СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

C3436 M-268

P2

4529/2-73 В.И.Марков; Л.Поч

О РОЛИ ОБМЕННЫХ ЭФФЕКТОВ В РЕАКЦИЯХ КВАЗИУПРУГОГО ВЫБИВАНИЯ ДЕЙТРОНОВ

ЛАБОРАТОРИЯ ЯДЕРНЫХ ПРОБЛЕМ

P2 - 7298

В.И.Марков, Л.Поч

О РОЛИ ОБМЕННЫХ ЭФФЕКТОВ В РЕАКЦИЯХ КВАЗИУПРУГОГО ВЫБИВАНИЯ ДЕЙТРОНОВ

^{*} Институт физики высоких энергий АН Каз.ССР, Алма-Ата.

Марков В.И., Поч Л.

P2 - 7298

О роли обменных эффектов в реакциях квазиупругого выбивания дейтронов

Проведена оценка отношения сечения рассеяния протона на "синглетном квазидейтроне" к сечению рассеяния на "триплетном квазидейтроне" в приближениях полюсной и треугольной диаграмм. В обоих случаях отношения сечений порядка единицы.

Сообщение Объединенного института ядерных исследований Дубна, 1973

Markov V.I., Pocs L.

P2 - 7298

On the Role of Exchange Effects in the Reactions of Quasielastic Deuteron Knocking Out

A guess for the ratio of cross sections for scattering of protons on singlet and triplet guasi-deuterons, is presented in pole and triangle diagram approximation. In both cases the ratio was found to be near unity.

Communications of the Joint Institute for Nuclear Research. Dubna, 1973

🕑 1973_ Объединенный институт ядерных исследований Дубна

1. ВВЕДЕНИЕ

В реакциях квазиупругого выбивания дейтронов из ядер под действием быстрых протонов наряду с механизмом прямого выбивания /рис. la/ возможен обменный механизм, т.е. рассеяние протона на пр-системе, находящейся в синглетном состоянии, с переводом ее в триплетное состояние /рис. lб/. Кроме того, если в эксперименте регистрируется только выбитый дейтрон, то становится допустимым механизм, указанный на рис. lв - рассеяние на бинейтроне.

Качественно вопрос о роли обменных процессов неоднократно обсуждался в работах В.В.Балашова с сотрудниками $^{1-3}$, однако количественных оценок до сих пор не проводнлось. Основная трудность заключается в следующем. Поскольку эффективные числа дейтронов, "синглетных дейтронов" и бинейтронов сравнимы между собой, то вопрос о соотношении вкладов различных процессов сводится к вопросу о соотношении сечений процессов, соответствующих верхним частям диаграмм рис. 1. Здесь мы сталкиваемся с другой нерешенной проблемой : упругим протон-дейтронным рассеянием на заданные углы; так как именно в случае больших переданных импульсов ожидается возрастание роли обменных процессов.

В данной работе мы провели довольно грубую оценку соотношения сечений, соответствующих верхним частям диаграмм la и lб в рамках двух моделей для упругого pd -рассеяния назад: а/ модели с промежуточным виртуальным пионом - треугольная диаграмма /рис. 2a/ и б/ модели нейтронного обмена - полюсная диаграмма /рис. 26/.

3

2. ВЫЧИСЛЕНИЕ СЕЧЕНИЙ

На основанни общих правил амплитуды рассеяния для триплетного начального состояния пр-системы, соответствующие диаграммам 2a и 26, можно записать в виде

$$T_{t}^{(a)} = \frac{1}{(2\pi)^{4}} \xi_{2\mu}^{*} \int \overline{U}_{c}(p_{1}) A_{\mu} \frac{m+\hat{p}}{p^{2}-m^{2}} \Gamma_{\nu}^{t} \frac{m-\hat{n}}{n^{2}-m^{2}} \frac{\sqrt{2} G}{\kappa^{2}-\mu^{2}} \gamma_{5} U_{c}(p_{2}) \xi_{1\nu} d^{4}n,$$

$$/1/$$

$$T_{t}^{(\hat{0})} = \xi_{2\mu}^{*} \overline{U}_{c}(p_{1}) \Gamma_{2\mu}^{d} \frac{m+\hat{n}}{n^{2}-m^{2}} \Gamma_{1\nu}^{t} U_{c}(p_{2}) \xi_{1\nu}.$$

$$/2/$$

Отсюда легко получить выражения двух амплитуд рассеяния в случае синглетного начального состояния пр-системы:

