ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

<u>C 323.2</u> <u>A -82</u>

P2 - 7823

О.В.Думбрайс, М.Сташель 259474

11 11 11

МОДУЛЬ И НУЛИ АМПЛИТУД РАССЕЯНИЯ ВПЕРЕД И ОГРАНИЧЕНИЯ НА ЗНАЧЕНИЯ КОНСТАНТ СВЯЗИ

ЛАБОРАТОРИЯ ТЕОРЕТИЧЕСНОЙ ФИЗИНИ

P2 - 7823

О.В.Думбрайс,¹ М.Сташель²

МОДУЛЬ И НУЛИ АМПЛИТУД РАССЕЯНИЯ ВПЕРЕД И ОГРАНИЧЕНИЯ НА ЗНАЧЕНИЯ КОНСТАНТ СВЯЗИ

Направлено в Nuclear Physics B

Соъединенный пистику оперних исследований БИБЛИОТЕНА

¹ ниияф мгу.

² Варшавский университет, Польша.

1. Введение

n de presente de la composition de la c La composition de la c

1.40

george and

Гипотеза об аналитичности является одним из наиболее плодотворных предположений в физике высоких энергий. С разной степенью строгости для разных процессов оказалось возможным доказать, что амплитуды рассеяния вперед являются аналитическими функциями энергий частиц, за исключением сингулярностей, которые связаны с другими физическими процессами. Дисперсионные соотношения и правила сумм обычно связывают реальную и мнимую части амплитуды через контурные интегралы. Однако только мнимая часть доступна непосредственному измерению. Самым прямым способом определения реальной части амплитуды на основе экспериментальных данных является использование соотнощения

$$(\text{Ref})^2 = (d\sigma/d\Omega)_0 - (k\sigma_{10}/4\pi)^2,$$

где $(d\sigma/d\Omega)_0$ - дифференциальное сечение упругого рассеяния вперед, σ_{tot} - полное сечение, k - импульс в л.с. и f - амплитуда рассеяния вперед в л.с. Практически это означает, что очень часто экспериментальное значение реальной части известно только с точностью до знака, поскольку в эксперименте не всегда удается проводить измерения в области кулоновской интерференции, что позволило бы определить знак. Кроме того, частицы, конечно, не обязательно заряжены.

3

/1/

В нашем анализе мы рассматриваем значения $(d\sigma/d\Omega)_0$ как единственную вводимую экспериментальную информацию *. Другими словами, мы ищем ограничения и корреляции, которые аналитичность накладывает на амплитуду рассеяния вперед, если ее модуль известен на разрезах в комплексной энергетической плоскости. Вообще говоря, такие ограничения имеют вид неравенств. При этом проявляется особая роль нулей амплитуды, которые игнорируются в обычных анализах, основанных на дисперсионных соотношениях для рассеяния вперед и на правилах сумм. Некоторые приложения таких неравенств к другим проблемам физики высоких энергий недавно подытожены в работах /2,3/.

В настоящей работе мы сначала проверяем метод в случае π^{\pm} р -рассеяния вперед, а потом анализируем заново все доступные экспериментальные данные по модулю амплитуд K^{\pm} р -, рр - и \bar{p} р -рассеяния вперед. Мы получаем ряд сильных корреляций между значениями констант связи, положениями нулей амплитуды и значениями некоторых интегралов по нефизической области.

Описание метода

Пусть $f(\omega)$ является амплитудой рассеяния вперед в л.с., ω_{pole} и ω_{zero} означают положения ее полюса и нуля, соответственно. Введем новую переменную

$$\xi = \frac{\sqrt{\frac{\omega}{\omega_{\rm L}} + 1} - \sqrt{1 - \frac{\omega}{\omega_{\rm R}}}}{\sqrt{\frac{\omega}{\omega_{\rm L}} + 1} + \sqrt{1 - \frac{\omega}{\omega_{\rm R}}}}, \qquad /2/$$

где ω_L и ω_R означают начало левого и правого разрезов, соответственно. Ур. /2/ определяет конформное преобразование $\xi(\omega)$, которое преобразует всю разре-

