СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

ДУБНА

1316 2-73

ARRENE IS IS HERRE

9/11-1

P2 - 6943

П.С.Исаев, В.И. Хлесков

ВЛИЯНИЕ ВЫБОРА ПАРАМЕТРИЗАЦИИ ФАЗ $\pi \pi$ -РАССЕЯНИЯ НА СЕЧЕНИЯ РЕАКЦИЙ $\gamma + \gamma - \pi + \pi$ и $\gamma + \gamma - \gamma + \gamma$

ЛАБОРАТОРИЯ

ТЕОРЕТИЧЕСНОЙ

ФИЗИНИ

P2 - 6943

П.С.Исаев, В.И. Хлесков

ВЛИЯНИЕ ВЫБОРА ПАРАМЕТРИЗАЦИИ ФАЗ $\pi \pi$ - РАССЕЯНИЯ НА СЕЧЕНИЯ РЕАКЦИЙ $\gamma + \gamma - \pi + \pi$ и $\gamma + \gamma - \gamma + \gamma$

١

Запуск и эксплуатация встречных электрон-позитронных ускорителей с энергией пучков 2-5 Гэв делает возможным экспериментальное изучение процессов взаимодействия света со светом $\gamma + \gamma \longrightarrow$ адроны/1-2/. При этих энергиях существенную роль в реакциях взаимодействия встречных пучков с образованием других частиц начинают играть двухфотонные процессы, т.е. такие, в которых конечные частицы порождаются парой виртуальных фотонов.

С этой точки зрения интересно экспериментальное изучение реакции взаимодействия двух – Квантов с образованием пары

不 - мезонов. Исследование атого процесса позволило бы получить
 ряд сведений о 지不 - взаимодействии (изучение фаз 不下 - рас сеяния, возможных び, 4 и др. резонансов) и проверить спра ведливость различных теоретических предсказаний для этой реакции.

В нащей работе^{/3/}был проведен детальный теоретический анализ процесся $y + y \longrightarrow \overline{n} + \overline{n}$ в области низких энергий с помощью метода дисперсионных соотношений. Дисперсионные сингулярные интегральные уравнения для парциальных волн рас-

3

сматриваемого процесса были получены на основе аналитических свойств амплитуд по переменной прямого канала $\dagger = (\chi + \chi')^2$ (χ и κ' - четырехимпульсы первоначальных фотонов), а также из условия двухчастичной унитарности (двухпионное промежуточное состояние) и решались по методу Мусхелишвили-Гахова^{/4/} сведением их к краевой задаче Римана. Решение подобной задачи в частном случае нулевых асимптотик фаз $\overline{\Lambda}\overline{\Lambda}$ -рассеяния $\widetilde{\delta}_{\mu}^{T}(+)$ (при $\overline{\tau} \rightarrow \infty$) единственно и записывается в виде^{/4/}:

 $T_{dp}^{(T)}(t)_{l}^{(1)} = \chi^{+}(t)A_{\chi p}^{+}(t) + B_{\chi p}^{(T)}(t)_{e}$ $\chi^{+}(t) = e^{iC_{L}^{(T)}(t)} e^{iC_{L}^{(T)}(t)} e^{iC_{L}^{(T)}(t)} + B_{\chi p}^{(T)}(t)} \frac{S_{e}^{(T)}(t)}{t'(t'-t)} dt'$ $A_{-\chi p}^{+}(t) = \frac{1}{\pi} \int e^{i\frac{S_{e}^{(T)}(x)}{2}} \frac{S_{e}^{(T)}(x)}{x(x-t-i\epsilon)} \frac{B_{\chi p}^{(T)}(x)}{x(x-t-i\epsilon)} dt'$ $H_{\mu p}^{(T)}(t)_{e}^{(1)} + \frac{H_{\mu p}^{2}}{2} e^{i\frac{S_{e}^{(T)}(x)}{x(x-t-i\epsilon)}} e^{i\frac{S_{e}^{(T)}(x)}{x(x-t-i\epsilon)}} e^{i\frac{S_{e}^{(T)}(x)}{x(x-t-i\epsilon)}}$ $H_{\mu p}^{(T)}(t)_{e}^{(1)} + \frac{H_{\mu p}^{2}}{2} e^{i\frac{S_{e}^{(T)}(x)}{x(x-t-i\epsilon)}} e^{i\frac{S_{e}^{(T)}(x)}{x(x-t-i\epsilon)}} e^{i\frac{S_{e}^{(T)}(x)}{x(x-t-i\epsilon)}}$ $H_{\mu p}^{(T)}(t)_{e}^{(1)} + \frac{S_{e}^{(T)}(x)}{x(x-t-i\epsilon)} e^{i\frac{S_{e}^{(T)}(x)}{x(x-t-i\epsilon)}} e^{i\frac{S_{e}^{(T)}(x)}{x(x-t-i\epsilon)}}$