$$T_{s}^{(a)} = \frac{1}{(2\pi)^{s}} \xi_{2\mu}^{*} \int \overline{U_{c}} (p_{1}) A_{\mu} \frac{m+\hat{p}}{p^{2}-m^{2}} \Gamma^{s} \frac{m-\hat{n}}{n^{2}-m^{2}} \frac{\sqrt{2} G}{\kappa^{2}-\mu^{2}} \gamma_{5} U_{c}(p_{2}) d^{4}n,$$

$$T_{s}^{(6)} = \xi_{2\mu}^{*} \overline{U_{c}} (p_{1}) \Gamma_{2\mu}^{d} \frac{m+\hat{n}}{n^{2}-m^{2}} \Gamma_{1}^{s} U_{c} (p_{2}).$$

$$/4/$$

Здесь и далее используются обозначения: М, m, μ - массы дейтрона / np - системы/, нуклона и пиона соответственно; ϵ_{-} энергия связи дейтрона /np - системы/; $\kappa^{2} = \epsilon m$, q = |q| - импульс относительного движения нуклонов в np-системе; $\xi_{1}(\xi_{2})$ - вектор поляризации начального /конечного/ дейтрона / np-системы в триплетном состоянии/; А μ - амплитуда процесса pp $\rightarrow d\pi^{+}$; G - пионнуклонная вершинная функция; U $_{c} = \gamma_{0} c U^{*}$ - зарядовосопряженный спинор; Γ^{d} , $\Gamma^{t}(\Gamma^{s})$ - вершинные функции дейтрона и триплетного / синглетного/ состояния np системы.

Следуя работе /4/, перейдем от интегрирования по 4-импульсу нейтрона в /1/ и /3/ к интегрированию по p^2 n^2 , κ^2 и ϕ , где ϕ - азимутальный угол \vec{n} . Так как энергия связи пр-системы мала по сравнению с массами рассматриваемых частиц, то интегралы по p^2 $u n^2$ достаточно учесть в полюсном приближении, а интеграл по κ^2 можно заменить средним значением. Таким образом, для амплитуд $T_t^{(a)}$ и $T_s^{(a)}$, соответствующих треугольной диаграмме, получаем

$$T_{t}^{(a)} = \frac{q}{4\pi M} \frac{\sqrt{2}G}{\kappa^{2} - \mu^{2}} \xi_{2\mu}^{*} \overline{U}_{c}^{*}(p_{1}) A_{\mu}^{}(m+\hat{p}) \Gamma_{\nu}^{t}^{}(m-\hat{n}) \gamma_{5}^{} U_{c}^{}(p_{2}) \xi_{1\nu}^{},$$

$$T_{s}^{(a)} = \frac{q}{4\pi M} \frac{\sqrt{2}G}{\kappa^{2} - \mu^{2}} \xi_{2\mu}^{*} \overline{U}_{c}^{}(p_{1}) A_{\mu}^{}(m+\hat{p}) \Gamma^{s}^{}(m-\hat{n}) \gamma_{5}^{} U_{c}^{}(p_{2}),$$

$$/3'/$$

где нуклоны берутся на массовой поверхности: $p^2 = n^2 = m^2$ $q^2 = -\kappa^2$, а пион - вне массовой поверхности:

$$\kappa^{2} = \frac{1}{2} (u + 3m^{2} - M^{2}), \quad u = (d_{2} - p_{1})$$

Амплитуды /2/ и /4/, соответствующие нейтронному обмену, вычисляются при $n^2 = u \neq m^2$:

$$q^2 = [M^4 - 2M^2(m^2 + u) + (m^2 - u)^2]/(4M^2).$$
 /5/

Теперь для проведения расчетов нужно еще определить вершинные функции. Согласно работам ^{/5-7/} мы выбрали

$$\begin{split} \mathbf{T}^{s} &= \mathbf{g}_{s}(\mathbf{q}^{2})\gamma_{5} , \\ \mathbf{T}^{t}_{1\nu} &= \mathbf{g}_{1}(\mathbf{q}^{2})\gamma_{\nu} + \mathbf{g}_{2}(\mathbf{q}^{2})\mathbf{n}_{\nu} \, \text{для} \, \mathbf{T}^{(a)} \, /6/ \\ & \text{H} \, \Gamma^{t}_{1\nu} = \mathbf{g}_{1}(\mathbf{q}^{2})\gamma_{\nu} + \mathbf{g}_{2}(\mathbf{q}^{2})\mathbf{p}_{2\nu} \, \text{для} \, |\mathbf{T}^{(6)}_{2} . \end{split}$$