* В этой работе мы сознательно не касаемся очень важного вопроса об экстраполяции дифференциального сечения к направлению вперед /см., например, /1//. занную ω – плоскость на единичную окружность $|\xi|=1$ и ее внутренность. В частности, $\xi(\omega_{T})=-1, \xi(\omega_{B})=1$,

$$\xi(\omega_{\text{pole}}) = \xi_{\text{pole}}$$
, $\xi(\omega_{\text{zero}}) = \xi_{\text{zero}}$

а разрезы отображаются на единичную окружность. Для удобства мы производим дополнительное отображение:

$$z = \frac{\xi - \xi_{\text{pole}}}{1 - \xi \xi_{\text{pole}}},$$
 (3/

которое отображает внутренность единичной окружности на саму себя при фиксированных точках $\xi = \pm 1$ и передвигает полюс в начало координат z =0.

Определим новую функцию G(z):

$$G(z) = zf(z)$$
, /4/

которая является аналитической внутри круга. Модуль G(z) известен на окружности.

Модифицировав задачу в таком виде, мы можем использовать теорему Сеге^{/4/}, которая утверждает, что функция

$$\tilde{G}(z) = G(z)/Q(z)$$
, /5/

где

$$Q(z) = \exp \frac{1}{2\pi} \int_{-\pi}^{\pi} \ln |G(e^{i\theta})| \left(\frac{e^{i\theta} + z}{e^{i\theta} - z}\right) d\theta \qquad /6/$$

является аналитической внутри круга, а ее модуль меньше 1, т.е.

|Ĝ(z)|<1 для |z|<1./7/

Благодаря свойству /7/ мы можем к функции $\tilde{G}(z)$ применить обобщенную лемму Шварца /5/, которая гласит:

$$\frac{\tilde{G}(z_{1}) - \tilde{G}(z_{2})}{1 - \tilde{G}(z_{1})\overline{\tilde{G}(z_{2})}} | < |\frac{z_{1} - z_{2}}{1 - z_{1}\overline{z}_{2}}|$$

$$|\tilde{G}'(z)| < \frac{1 - |\tilde{G}(z)|^{2}}{1 - |z|^{2}}$$
/9/

и

для любых $|z_1| < 1$, $|z_2| < 1$, |z| < 1. Неравенства /7/, /8/ и /9/ фактически и являются искомыми ограничениями. Применим их к конкретным процессам.

3. π^{\pm} р -рассеяние вперед

Аналитическая структура амплитуды π^{\pm} р - рассеяния вперед в ω-плоскости показана на рис. 1. Амплитуда

Рис. 1. Аналитическая структура амплитуды π^{\pm} р-рас-сеяния вперед в плоскости лаб. энергин. Заштрихованная область запрещена для нулей, если $g^2 > 14,63;$ $\omega_0 = \omega_0^* = 10$ положения нулей, найденные в работе /7/. f(z) имеет полюс в точке z=0, поэтому

$$f(z) = a_{-1}/z + a_0 + a_1 z + a_2 z^2 + ...,$$
 /10/

$$G(z) = a_{-1} + a_0 z_{-1} + a_1 z_{-1}^2 + a_2 z_{-1}^3 + \dots, /11/$$

где а₋₁ означает вычет. Имеем

$$\tilde{G}'(z) = \frac{G'(z) - G(z)P(z)}{Q(z)},$$
 /12/

где

$$P(z) = \frac{2}{\pi} \int_{0}^{\pi} \ln |G(e^{i\theta})| \frac{\cos\theta - 2z + z^2 \cos\theta}{(1 + z^2 - 2z \cos\theta)^2} d\theta. / 13/$$

Неравенства /7/ и /9/ при z =0 приводят к ограничениям

$$|a_{-1}| < M$$
, /14/

$$-M + \frac{a_{-1}}{M} + a_{-1}N < a_0 < M - \frac{-1}{M} + a_{-1}N, \quad /15/$$