Исследования^{/3/} показали, что $\pi\pi$ – взаимодействие играет в процессе существенную роль. Эксперимент и фазовый анализ дают для фазы S – волны $\delta_s^c(t)$ $\pi\pi$ – рассеяния двузначное решение (dcwn и dcwn-up наборы экспериментальных точек). В работе^{/3/} сечение S – волны процесса $\chi\chi \to \pi\pi$ было рассчитано с использованием для фазы $\delta_s^c(t)$ аналитических выражений, которые в области известных экспериментальных значений ($\sqrt{t} \leq I$ Гэв) были хорошо согласованы с down- и down-up-наборами.

Основные характерные особенности поведения сечений существенно зависят от вида параметризации (down, down-up) δ° (t) ⊼⊼-рассеяния. Расчеты показали, что фазы вклад неупругих процессов в области высоких энергий (++> I Гэв), а также быстрота спадания фаз к нулевому асимптотическому значению не существенно меняют низкоэнергетическое поведение полученных сечений (10-20%). С другой стороны, изменения фаз в низкознергетической и пороговой областях приводят к пропорциональным изменениям сечений $\chi + \chi \rightarrow \pi + \pi$ в этих областях энергий. Напомним, что результаты были полу- $\mathcal{S}_{o}^{\overline{T}}(t)$, асимптотически стремящихся к нулю чены для фөз (что соответствует нулевому индексу 🌫 краевой задачи Римана). При этом фазы $\mathcal{S}_{s}^{\circ}(t)_{down-up}$ и $\mathcal{S}_{d}^{\circ}(t)$, резонансшые в точках $M_6 \simeq 730$ Мав и $M_f \simeq 1260$ мав, соответственно, при выбранной нами асимптотике, второй раз проходили 90° в области М. и М. и при больших энергиях практически обращались в нуль.

ь настояцей работе рассмотрен другой возможный случай, когда фазы $\delta_5^{c}(t)_{down-up}$ и $\mathcal{E}_d^{c}(t)$ в асимптотике стремятся к 180°. Он принципиально отличается от предыдущего тем, что индекс \mathfrak{R} задачи Римана в этом случае равен единице, решение сингулярного интегрального уравнения неоднозначно и содержит, наряду с частным решением неоднородного уравнения (I), оощее решение однородного уравнения, содержащее произвольную константу (полином степени $\mathfrak{R}-1$):

