

Объединенный институт ядерных исследований дубна

P2-80-35

145-80

А.С.Гальперин, Г.В.Мицельмахер, А.Г.Ольшевский, В.Н.Первушин

О ВОЗМОЖНОСТИ ИЗУЧЕНИЯ ПОЛЯРИЗУЕМОСТИ ПИОНОВ В РЕАКЦИИ РАДИАЦИОННОГО РАССЕЯНИЯ НА ЯДРАХ ПРИ ВЫСОКИХ ЭНЕРГИЯХ

Направлено в ЯФ

Гальперин А.С. и др.

P2-80-35

0 возможности изучения поляризуемости пионов в реакции радиационного рассеяния на ядрах при высоких энергиях

Показана возможность изучения низкоэнергетических характеристик комптон-эффекта на пионах в реакции радиационного рассеяния пионов высоких энергий на кулоновском поле ядра. Численные расчеты сделаны для пионов с начальным импульсом 40 ГэВ/с.

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1980

Galperin A.S. et al.

P2-80-35

On a Possibility to Investigate Pion Polarizability in Radiative Scattering on Nuclei at High Energies Поляризуемость, наряду с радиусом, является фундаментальной константой, характеризующей электромагнитную структуру адронов. Она определяет наведенный дипольный момент частицы во внешнем электромагнитном поле:

$$\vec{d} = \alpha_E \vec{E}; \quad \vec{\mu} = \alpha_H \vec{H}, \quad (1)$$

где, соответственно, « Е и « _Н - электрическая и магнитная поляризуемость. Эффективная потенциальная энергия частицы во внешнем поле имеет вид:

$$\nabla_{9\varphi\varphi} = -\frac{1}{2}\alpha_{\rm E} \,{\rm E}^2 - \frac{1}{2}\alpha_{\rm H} \,{\rm H}^2 \,.$$
 (2/

Поляризуемость элементарных частиц была введена как коэффициент низкоэнергетического разложения амплитуды комптон-эффекта /1/.

К настоящему времени измерена поляризуемость протона $^{/2,3/}$ $a_{\rm E}^{\rm p}$ = $/10,7+1,1/\cdot10^{-43}$ см³; $a_{\rm H}^{\rm p}$ = $/0,7+1,6/\cdot10^{-43}$ см³ и сделаны экспериментальные оценки для поляризуемости каона $^{/4/}$ $|a_{\rm E}^{\rm k}| < < 200\cdot10^{-43}$ см³ и нейтрона $^{/5/}|a_{\rm E}^{\rm n}| < 60\cdot10^{-43}$ см³.

Наиболее интересной, с теоретической точки зрения, величиной является поляризуемость пиона, для которой существует много предсказаний, выполненных в различных подходах /см. *таблицу*/. Из довольно общих соображений ^{/6/} электрическая и магнитная поляризуемость пиона связана соотношением $a \frac{\pi}{E} = -a \frac{\pi}{H}$.

Отсутствие пионных и фотонных мишеней является основной трудностью при изучении поляризуемости пиона. Предложенные косвенные методы /см., напр., ^{/7,8/}/ предполагают сильную зависимость от модели при обработке экспериментальных данных и тем самым не вполне убедительны.

С другой стороны, хорошо известно, что взаимодействие быстрых частиц с ядрами при достаточно малых переданных импульсах определяется кулоновским потенциалом, и вклад сильных взаимодействий подавлен. Поэтому естественно проанализировать возможность изучения электромагнитной структуры пиона и, в частности, его поляризуемости в реакции радиационного рассеяния пионов на ядрах*в области малых передач:

 π + ядро $\rightarrow \pi$ + ядро + γ . /3/

^{*} Процессы неупругого рассеяния в кулоновском поле ядра впервые рассматривались в работах ^{/9,10/}.

1

В настоящей работе мы хотим указать на возможность изучения комптон-эффекта и поляризуемости пионов в экспериментах на ускорителях высоких энергий. Эксперимент состоит в рассеянии пионов на ядрах с испусканием тормозного фотона, уносящего значительную долю энергии.