где

$$M = \exp \frac{1}{2\pi} \int_{0}^{\pi} \ln \left| \left(\frac{d\sigma(e^{-i\theta})}{d\Omega} \right)_{0} \right| d\theta, \qquad /16/.$$

$$N = \frac{1}{\pi} \int_{0}^{\pi} \ln \left| \left(\frac{d\sigma(e^{1\theta})}{d\Omega} \right)_{0} \right| \cos\theta d\theta.$$
 /17/

Теперь можно было бы вычислить значения величин М и N на основе экспериментальных данных по $(d\sigma/d\Omega)_0$ и найти соответствующие ограничения на а0 и константу связи $g_{\pi^{\circ}pp}^{2}$, которая связана с вычетом a_{-1} сле-дующим образом:

$$a_{-1} = 2g_{\pi^{\circ}pp}^{2} \frac{(m_{n} - m_{p})^{2} - m_{\pi}^{2}}{4m_{p}^{2}} \hbar c(\frac{dz}{d\omega})_{z=0} , /18/$$

где ћс = 0,1973 фм ГэВ, а $(d\sigma/d\Omega)_0$ измеряется в единицах фм². Однако в случае π^{\pm} р -рассеяния вперед, которое мы рассматриваем как объект проверки нашего метода, мы решили использовать в качестве исходных данных таблицы пион-нуклонных амплитуд /6/, составленные на основе вычислений по дисперсионным соотношениям.

Мы получили следующие значения ограничений :

$$g_{\pi^{\circ}pp}^{2} < 47,5$$
 /19/

 $-0,311 _{\text{$\Phi M$}} < a_0 < 0,365 _{\text{ΦM}}$. /20/

Ограничения /20/ получены путем подстановки $g_{\pi^{\circ}pp}^2 =$ =14,6 в неравенство /15/.

Далее, мы использовали вычисления дисперсионных соотношений $^{7/}$, которые установили, что амплитуда π^{\pm} р-рассеяния вперед имеет только два нуля /пару комплексно-сопряженных нулей/. Эта информация позволяет сузить границы путем модификации ур. /11/ в следующей форме:

$$G(z) = \frac{(1-zz_0^*)(1-zz_0)}{(z-z_0)(z-z_0^*)} (a_{-1}^{+a_0} + a_{-1}^{+a_0} + a_{-1}^{+a_0$$

где z₀ и z₀^{*} - положения нулей. На основе неравенств /8/ и /9/ мы получаем

$$|a_{-1}| < |z_0|^2 M$$
, /22/
 $|z_0|^2 [-M + \frac{a_{-1}^2}{|z_0|^4 M} + \frac{a_{-1}N}{|z_0|^2}$ /23/

$$-\frac{2 \operatorname{Re} z_0 (1-|z_0|^2) a_{-1}}{|z_0|^4}] < a_0 < < <|z_0|^2 [M - \frac{a_{-1}^2}{|z_0|^4 M} + \frac{a_{-1}N}{|z_0|^2} - \frac{2 \operatorname{Re} z_0 (1-|z_0|^2) a_{-1}}{|z_0|^4}],$$

соответственно.

С одной стороны, неравенство /22/ позволяет найти область в комплексной плоскости ω , где не могут существовать комплексные нули /см. рис. 1/. Подставляя $g_{\pi^{\circ} p p}^{2} > 14,6$, мы получаем

 $|z_0| \ge 0.554.$ /24/

Интересно отметить /см. рис. 1/, что положения нулей, найденные в $^{/7/}$, удовлетворяют этому требованию. Поэтому результаты вычислений работ $^{/6,7/}$ не противоречат друг другу. Однако по какой-то, очевидно, динамической, причине эти положения нулей находятся очень близко к границе запрещенной области.

С другой стороны, если рассматривать положения этих нулей как независимую информацию, то неравенства /22/ и /23/ приводят к более жестким ограничениям

$$r_{\pi^{\circ} p p}^{2} < 15.5$$
, /25/

 $-0.160_{\phi M} < a_0 < -0.140_{\phi M}$. /26/

Таким образом, важность знания положений нулей явно продемонстрирована.

Важно подчеркнуть, что, благодаря логарифму в подынтегральном выражении, рассматриваемый метод довольно нечувствителен к ошибкам значений $(d\sigma/d\Omega)_0$.