Для функций g мы использовали нерелятивистское приближение. В этом случае они определяются фурьепреобразованиями волновых функций /5/:

а/ оба нуклона находятся на массовой поверхности

$$g_{s} = \frac{8\pi}{\sqrt{M}} a_{s} , g_{I} = \frac{8\pi}{\sqrt{M}} (a_{s} + \frac{a_{d}}{\sqrt{2}}),$$

$$g_{2} = \frac{16\pi}{\sqrt{M}(M+2m)} (a_{s} - \frac{M+m}{M-2m} \frac{2}{\sqrt{2}} a_{d});$$
/7/

$$\begin{split} & 6/n^2 = u \neq m^2 , \\ & g_g = Aa_g , g_1 = A(a_g + \frac{a_d}{\sqrt{2}}) , \\ & g_2 = \frac{2A}{M+2m} \{ a_g - \frac{a_d}{\sqrt{8}} [1+3 \frac{M^2(M+2m)^2 - (m^2 - n^2)^2}{M^4 - 2M^2(m^2 + n^2) - (m^2 - n^2)^2}] \} , \\ & A = 8\pi \left(\frac{M^3 [M(M+2m) - (m^2 - n^2)]}{[M(M+2m) + (m^2 - n^2)][M^4 - (m^2 - n^2)]} \right) , \\ & a_\ell(q^2) = \frac{q^2 + k^2}{4\pi} \int e^{-i\vec{q}\cdot\vec{r}\cdot} \Psi_\ell(\vec{r}) d\vec{r} . \end{split}$$

В качестве волновых функций пр-системы мы использовали функции, полученные сшиванием осцилляторных /для го=2,27 fm / с функциями Ханкеля первого рода:

$$\Psi(\vec{r}) = \alpha \Psi_{g}(\vec{r}) + \gamma \Psi_{D}(\vec{r})$$
 - для"триплета"
 $\Psi(\vec{r}) = \Psi_{g}(\vec{r})$ - для"синглета",

где

$$\Psi_{g}(\vec{r}) = Y_{00}(\hat{r}) \times \begin{cases}
A_{g}[aR_{1g}(r) + bR_{2g}(r)], r \leq R, \\
B_{g}h_{0}^{(1)}(i\kappa r), r \geq R, \\
P_{D}(\vec{r}) = Y_{2M}(\hat{r}) \times \begin{cases}
A_{D}R_{1d}(r), r \leq R, \\
B_{D}h_{2}^{(1)}(i\kappa r), r \geq R. \\
P_{D}h_{2}^{(1)}(i\kappa r), r \geq R.
\end{cases}$$

Для конечного дейтрона полагалось, что $a_d = 0.2a_s$,

поэтому фурье-преобразование дейтронной волновой функции в формулах для отношений сечений сокращается.

Результаты оценки отношения сечений приведены в табл. 1 и 2, причем для треугольной диаграммы в пределах применимости принятых приближений они не зависят ни от энергии, ни от угла рассеяния.

Таблица I Отношение сечения рассеяния на "синглете" к сеченир рассеяния на "триплете". Треугольная диаграмма

E , N9B	8	+	a=1, 6=0	a=0, 6-1	a= 6=1	a=-6=1	
a da ana ana ang ang ang ang ang ang ang an	I.00	0.00	I.00	I.00	I.00	I.00	
2.23	0.98	0.20	I.04	I.04	I.04	I.04	
	0.80	_ 0.6 0	I.50	I.54	I.48	I.53	
	I.00	0.00	I.00	I.00	I.00	I.00	
5.00	0.98	0.20	I.03	I.04	I.03	I.04	
	0.80	0.60	I.36	I.51	I . 3 8	I.50	
	I.00	0.00	I.00	I.00	I.00	I.00	
10.00	0.98	0.20	I.0I	I.04	I.02	I.04	
	0.80	0.60	I.08	I.46	I.28	I•44	

Значение букв с., 6 и т.д. указано в тексте.

3. ОБСУЖДЕНИЕ

Из табл. 1 и 2 видно, что роль обменных эффектов довольно большая. Аналогичных результатов следует ожидать и для диаграммы 1в. Однако необходимо еще раз подчеркнуть, что эти оценки все же очень грубые. Основные возражения вызывает использование нерелятивистских волновых функций при равных энергиях связи как для синглетного, так и триплетного состояния пр-системы в ядре. Поэтому этим оценкам нельзя придавать абсолютного значения. Было бы весьма интересным сравнить на эксперименте сечения (p,pd) и (p,nd) реакций.