-5

І'ращики функции $\Psi(x) = \exp\left\{\frac{x}{\pi} \left\{ \frac{\delta_{e}^{T}(x')dx'}{x'(x-x)} \right\} \right\}$ для следующих вариантов параметризации фаз $\pi \pi$ рассеяния (см. соответствующие кривые в работе $\frac{3}{3}$): (I) – $\delta_{s}^{c}(-)_{down-up} = \overline{\pi}$; (2) – $\delta_{s}^{c}(\infty)_{down-up} = 0$; (3) – $\delta_{s}^{c}(+)_{down}$; (4) – $\delta_{s}^{c}(+)_{c}$ где $\begin{pmatrix} & - & nponsbonbhesk константв. \\ \hline \phi y нкция \\ & y(x) = \exp \{ \frac{x}{\overline{\lambda}} \rho \int_{1}^{\infty} \frac{\delta_{e}^{T}(x^{i})}{x^{i}(x^{i}-x)} dx^{i} \}$, входящая в выражения (I) и (2), ведет себя по-разному для разных параметризаций фаз $\overline{\lambda}\overline{\lambda}$ - рассеяния. На рис. I показаны графики функции Y(x), которые соответствуют разным вариантам фаз $\overline{\lambda}\overline{\lambda}$ - рассеяния. Кривые, полученные для случаев $\delta_{s}^{o}(\infty) d_{0} = 0$ и $\delta_{s}^{o}(\infty) d_{0} = \overline{\lambda}$, обе имеют в области δ мезона ($x \approx 7,3$) резонансное поведение, но различаются по величине.

В работе^{/5/} дисперсионный анализ процесса $f + f \rightarrow \pi + \overline{\Lambda}$ в пороговой области энергий был проведен с использованием предположения плавности изменения функции $Y(x) \simeq Coust$. Как следует из приведенных на рис. I кривых, это предположение может быть оправдано лишь для плавных (нерезонансных) фаз $\overline{\Lambda}\overline{\Lambda}$ – рассеяния (например, для $\overline{O}_{5}^{\mathcal{A}}(t)$). В случае фаз, содержащих резонансы, оно несправедливо.

Решения (I) и (2) имеют текже и другое принципиальное различие. Перепишем (I) в следующем виде, воспользовавшись известным тождеством $\frac{1}{x+i\epsilon} = P(\frac{1}{x}) - i \overline{n} \delta(x)$: $T_{\alpha\beta}^{(T)}(t)_{\ell}^{(1)} = X^{+}(t) + \frac{1}{n}P_{\beta}^{\gamma} = \frac{e^{i\delta_{\ell}^{T}(x)}g_{m}\delta_{\ell}^{T}(x)B_{\alpha\beta}(x)e}{x(x-t) + x^{+}(x)} dx + B_{\alpha\beta}^{(T)}(t)_{\ell} \cos\delta_{\ell}^{(T)}(t) \exp(i\delta_{\ell}^{T}(t)).$ (3) Второй член выражения в резонансной точке $\delta_e^T = \frac{\overline{\Lambda}}{2}$ обращается в ноль. Подинтегральная функция интеграла в смысле главного значения приближенно равна ($\beta_{up}^{(T)}(t)_{e}$ – плавная функция):

$$\frac{hin \delta_{e}^{(\chi)} B_{\alpha\beta}^{(\chi)}(\chi)_{e}}{x(x+) y(\chi)} \simeq houst \cdot \frac{hin \delta_{e}^{(\chi)}(\chi)}{y(\chi)} \cdot \frac{1}{x(x+)} \equiv (4)$$

$$\equiv \frac{houst}{x(x+1)} \cdot F(\chi)$$

Функция F(x), в случее нулевого асимптотического поведения фазы $\mathcal{S}_{S}^{\circ}(t)$ ($\mathcal{S}_{d}^{\circ}(t)$) содержит два максимума, соответствующие \mathfrak{S} мезону (f мезону) и прохождению фазы через $\frac{\Lambda}{2}$ при возвращении от Λ к нулю. В интеграл в смысле главного значения в выражении (3) второй максимум (лежащий в области энергий, больших I Гэв), будет входить. большим положительным фоном. При этом первый член в выражении для $T_{d,p}^{(1)}(t) {}_{\ell}^{(4)}$ в резонансной точке $M_{\mathfrak{S}} \simeq 730$ Мэв ($\mathfrak{x} = 7,3$) будет отличен от нуля и полная парциальная амплитуда за счет функции $\mathcal{Y}(\mathbf{x})$ будет резонансной.