4. К[±]р-*рассеяние*

Аналитическая структура амплитуды K^{\pm} р-рассеяния вперед в ω -плоскости показана на *рис.* 2. В z-плоскости амплитуда f(z) имеет Λ - и Σ -полюса в точках z_{Λ}, z_{Σ} и три нуля ${}^{/8/}$: один действительный нуль между двумя полюсами z_0 real и пару комплексно сопряженных нулей в точках z_0, z_0^* . Более того, положения последних найдены независимо в работах ${}^{/8,9/}$ при помощи двух различных методов аналитического продолжения без использования информации о значениях констант связей. Поэтому мы можем использовать знание положений этих нулей в качестве независимой исходной информации.

Рис. 2. Аналитическая структура амплитуды K^{\pm} р-рассеяния вперед в плоскости лаб. энергии. Положение действительного нуля заключено между двумя черточками, если $g^2 \gtrsim 5$; ω_{0D} , ω^*_{0D} и ω_{0L-Y} , ω^*_{0L-Y} положения нулей, найденные в работах /8/ и /9/, соответственно. Определим новую функцию G(z), которая не имеет полюсов и нулей внутри единичного круга:

$$G(z) = \frac{z(z-z_{\Sigma})(1-zz_{0}^{*})(1-zz_{0})(1-zz_{0}-z_{0}-z_{0}-z_{0})}{(1-zz_{\Sigma})(z-z_{0})(z-z_{0}^{*})(z-z_{0}-z_{0$$

Используя /5/, /6/ и /16/, мы получаем

$$\widetilde{G}(z_{\Lambda}) = a_{-1\Lambda} \frac{z_{\Sigma}}{|z_0|^2 z_0 \text{ real}} M^{-1}$$
, /28/

$$\tilde{G}(z_{\Sigma}) = a_{-1\Sigma} \frac{z_{\Sigma}(1-z_{\Sigma}z_{0}^{*})(1-z_{\Sigma}z_{0})(1-z_{\Sigma}z_{0} \text{ real })}{(1-z_{\Sigma}^{2})(z_{\Sigma}-z_{0})(z_{\Sigma}-z_{0}^{*})(z_{\Sigma}-z_{0} \text{ real })} L^{-1},$$

$$L = \exp \frac{1}{2\pi} \int_{0}^{\pi} \ln \left| \left(\frac{d\sigma(e^{i\theta})}{d\Omega} \right)_{0} \right| \frac{(1-z_{\Sigma}^{2}) d\theta}{(1+z_{\Sigma}^{2}-2z_{\Sigma}\cos\theta)}, /30/$$

$$a_{-1\Lambda} = g_{\Lambda KN}^{2} \frac{(m_{\Lambda} - m_{p})^{2} - m_{K}^{2}}{4 m_{p}^{2}} \hbar c (\frac{dz}{d\omega})_{z=0},$$
 /31/

$$a_{-1\Sigma} = g_{\Sigma KN}^{2} \frac{(m_{\Sigma} - m_{p})^{2} - m_{K}^{2}}{4m_{p}^{2}} \hbar c(\frac{dz}{d\omega})_{z=z_{\Sigma}} .$$
 /32/

Ограничимся применением только двух неравенств /7/ и /8/, где мы подставляем $z=z_{\Lambda}$, $z=z_{\Sigma}$ и $z_1=z_{\Lambda}$, $z_2=z_{\Sigma}$, соответственно. Первое из этих неравенств приводит к отдельным ограничениям на кон-

11

01

станты связи, а второе устанавливает связь междуними.

