^2 \sim /2 \div 3 / \Gamma \Rightarrow B^2$ можно считать много большим ^m весьма условно. Следовательно, интерпретация измерений /10/ в рамках партонной модели имеет ориен-

тировочный характер. Рассмотрение диаграмм,имеющих место в объединенной модели ^{/2/,} дает следующий вид сечения реакции уN → yX с учетом кваркового и глюонного вкладов

$$\frac{d_{2\sigma}^{2} \operatorname{unif}(y N \to \gamma X)}{dE_{2} d\Omega} = \frac{\alpha_{K3A}^{2} \sum_{a} \overline{Q}_{a} [q_{a}(x) + \overline{q}_{a}(x)]}{2m_{N} E_{1}^{2} [1 - \sqrt{1 - k_{\perp}^{2} / E_{1}^{2} y^{2}}]} \times (1/2)$$

$$\times (y + \frac{1}{y}) \{1 + \frac{1}{3} R_{N}(x) [10(y + \frac{1}{y})^{-1} + 4(y + \frac{1}{y}) - 8]\},$$

где $q_a(x)$, $\bar{q}_a(x)$ - функции распределения кварков, а $G^{\pm}(x)$ функции распределения глюонов внутри адрона. Величина $R_N(x) = = \sigma_r / \sigma_m$ имеет вид

$$R_{N}(x) = \frac{1}{3} \left[\left(Q_{1} - Q_{2} \right)^{4} + \left(Q_{1} - Q_{3} \right)^{4} + \left(Q_{2} - Q_{3} \right)^{4} \right] \frac{\left(G^{+}(x) + G^{-}(x) \right)}{\sum_{a} \overline{Q}_{a} \left[q_{a}(x) + \overline{Q}_{a}(x) \right]}$$

где $\overline{Q}_{a} = \frac{1}{3} (\Sigma Q_{i}^{4})_{a}$ для целозарядной модели $D = \Sigma Q_{i}^{2} - \frac{1}{3} (\Sigma Q_{i})^{2} = \frac{2}{3}$. Возьмем функции распределения кварков и глюонов, предложенные в работе ^{/11}. Зафиксировав значения $k_{\perp}^{2} = /1,7$ ГэВ/², $E_{i} = 21$ ГэВ, сравним предсказания целозарядной теории с данными работы ^{/10}. На рис.3 пунктирная линия есть результат расчета в рамках КХД,

сплошная задается формулой /1/. Хотя <u>рис.3</u> свидетельствует в пользу объединенной модели, выписанные выше кинематические ограничения удерживают нас от утверждения, что заряды кварков целые. Для получения более четкой информации желательно измерять реакцию перерассеяния *у*-квантов на изоскалярной ядерной мишени, нормированную на дважды дифференциальное сечение глубоконеупругого процесса еМ \rightarrow еХ. В этом случае целозарядная модель дает

$$\frac{d^{2} \sigma_{unif.}^{\gamma M_{1.s.}}}{dE_{2} d\Omega} / \frac{d^{2} \sigma_{unif.}^{eM_{1.s.}}}{dE_{2} d\Omega} = \frac{9}{5} (y + \frac{1}{y}) \frac{\{1 + \frac{20}{9} R_{d}[10(y + \frac{1}{y})^{-1} + 4(y + \frac{1}{y}) - 8]\}}{\{1 + \frac{y}{(1 - y)^{2}}(1 + R_{d})[1 + \sqrt{1 - k_{\perp}^{2}/E_{2}^{2}y^{2}}]\}} / 2/$$

3

/переход к КХД можно осуществить, положив $R_d = 0$ и заменив коэффициент 9/5 в выражении /2/ на 17/45/. Для величины $R_d(x) = \frac{G^+(x) + G^-(x)}{10[U(x) + U(x) + d(x)]}$ в области немалых значений x можно брать 10[U(x) + U(x) + d(x) + d(x)] экспериментальное значение^{*} $R_d \approx 0,2-0,25$. Если при энергии

фотонного пучка $\gtrsim 40$ ГэВ измерения дадут результат, столь же плохо согласующийся с КХД /вклад старших порядков при различии в десять раз несуществен, что следует из работы / 12//, то это может явиться решающим аргументом в пользу целозарядных кварков, предложенных в работах / 13.14/.

Авторы благодарны Д.В.Ширкову, В.А.Матвееву, Г.М.Верешкову за обсуждение результатов работы.

ЛИТЕРАТУРА

- 1. Pati I.C., Salam A. Neutrino Conference 1976, 8-12 June, 1976. Aachen, BRD.
- 2. Верешков Г.М. и др. ЯФ, 1980, 32, /7/, с.227.
- Ефремов А.В., Иванов С.В., Нестеренко В.А. ОИЯИ, Р2-80-519, Дубна, 1980.
- 4. Witten E. Nucl. Phys., 1977, B120, p.189-202.
- 5. Farrar G.R., loffe B.L. Preprint ITEP-103, 1977.
- 6. Ahmed M.A., Ross G.G. Phys.Lett., 1975, 59B, p.369-375.
- 7. Chang Chao-hsi, Tu Tung-sheng, Wu Chi-min. Ref. TH 2675, CERN, 1979.
- 8. Stanlet J.Bradsky SLAC-PUB-2447, 1979.
- .9. Llewellyn Smith C.H. Phys.Lett., 1978, 79B, p.83-87.
- 10. Caldwell D.O. et al. Phys.Rev.Lett., 1974, 33, p.868-871.
- 11. Auernche P. et al. CERN Ref. TH 2887, Geneva, 1980.
- 12. Niegawa A., Vranishi Y. Lett.Nuovo Cim., 1979, 25, p.443.
- Bogolubov N.N., Struminsky B.V., Tavkhelidze A.N. JINR, D-1968, Dubna, 1965.
- 14. Han M.Y., Nambu Y. Phys.Rev., 1965, 139, p.1006.

* Вообще говоря, объединенная модель позволяет рассчитать значение R, причем результат (R $\simeq~0,15$) согласуется с экспериментом значительно лучше КХД.

Рукопись поступила в издательский отдел 13 октября 1980 года.