Рассмотрим теперь фазу $\delta_e^{T}(t)$ с асимптотическим значением, равным $\overline{\Lambda}(\mathscr{R}=1)$. Использование¹ формулы (I), представляющей частное решение неоднородного интегрального уравнения, в этом случае неправомерно. Правильное решение (2) включает теперь также общее решение однородного интегрального уравнения, которое содержит произвольную константу. В резонансной точке $\delta_{S}^{o}(\mathfrak{M}_{6}^{2})_{down-\mathfrak{M}_{P}} = \frac{\pi}{2}$ (для $\delta_{S}^{c}(t)$ фазы, например) второй член в выражении для $T_{dp}^{(T)}(t)_{e}^{(4)}$ также обращается в ноль (Соз $\delta_{S}^{o} = 0$). Функция $F(\mathbf{X})$ в

этом случее почти симметричие относительно этой точки и имеет в ней максимальное значение. При этом интеграл в смысле главного значения от выражения (4) в резонансной точке будет бли-ЗОК К НУЛЮ И ПОЛНЭЯ ПАРЦИАЛЬНАЯ ЭМПЛИТУЛЗ вместо пика в области 🕤 мезона будет иметь минимум. Таким образом. Одно только частное решение неоднородного интегрального уравнения в случае $\delta_{\zeta}^{\circ}(\infty)$ dow $w_{\gamma} = \pi$ не приво-дит в точке $\mathcal{X} = 7,3$ ($M_5 = 730$ Мав) к ожидаемому резонансному поведению. В частности, в работе/6/ авторы использовали в расчетах случай асимптотического поведения резонансных фаз 8 (∞) = ⊼. но учли лишь частное ЛЛ - рассеяния решение зедечи. Заметим далее, что входящее в (2) общее решение однородного уравнения имеет как раз необходимое резонансное поведение. Произвольная константа 🔨 в этом решении может быть определена из нормировки максимума резонанса на его лвухфотонную ширину. В предшествующей работе^{/3/} входящая в вы- $B_{\alpha\beta}^{(T)}(t)e$ константа Зрак фактически соотражение ветствовеле ширине $\Gamma_{\rho \to \pi + \gamma} \simeq 0,5$ Мав электромегнитного респеде ρ мезоне $\left(\Gamma_{\rho \to \pi + \gamma} \simeq \frac{g_{\rho \to \pi}}{2\pi} H_{\rho}^{3} \left(\frac{H_{\rho}^{2} - H_{\pi}^{2}}{4\pi}\right)^{3}\right).$ Экспериментельные значения для этой ширины сильно разовосаны и лежат в интервале 0,1-0,7 Мэв (см., например, данные, приведенные в работе Л.Д.Соловьеве/7/). В денной работе для ресчетов

было выбрено энечение Гр→х+х ~ 0,1 Мэв. С этим знечением были текже просчитены для сревнения кривые сечений Sволны для down-переметризации фезы δ. (f).

Графики сечений S - волн процесса Y+ X → ⊼+ ⊼ для фаз $\delta_{S}^{c}(t) down и \delta_{S}^{o}(\infty) down-up = \overline{\Lambda}$ Гр→⊼+к ≃ 0,І Мэв) показаны на рис. 28) и б), соответственно (штрих-пунктирные линии есть вклады в процесс $\omega, \rho, \overline{\kappa}$ обменных диаграмм, представляющих кроссинг-разрезы). На рисунке 26) пунктиром ненесене текже простейшея брайт-вигнеровская вппроксимация 6-мезона. На рис. 3 показано сечение dволны реакции $\chi \to \overline{\kappa} \overline{\kappa}$, соответствующее фазе $\delta_d^o(\infty) = \overline{\kappa}$ (пунктиром покезене кривея Брейте-Вигнере для 4-мезоне). В максимуме \oint - резонанса d - волна вносит в полное се-чение $(G_{W\to \overline{K}\overline{K}}(t) \simeq G_{W\to \overline{K}\overline{K}}(t) + G_{W\to \overline{K}\overline{K}}(t))$ вклад, сравнимый с сечением S - волны. Сопоставление с результатами, полученными ренес/3/, показывает, что все качественные особенности поведения сечений при изменении вклада обменных дизграмм и при изменении асимптотики фаз не изменяются. Величины сечений с другой стороны, чувствительны к подобным изменениям. Решающее слово в отборе правильных решений принадлежит в данном случае эксперименту.