Уточним теперь исходные данные. В нефизической области и в низкоэнергетической области К р-рассеяния мы использовали три разные параметризации: параметризацию постоянной длины рассеяния /10/ параметризацию К - матрицы нулевого раднуса /11/ и параметризацию К матрицы эффективного радиуса /12/. Низкоэнергетическая область К+р - рассеяния описывалась параметризацией эффективного раднуса s - волны /13/ При остальных энергиях мы использовали экспериментальные данные по из компиляций /14,15/ и самые послед- $(d\sigma / d\Omega)_0$ $(d\sigma / d\Omega)_0$ ИЗ КОМ ние измерения /16,17/. Важно подчеркнуть, что наш метод нечувствителен по отношению к высокоэнергетическим данным, поскольку высокоэнергетическая область очень сжата в z-плоскости. Основной вклад винтегралы в /16/ и /30/ дает низкоэнергетическая область. Однако примечательно, что благодаря логарифму в этих уравнениях, результаты анализа оказались нечувствительными к конкретным параметризациям. Все три параметризации дали практически совпадающие результаты. С другой стороны, ограничения оказались очень сильно зависящими от знания расположения нулей. Поэтому в таблице мы приводим результаты в двух вариантах: 1/ с использованием положений нулей (ω_{0D} , ω_{0D}^*); найденных в ра-боте ^{/8/}; 2/ с использованием положений нулей / ω_{0L-Y} , ω_{0L-Y}^* , найденных в работе ^{/9/}. Положение третьего нуля между двумя полюсами оставалось в виде свободного параметра и была найдена область, где его существование крайне маловероятно. На основе результатов, представленных в таблице, и делая очень вероятные предположения / 18,19/ о том, что $g_{\Sigma KN}^2 \leq 3$, $g_{\Lambda KN}^2 \geq 5$, можно заключить, что

ω_{0 real} > 0,125 Γ**3**Β

/33/

/34/

при использовании значений ω_{0D} , ω_{0D}^* и $\omega_{0 \text{ real}} \gtrsim 0,129 \Gamma_3 B$ для значений $\omega_{0I=Y}$, $\omega_{0 I=Y}^*$. Если игнорировать существование действительного нуля, то можно найти ограничение на сумму обеих констант связи. Предполагая $g_{5kN}^2 \leq 3$, получаем

$$g_{\Lambda \, \rm KN}^2 + g_{\Sigma \, \rm KN}^2 < 23,2$$
, ω_{0D} /35/
 $g_{\Lambda \, \rm KN}^2 + g_{\Sigma \, \rm KN}^2 < 17,1$, ω_{0L-Y} . /36/

Если исключить из рассмотрения и комплексные нули, то

$$g_{\Lambda \, \rm KN}^2 + g_{\Sigma \, \rm KN}^2 < 60.3$$
 . /36' /

5. рр-, р р-рассеяние

Амплитуда в этом случае имеет пионный полюс в точке z=0. Число ее нулей неизвестно. Однако в /20/ показано, что амплитуда pp – , p̄ p – рассеяния вперед могла бы иметь по крайней мере две пары комплексно сопряженных нулей. Положение этих нулей было найдено в /20/модельно-независимым способом. Экспериментальные значения (d $\sigma/$ d Ω)₀ для низкоэнергетического pp -pacсеяния были взяты из компиляции /21/ а для средних энергий - из компиляции /22/. При очень высоких энергиях данные по (d $\sigma/$ d Ω)₀ брались из работы /23/.

В случае pp -рассеяния от O,195 до 16 ГэВ/с использо валась компиляция²⁴, кроме того, из работы ²⁵/ были взяты два значения при высоких энергиях, вплоть до 40 ГэВ/с. По нашим сведениям, не существует надежных параметризаций амплитуды pp -рассеяния в нефизической и низкоэнергетической областях /см., например, ^{20,26}/. Поэтому мы оставили значение интеграла по этой области в виде свободного параметра и, использовав величину $g_{\pi^{\circ}pp}^{2}$ =14,6 в качестве исходной информации, нашли ограничение на это значение. По аналогии с неравенствами /14/и /22/, мы рассматриваем неравенства

$$|a_{-1}| < \exp(I_1 + I_2),$$
 /37/
|a_{-1}| < |z_{01}|^2 |z_{02}|^2 \exp(I_1 + I_2), /38/