В упругом рассеянии пионов кулоновское рассеяние доминирует при $t \leq (0,1m_{*})^{2} = 2 \cdot 10^{-4} / [эB/c/^{2} / амплитуда по крайней мере$ на порядок больше ядерной/. Однако в процессе упругого рассеяния пионов на ядрах не удается проникнуть в область передач $t < 10^{-4}$ /ГэВ/с/ 2 , т.к. пион при столь малых передачах импульса экспериментально невозможно отличить от частиц пучка. В процессе радиационного рассеяния жесткий тормозной фотон является хорошей "меткой" процесса рассеяния, сколь бы малой ни бы-

Ταολυμα *		
		/10 ⁻⁴³ cm ³ /
 Терентьев ^{/6} Волков, Пери Cannata and Гальперин, Н Саплата and 	/ Вушин ^{/14/} Маzzanti ^{/15/} Калиновский ^{/16/} Мазгарт: ^{/17/}	3,4 или -18 5,1
4. Львов, Петру 5. Ефимов, Охло 6. Дегтев /20/ 7. Ericson, Hu 8. Cannata ^{./22/} 9. Петрунькин / 10. lachello, Li 11. Schroder /24	па22ant1 /нькин /18/ опкова ^{/19/} fner ^{/21/} 23/ ande ^{/8/}	4÷5 4,6+2 0,24 1,7 10 1 14 250-1000 100 для кварков с целым зарядом 10 для дробных кварков

*Значения поляризуемости приведены в гауссовой системе е² =1/137 Для используемой в работах /6,14,16,19,21/ хевисайдовой системы данные здесь значения поляризуемости необходимо умножить на 4 π . В работе ^{/6/}использовались методы алгебры токов; в работах ^{/14,15/} нелинейная σ -модель; в работах ^{/16,17/} - линейная σ модель; в работе /18/- метод дисперсионных соотношений; в работах /19-24/- различные кварковые модели. Переводные коэффициенты: 1/ $\beta = a^{-1}(a_{\pi})$ Гс· m_{π} ; β /в ед. $1/m_{\rho}^2$ / = 1,37.10⁴² (a_{π}) Гс. 2/ Значение поляризуемости в гауссовой системе в см³ получается из значения в хевисайдовой системе в единицах a/m_{π}^3 путем умножения последнего на 1,7.10-42.

ла передача. Дополнительным признаком процесса рассеяния является то, что испустивший фотон пион изменяет свою энергию.

Минимально достижимая передача определяется порогом регистрации энергии фотона ω_{\min} *:

$$u_{\min} = q_{\min}^{2} = \left(\frac{\omega_{\min} \quad m_{\pi}^{2}}{2\epsilon\epsilon'}\right)^{2}.$$
 (4/

Например, при начальной энергии пионов E = 40 ГэВ и $\omega_{\min} = \epsilon/2$ имеем $t_{\min} = 6.10^{-8}$ /ГэВ/с/². Фактически измерения должны проводиться в области передач от t_{\min} до $t_{\max} \approx 2.10^{-4}$ /ГэВ/с/², которая определяется реаль-но достижимыми точностями в измерении передач. Заметим, что из-за кулоновского роста основной вклад в сечение дает область передач вблизи t_{\min} . Как мы увидим ниже, это обеспечивает доминирование кулоновского рассеяния над ядерным в процессе радиационного рассеяния.

Для измерения структурных низкоэнергетических эффектов в комптон-эффекте необходимо иметь характерные инварианты комптон-эффекта (kp), (kq), (kp') порядка m_z² /при гораздо меньших значениях малы структурные поправки, при значительно больших - неприменимо низкоэнергетическое разложение/. Оказывается, что в процессе рассеяния с испусканием жесткого кванта инварианты автоматически, независимо от начальной энергии, имеют нужную величину. Это - следствие сосредоточенности тормоз-HOFO ИЗЛУЧЕНИЯ В УГЛЕ $\theta \sim m_{\pi} / \epsilon$. /Например, $(pk) = \omega(\epsilon - p\cos\theta_{\gamma}) \approx \omega \epsilon (\frac{\theta_{\gamma}^2}{2} + \frac{m^2}{2\epsilon^2}) \approx m_{\pi}^2$.