Из полученных ранее в работе^{/3/} эмплитуд процесса $\mathcal{W} \to \pi \overline{\Lambda}$ были впоследствии рассчитаны парциальные S - u d - волны рассеяния света на свете через двухпионное состояние^{/8/}, а также S - ud -волны процессов $\mathcal{W} \to \kappa \overline{\kappa} (T=0)$ и $\mathcal{W} \to \kappa \overline{\kappa} (T=c) \to \mathcal{W}$ (рассеяние \mathcal{V} квантов через $K \overline{K} (T=c)$) промежуточное состояние)^{/9/}.

В настоящей работе также были получены парциальные сечения перечисленных процессов. На рис. 4 представлены графики сечений S – волны реакции $\mathcal{W} \to \overline{\wedge} \overline{\wedge} \to \mathcal{W}$, соответствующие амплитудам $\mathcal{W} \to \overline{\wedge} \overline{\wedge}$, $\mathcal{O}_{\mathcal{W}} \mathcal{N}$ (рис. 23)) и

- 11

down-wp (рис. 26)). Сечение d - волны рассеяния света на свете через двухпионное состояние показано на рис. 5. Отметим, что если соответствующее полное сечение рассеяния фотонов ($G_{\chi_{K}^{-1}\chi_{K}}(t) \simeq G_{S}(t) + G_{d}(t)$) сравнить с электродинамическим сечением рассеяния света на свете (через электрон-позитронные пары)/IO/, то первое будет вносить основной вклад в широкой области энергий 300-I200 Мав.

Сечения $S - u d - волн реакции <math>\chi + \chi \to K\bar{K}(T=o)$, полученные из парциальных амплитуд процесса $\chi + \chi \to \pi + \pi$ (рис. 26) и рис. 3) методом, описанным в работе⁹⁹, представлены на рис. 6. По форме полученные кривые аналогичны приведенным ранее⁹⁹, но отличаются от них по величине. Парциальные сечения рассеяния фотонов через $K\bar{K}(T=o)$ – состояние, которые были получены из амплитуд реакций $\chi + \chi \to K + \bar{K}(T=o)$, по форме также аналогичны приведенным в работе⁹⁹ и вносят в процесс $\chi + \chi \to \chi + \chi$ вклад, пренебрежимый в сравнении с вкладом двухпионного состояния.

В заключение выражаем благодарность И.Ф.Гинзбургу и С.Б.Герасимову за полезные обсуждения.

12

13

- I. В.Е.Белекин, В.М.Буднев, И.Ф.Гинзбург. Письме в ЖЭТФ <u>II</u>, 559 (1970).
- 2. S.J.Brodsky. SLAC-PUB-989 (TH) and (EXP). Dec. 1971.
- 3. П.С.Исвев, В.И.Хлесков, ЯФ, <u>16</u>, 1012 (1972).
- 4. Ф.Д. Гахов. "Краевые задачи", Физматгиз, Масква (1958).
- 5. D.H.Lyth. Nucl. Phys. <u>B30</u>, 145 (1971).
- 6. G.Schierholz, K.Sundermeyer. DESY 71/49, August (1971).
- Л.Д.Соловьев, "Физика высоких энергий и теория элементарных частиц", стр. 451, изд. "Наукова думка", Киев (1967).
- 8. P.S.Isaev, V.I.Khleskov. JINR, E2-6473, Dubna (1972).

14

- 9. П.С.Исаев, В.И.Хлесков, ЯФ 17, 368 (1973).
- IO. R. Karplus, M. Neuman. Phys.Rev., <u>80</u>, 380 (1950); <u>83</u>, 776 (1951).

Рукопись поступила в издательский отдел 13 февраля 1973 года.