где вычет а в пионном полюсе задан в следующем виде

$$a_{-1} = g_{\pi^{\circ}pp}^{2} \frac{m_{\pi}^{2}}{8m_{\pi}^{2}} \ln(\frac{dz}{d\Omega})_{z=0}$$
 /39/

$$I_{1} = \frac{1}{2\pi} \int_{0}^{\theta_{1}} \ln \left| \left(\frac{d\sigma(e^{i\theta})}{d\Omega} \right)_{0} \right| d\theta, \qquad /40/$$

$$I_{2} = \frac{1}{2\pi} \int_{\theta_{1}}^{\pi} \ln \left| \left(\frac{d\sigma(e^{i\theta})}{d\Omega} \right)_{0} \right| d\theta, \qquad /41/$$

где $\theta_1 = 1,032$ соответствует импульсу 0,195 ГэВ/с. Вычисление неравенств /37/ и /38/ приводит к ограничениям:

Сравнивая /42/ и /43/, мы приходим к выводу, что информация о положениях нулей в этом случае несущественно улучшает ограничения, что является следствием расположения нулей для pp -, pp -рассеяния вперед сравнительно далеко от полюса.

6. Выводы

Мы показали, что, как правило, существует строгая корреляция между положениями нулей и значениями констант связей. С другой стороны, положения нулей известны с гораздо худшей точностью, чем значения констант связей или длин рассеяния. Это нам кажется странным, поскольку мы думаем, что положения нулей должны иметь тот же статус в теорин, что и значения констант связи или длин рассеяния. Тем более это так

Зависимость	ограничений	на	константы	CEASN OT	положения
действите	эльного нуля	:	$\omega_{*} = 0.064$	Tab. ω.	=0.159 ma

Wo real (TOB)	Верхняя граница для д'яки из нер. (7)		Верхня для 93 нер. (я граница м ИЗ 7)	Верхняя граница для 9'яки из нер. (8). предполагая 9'яки 4 3	
	ω_= ωω	ω _σ = ω _{ρι- γ}	ൺ-സം	ω- ω _{οι-1}	ယ- <i>ယ</i> ₀⊳	Wo = Wo1-Y
0,074	18,I	I3,0	I,4	0,9	0,5	0,4
0,092	I5 , 0	IO,8	4,3	2,8	I , 8	I.4
0,III	II,5	8,3	7,5	5,0	3,5	2.8
0,121	9,6	6,9	9;2	6,2	4,7	3.7
0,130	7,5	5,4	II,I	7,4	6.5	5.2
0,140	5,2	3,8	13 , 1	8,7	• • • • • • • • • • • • • • • • • • •	7.6
0,144	4,0	2,9	I4,I	9,4	II.2	9.0
0,149	2,8	2,0	15,2	10.2	14.9 *)	TO 2300
0,154	I,4	· I,0	I6,4	I0. 9	16.4 ***)	TO 9 ³⁸⁶⁵
Существо вание об не учте	0 Inteal HO 80,9	58,3	72.9	48.6	20.2	ти т
Существо Вание н лей не учтено	0- y- 192	2,4	2017 2017 2017	995) 130 - Stelesti 137 - Stelesti	57	3
к) _{Преди}	Іолагая	9 skn ≈ 2,8	가지 : 말라지 : 같이 : 말라지 : [같이 : 말라지 : 말라지 :	n an		nada na sa sa Salahaya na sa Na sa sa sa sa
еж) Пред	шолагая	grKN € I,4	e, in si		are of the for	
HERE IPE	щолагая	1 9		d jed nate hrenadi ad	n de gradis Geografia	
(Here)	с	ןזבת -ן-ב ואד מ' ≼ T.		and the second		
.		31KN	n san san san san san san san san san sa			ander de la compositione de la comp Compositione de la compositione de l
					andar andrese National Angles	이 다음 가지 않는다. 1993년 - 1993년 - 1993년 1993년 - 1993년 -
- 1		Service States of	an an saidh	la standar j		
		a Se (1954) - A Ampire ang				و هر بر مربع می بر در در بر در مربع

на практике. Например, если производить вычисления, основанные на дисперсионных соотношениях для логарифма амплитуды /см., например, /27/ /, то положения нулей играют роль констант связи.