Амплитуда интересующего нас процесса имеет следующий вид:

$$A = A_{c} \cdot \exp(i\phi) + A_{s}, \qquad (5/$$

где

$$A_{c} = (4\pi)^{3/2} e^{3} \frac{4MZ \epsilon^{\mu}}{q^{2}} \{g_{0\mu} - \frac{\epsilon p_{\mu}}{(p'k)} + \frac{\epsilon' p_{\mu}}{(pk)} + \beta [g_{0\mu}(kq) - \omega q_{\mu}] \}$$

- кулоновская амплитуда; $A_{g} = (4\pi)^{3/2} e \cdot 2M \epsilon^{\mu} T_{\mu}$ - амплитуда ядерного рассеяния; ϕ - фаза кулон-ядерного рассеяния.

Здесь Z - заряд ядра, M - масса ядра, ϵ^{μ} - вектор поляри-

зации фотона; $g_{\mu\nu} = diag(1, -1, -1, -1); \beta = \frac{m_{\pi} a_{\pi}}{a} a_{\pi}$ поляризуе-

*Мы используем следующие обозначения: k^μ = (ω, k) - импульс фотона в л.с.; $p^{\mu} = (\epsilon, \vec{p})$ - импульс налетающего пиона в л.с.; $p'^{\mu} = (\epsilon', \vec{p}')$ - импульс рассеянного пиона в л.с.; $q^{\mu} = (0, \vec{q})$ передача в л.с.

мость пиона; ${\rm T}_{\mu}$ - амплитуда ядерного радиационного рассеяния /см. ниже/.

Используется гауссова система, в которой е $^2 = \alpha = 1/137$. Дифференциальное сечение равно:

$$d\sigma = \frac{\delta^{(4)}(p-p'-k-q)|A|^2 d\vec{p'} d\vec{k} d\vec{q}}{4p \cdot M \cdot (2\pi)^5 \cdot 8 \cdot \epsilon' \cdot \omega \cdot M}$$
 /6/

Амплитуду ядерного рассеяния мы вычисляем в полюсном приближении, используя малость схода пиона с массовой поверхности:

$$|(\mathbf{p}-\mathbf{k})^{2}-\mathbf{m}_{\pi}^{2}| \sim \mathbf{m}_{\pi}^{2},$$

$$|(\mathbf{p}'+\mathbf{k})^{2}-\mathbf{m}_{\pi}^{2}| \sim \mathbf{m}_{\pi}^{2}$$

$$/7/$$

и калибровочную инвариантность.

В калибровке излучения $\epsilon^{\mu}(0, \vec{\epsilon})$ амплитуда ядерного расссяния имеет вид

$$\vec{\epsilon} \vec{T} \simeq - \frac{\vec{\epsilon} \vec{p}}{(pk)} T(\epsilon') + \frac{\vec{\epsilon} \vec{p}'}{(pk)} T(\epsilon),$$
 /8/

где $T(\epsilon')$ и $T(\epsilon)$ представляют собой амплитуды упругого рассеяния вперед на массовой поверхности при энергиях пиона, соответственно, ϵ' и $\epsilon.$

Обоснование того, что амплитуда ядерного рассеяния представима в виде /8/, будет приведено в другой работе. Заметим, что формула /8/ совпадает с результатом вычисления в модели дифракционного рассеяния на шарике /11/.

Мнимая часть амплитуды $T(\epsilon)$ определяется из оптической теоремы

$$\operatorname{Im} \mathrm{T}(\epsilon) = \frac{|\mathbf{p}|}{4\pi} \sigma_{\mathrm{tot}} \quad (\epsilon) \,. \tag{9}$$

Для определения реальной части $\operatorname{Re} T(\epsilon)$ можно использовать дисперсионные соотношения для упругого рассеяния вперед на ядрах $^{/12/}$.

Подобные расчеты $\operatorname{Re} T(\epsilon)$ в интересующем нас интервале энергий пока не проводились. Для численных оценок вклада сильных взаимодействий в настоящей работе используется значение $\operatorname{Re} T(\epsilon) / \operatorname{Im} T(\epsilon) = -0.2$.