Авторы выражают искреннюю благодарность В.В.Балашову за интерес к работе и полезные обсуждения.

Таблица 2

Отношение сечения рассеяния на "синглете" к сечению рассеяния на "триплете". Полосная диаграмма

	E			cos 9 = -1.0			cos.9 = -0,8				
Тр	Мэв	8	8	a=1 6=0	a=0 6=1	a=1 6=1	a=1 6=-1	a=1 6=0	a=0 6=1	a=1 6=1	a=1 61
0.66 Гэв	2,23	I.00 0.98 0.80	0.00 0.20 0.60	0.96 0.92 0.51	0.96 I.01 I.35	0.96 1.00 1.08	0.96 0.95 1.10	0.96 0.93 0.81	0.96 0.93 0.70	0.96 0.93 0.72	0.96 0.03 0.00
	5.00	1.00 0.98 0.80	0.00 0.20 0.60	0.96 0.55 0.11	0.96 I.01 I.34	0.96 1.00 1.13	0.96 0.95 1.07	0.96 0.58 0.14	0.96 0.98 1.16	0.96 0.88 0.49	0.96 0.92 0.74
	10.00	I.00 0.98 0.80	0.00 0.20 0.60	0.96 0.18 0.03	0.96 1.01 1.32	0.96 1.00 1.18	0.96 0.93 0.94	0.96 0.98 1.18	0.96 0.99 1.30	0.96 0.22 0.03	0.96 0.99 I.33
І.00 Гэв	2.23	I.00 0.98 0.80	0.00 0.20 0.60	0.96 0.97 0.64	0.96 1.02 1.28	0.96 0.94 0.51	0.96 0.83 0.54	0.96 0.86 0.49	0.96 0.94 0.75	0.96 0.94 0.77	0.96 0.92 0.65
	5.00	I.00 0.98 0.80	0.00 0.20 0.60	0.96 1.02 1.40	0.96 1.02 1.39	0.96 0.44 0.07	0.96 0.94 I.I0	0.96 0.95 0.91	0.96 0.98 I.12	0.96 0.84 0.40	0.96 0.74 0.26
	10,00	I.00 0.98 0.80	0.00 0.20 0.60	0.96 I.00 I.49	0.96 0.99 1.48	0.96 1.00 1.50	0.96 I.00 I.50	0.96 0.23 0.03	0.96 1.00 1.33	0.96 0.68 0.21	0.96 I.00 I.38
I.50 Гэв	2.23	I.00 0.98 0.80	0.00 0.20 0.60	0.96 0.98 1.34	0.96 0.91 0.88	0.96 1.03 1.48	0.96 1.02 1.55	0.96 0.89 0.54	0.96 0.95 0.81	0.96 0.89 0.53	0.96 0.94 0.73
	5,00	I:00 0.98 0.80	0.00 0.20 0.60	0.96 0.93 0.99	0.96 1.00 0.70	0.96 1.03 1.20	0.96 1.03 1.01	0.96 0.93 0.70	0.96 0.99 1.21	0.96 0.13 0.02	0.96 0.87 0.48
	10.00	I.00 0.98 0.80	0.00 0.20 0.60	0.96 0.01 0.00	0.96 1.03 1.24	0.96 1.02 0.90	0.96 0.73 0.34	0.96 1.01 1.45	0.96 0.99 1.16	0.96 1.01 1.46	0.96 1.01 1.50

Значение букв О., 6 и т.д. указано в тексте.

10

Литература

<u>I.</u> В.В.Балашов, А.Н.Бояркина. Изв. АН СССР, 28, 359 /1964/.

2. V.V.Balashov, A.N.Boyarkina and I.Rotter. Nucl. Phys., 59, 417 (1964).

- 3. V.V.Balashov. In "Clustering Phenomena in Nuclei", IAEA, Vjenna, 1969, p. 59.
- 4. N.S.Craigi and C.Wilkin. Nucl. Phys., Bl4, 477 (1969).
- 5. J.Matthews and B.Deo. Phys.Rev., 143, 1340 (1966).

6. I.Duck. Nucl. Phys., BI, 96 (1967).

7. D.Bebel and K.J.Biebl. Nucl. Phys., B24, 187 (1970).

Рукопись поступила в издательский отдел 17 июля 1973 года.