В случае π^{\pm} р -рассеяния найдена область, запрещенная для существования нулей. Остается понять, почему нули, найденные в работе ^{/7/}, находятся очень близко к границе этой области. Было бы интересно найти физическую интерпретацию коэффициента a_0 , ограничения на значения которого мы нашли. Подобные ограничения на значения которого мы нашли. Подобные ограничения ка $a_{0\Lambda}$, $a_{0\Sigma}$ могли бы быть легко найдены в случае К[±] р-рассеяния вперед. На основе результатов, представленных в таблице, можно утверждать, что наш анализ исключает большие / $\geq 16 \div 20$ / значения константы связи $g_{\Lambda KN}^2$, в противоположность недавним предположениям

В случае рр-, рр-рассеяния было бы интересно сравнить предсказания некоторых моделей с нашими ограничениями на значения интегралов по нефизической и низкоэнергетической областям.

Мы признательны С.Дубничке и В.И.Журавлеву за полезные замечания. М.Сташель благодарна Объелгченному институту ядерных исследований за гостеприимство.

Литература

- 1. O.V.Dumbrajs, Kh.Chernev and Z.Zlatanov. Nucl.Phys., B69, 336 (1974).
- 2. V.I.Zhuravlev, PhD Thesis, JINR 1971.
- 3. S.Okubo. University of Rochester preprint COO-3065-53 (1973).
- 4. I.I.Privalov. "Boundary Properties of Analytic Functions" (in Russian), Second Edition, Moscow-Leningrad 1950, p. 170.
- G.M.Golusin. "Geometrical Theory of Functions of Complex Variable" (in Russian), Second Edition, Moscow 1966, p. 319.
- 6. G.Hohler and R.Strauss, University of Karlsruhe preprint, October 1970.
- 7. S.Jorna and J.A.McClure. Nucl. Phys., B13, 68 (1969).
- 8. O.V. Dumbrajs. Nucl. Phys., B38, 600 (1972).

16

- 9. C.Lopez and F.J.Yndurain. Nucl. Phys., B64, 315 (1973).
- 10. J.K.Kim. Phys.Rev.Lett., 14, 29 (1965); Columbia University report Nevis-149, 1966.
- 11. A.D.Martin and G.G.Ross. Nucl. Phys., B16, 479 (1970).

- 12. J.K.Kim. Phys.Rev.Lett., 19, 1074 (1967).
- 13. A.D.Martin and R.Perrin. Nucl.Phys., B10, 125 (1969).
- 14. O.V. Dumbrajs, T.Yu. Dumbrajs and N.M. Queen. Fortschr. Phys., 19, 491 (1971).
- 15. N.M.Queen. Birmingham University report UB-KP-2-73, October 1973.
- 16. K.Abe et al. University of Maryland preprint, AEC-ORO-2504-212, October 1973.
- 17. J.R.Cambell et al. Nucl.Phys., B64, 1 (1973).
- 18. N.M.Queen, M.Restignoli and G.Violini. Fortschr.Phys., 17, 467 (1969).
- 19. N.M.Queen, M.Restignoli and G.Violini. Fortschr.Phys. 21, 651 (1973).
- 20. O.V.Dumbrajs. Nucl.Phys., B46, 164 (1972).
- 21. И.В.Амирханов, Р.Ю.Зулькарнеев, Х.Муртазаев. Сообщение ОИЯИ, Р1-7576, Дубна, 1973.
- 22. O.Benary and R.Price. Lawrence Radiation Laboratory preprint UCRL-20000 NN, August 1970.
- 23. V.Bartenev et al. Phys.Rev.Lett., 31, 1367 (1973).
- 24. J.E.Enstrom et al. Lawrence Berkeley Laboratory preprint LBL-58, May 1972.
- 25. Yu.M.Antipov et al. Yadernaya Fizika, 18, 353 (1973).
- G.Bialkowski and S.Pokorski. Nuovo Cimento, 57A, 219 (1968).
 O.V.Dumbrajs and M.Staszel. JINR Preprint P2-7853, Dubna. 1974.
- 28. L.L.Smalley. University of Alabama preprint UAH-72-1, June 1972.

and a second second

Рукопись поступила в издательский отдел 22 марта 1974 года.

1. 1. 新聞的問題義 (1997年) 新聞教育教育主義的語言)

17

the provide a set of the state of the set

a series and the second se