Фаза кулон-ядерного рассеяния ϕ может быть вычислена аналогично расчету для упругого рассеяния вперед $^{/13/}$. В численных оценках мы полагали $\phi = -2Z \alpha \ln 1/qa$, где $a \simeq 2 \text{ fm}$.

Для справедливости расчетов сечения и фазы по теории возмущений с константой разложения Ze²= Z/137 удобно брать ядра с небольшим Z. Кроме того, для простоты дисперсионных расчетов можно выбирать ядра с изоспином 0. В настоящей работе расчеты выполнены для ядра ¹²С.

Импульс начальных пионов мы принимаем равным 40 ГэВ/с. В известной степени эта величина произвольна. Ее выбор определяется следующими факторами:

1. Кулоновская амплитуда должна доминировать по сравнению с ядерной. Для этого необходимо, чтобы $t_{\min} = (\frac{\omega m_{\pi}^2}{2\epsilon\epsilon'})^2$ была достаточно мала даже для жестких квантов $\omega \ge \epsilon/2$, когда инварианты (pk), (p'k), (qk) $\sim m_{\pi}^2$ и существенны структурные эффекты. На основе этого требования энергия должна быть выбрана возможно большей.

2. С другой стороны, при передачах t_{min} = $q^2 < 10^{-8} / (3 \text{ F})/2$, что соответствует энергии $\epsilon \geq 100$ ГэВ, необходимо заботиться об экранировке поля ядра электронной оболочкой.

3. При энергии налетающих пионов 40 ГэВ/с угол разлета пионов и квантов ~ 10⁻², что удобно для регистрации процесса.

Численные расчеты по формулам /5/, /6/ были проведены методом Монте-Карло на ЭВМ. Для удобства были выбраны следующие независимые переменные: модуль переданного импульса, инвариантная масса системы конечных пиона и фотона и направление вылета пиона в с.ц.м. этих частиц. Значение коэффициента β было принято $1/m_a^2$ /это соответствует $a_{\pi} = 7, 3 \cdot 10^{-43}$ см³/.

Результаты расчетов представлены на *puc.1*. Дифференциальное сечение $d^2 \sigma/dt d\omega$ проинтегрировано по энергии фотона от $\omega = 0.5\epsilon$ до $\omega = 0.9\epsilon$.

Основной вклад $\approx 97,5\%$ в сечение в области передач t $\leq \leq 2.10^{-4}$ /ГэВ/с/² дает комптон-эффект на пи-мезоне.

Вклад члена, пропорционального поляризуемости, отрицателен, не зависит от t и составляет $\approx 6\%$ от сечения процесса. Как видно из *рис.1*, сильные взаимодействия в области переданных импульсов t $\leq 2 \cdot 10^{-4}$ /ГэВ/с/² относительно подавлены и составляют $\approx 2,5\%$ сечения.

При условии t $\leq 2 \cdot 10^{-4}$ /ГэВ/с/² интегральное сечение составляет $\approx 0.5 \cdot 10^{-30}$ см².В принципе, его измерение с точностью $\sim 0.6\%$ позволяет определить вклад поляризуемости с точностью 10%, при условии, что сильные взаимодействия известны с достаточно хорошей точностью. Используемые приближения и точность, с которой известны полные сечения пион-ядерного взаимодействия, позволяют вычислить вклад сильных взаимодействий с требуемой точностью.

Удобнее, однако, измерить сечение как функцию энергии фотона, поскольку вклад поляризуемости заметно зависит от этой переменной. Результаты соответствующих расчетов представлены на *рис.2*. Хотя сечение уменьшается с ростом энергии фотона, относительный вклад поляризуемости при этом растет, так что

Puc.1. Дифференциальное сечение процесса радиационного рассеяния пионов с энергией 40 ГэВ на 12 С при минимальной энергии кванта $\omega_{\min} = 20$ ГэВ.

по информативности все ячейки гистограммы примерно одинаковы. Например, при суммарной статистике 30000 событий вклад каждой ячейки позволяет оценить поляризуемость со статистической точностью ~30%.

В эксперименте, по-видимому, целесообразно установить достаточно низкий порог по энергии фотона, скажем $\omega_{\min} \approx 1/3 \epsilon$. Это обеспечит возможность проведения относительных измерений, т.к. при таких энергиях ω сечение практически нечувствительно к величине поляризуемости и может быть использовано для нормировки.

При относительных измерениях достаточно весьма грубого учета влияния сильных взаимодействий, т.к. их вклад слабо зависит от энергии фотона и при максимальных частотах $\omega \approx 0.9\epsilon$ состав-ляет лишь 10% от вклада поляризуемости.

Рис. 2. Сечение процесса радиационного рассеяния /в предположении, что поляризуемость $\beta = 1/m_\rho^2$ / в зависимости от энергии излучаемого кванта при t $\leq < 2.10^{-4}$ /ГэВ/с/².Кривая нормирована на величину сечения при поляризуемости, равной нулю. Цифрами указаны значения сечения в интервалах.

Мы выражаем благодарность С.Б.Герасимову, С.С.Герштейну, В.А.Никитину, В.А.Петрунькину, Б.М.Понтекорво за полезные обсуждения.

ЛИТЕРАТУРА

- Klein A. Phys.Rev., 1955, 99, p.998.
 Baldin A.M. Nucl.Phys., 1960, 18, p.310.
 Петрунькин В.А. ЖЭТФ, 1961, 40, с.1148.
- 2. Гольданский В.И. и др. ЖЭТФ, 1960, 38, с.1695.
- 3. Баранов П.С. и др. ЯФ, 1975, 21, с.689.
- 4. Backenstoss G. et al. Phys.Lett., 1973, B34, p.431.
- 5. Александров Ю.А. и др. Письма в ЖЭТФ, 1966, 4, с.196.

- Терентьев М.В. УФН, 1974, 112, с.37; ЯФ, 1972, 16, с.162.
- 7. Баранов Н.С. и др. Препринт ФИАН СССР, №64, М., 1973.
- 8. Jachello F., Lande A. Phys.Lett., 1971, 35B, p.205.
- 9. Primakoff H. Phys.Rev., 1961, 81, p.899.
- Pomeranchuk I.Ya, Shmushkevich I.M. Nucl.Phys., 1961, 23, p.452.
- 11. Ландау Л.Д., Померанчук И.Я. ЖЭТФ, 1953, 24, с.505.
- 12. Ericson T.E.O. et al. Phys.Lett., 1967, 26B, p.91. Ericson T.E.O., Locher P. Nucl.Phys., 1970, A148, p.1. Alberi G. et al. Nuovo Cim., 1975, 11, p.35.
- 13. West P., Yennie D. Phys.Rev., 1968, 172, p.1413.
- 14. Волков М.К., Первушин В.Н. ЯФ, 1975, 22, с.346.
- Cannata F., Mazzanti P. Lett.Nuovo Cim., 1977, 20, p.468.
- Гальперин А.С., Калиновский Ю.Л. ОИЯИ, Р2-10849, Дубна, 1977.
- 17. Cannata F., Mazzanti P. Nuovo Cim., 1977, 41A, p.433.
- Львов А.И., Петрунькин В.А. Препринт ФИАН СССР, №170, 1977.
- 19. Efimov G.V., Okhlopkova K.A. JINR, E4-11568, Dubna, 1978.
- Дегтев А.Б. Электромагнитные взаимодействия ядер при низких и средних энергиях. "Наука", М., 1976, с.282.
- 21. Ericson T.E.O., Hufner I.Nucl.Phys., 1972, 47B, p.205.
- 22. Cannata F. Lett.Nuovo Cim., 1975, 6, p.379.
- Петрунькин В.А. Вопросы атомной науки и техники. Сер. общая и ядерная физика, вып. 1/1/, Харьков, 1978.
- 24. Schroeder U.E. Acta Phys. Austriaca, 1972, 36, p.248.

Рукопись поступила в издательский отдел 17 января 1980 года.

Вышел в свет очередной номер журнала "Физика элементарных частиц и атомного ядра", том 11, вып. 1. Подписка на журнал проводится в агентствах и отделениях "Союзпечати", в отделениях связи, а также у общественных распространителей печати.