P2 - 6503

2686/2-42

В.С.Барашенков, К.К.Гудима , Ф.Г.Жереги , В.Д.Тонеев

£

УЧЕТ ДИФФУЗНОСТИ ЯДЕРНОЙ ГРАНИЦЫ В МОДЕЛИ ВНУТРИЯДЕРНЫХ КАСКАДОВ

P2 - 6503

,

В.С.Барашенков, К.К.Гудима*, Ф.Г.Жереги*, В.Д.Тонеев

£

УЧЕТ ДИФФУЗНОСТИ ЯДЕРНОЙ ГРАНИЦЫ В МОДЕЛИ ВНУТРИЯДЕРНЫХ КАСКАДОВ

* Институт прикладной физики АН МССР, Кишинев

and the second second

Расчёты неупругих взаимодействий высокоэнергетических частии и ядер с ядрами, как правило, выполняются в настоящее время на основе модели внутриядерных каскадов в предположении, что ядро представляет собой ферми-газ нуклонов, заключенный в сферу с диффузной границей. При этом ядро разбивается на отдельные сферические зоны, в каждой из которых плотность нуклонов $\rho(r)$ считается постоянной ($\rho(r) = \rho_i$), а распределение их импульсов выбирается в виде фермиевского распределения с граничным импульсом, определяемым плотностью соответствующей зоны:

$$P_{Fi} = c \rho_i^{1/3}$$
(1)

(с – нормировочная постоянная; см. работы́, где дана подробная библиография).

На практике обычно ограничиваются тремя, в редких случаях пятьюсемью зонами, т.к. иначе расчёты становятся очень трудоемкими. Суммарное импульсное распределение нуклонов при таком приближенном способе расчётов отличается от фермиевского распределения, соответствующего нулевой температуре (см. рис. 1), а результаты расчётов несколько зависят от конкретного способа разбиения на зоны и выбора радиуса последней, периферической зоны.

З

Если бы число зон можно было существенно увеличить, то при достаточно большом их числе граничный импульс Ферми для нуклонов, удаленных на расстояние / от центра ядра, определялся бы зависимостью, близкой к формуле (1), а их импульсы были бы распределены по закону

$$\frac{d p(r)}{d p} = \frac{p^2}{3p_p^3(r)} = \frac{p^2}{3c^3 \rho(r)} , \qquad (2)$$

который можно рассматривать относящимся к отдельным внутриядерным нуклонам.

Если положения отдельных нуклонов внутри ядра определить теперь с помощью метода Монте-Карло так, как это сделано, например, в работах^{/5,6/}, а их импульсы разыграть по распределению (2), то мы получим значения координат и импульсов всех внутриядерных нуклонов без какого-либо разбиения ядра на зоны^{х/}.

Полученные таким образом импульсные распределения нуклонов ядра ¹⁰⁰ Ru показаны на рис. 1. Как видно, для тяжелого ядра, каким является ¹⁰⁰ Ru, эти распределения весьма близки к соответствующим распределениям Ферми, вычисленным для модели с постоянной ядерной плотностью; значительные различия имеют место лишь на краю спектра, вблизи граничного импульса $p = p_F(R)$. Вместе с тем имеет место существенное расхождение со спектром, рассчитанным в часто используемом приближении трех сферических зон.

Степень согласия с опытом результатов вычислений, выполненных без разбиения ядра на зоны, иллюстрируется рис. 2 на примере средней множественности треков в фотоэмульсионных звездах. Расчётные и экспериментальные данные весьма близки друг к другу. При этом расчётные

4

х/Важно подчеркнуть, что при таком способе рассмотрения диффузности ядерной границы учёт действия принципа Паули, как и в простой модели прямоугольной ямы, сводится к проверке условия: импульс нуклона после столкновения р'(r) > р_F (r).

Рис. 1. Пространственное и импульсное распределение нуклонов ядра

¹⁰⁰ Ru в модели ферми-газа с диффузной границей. А – пространственное распределение числа нуклонов. Пунктир – экспериментальное распределение Саксона-Вудса, сплошная кривая – аппроксимация путем разбиения на три зоны с постоянной плотностью $\rho_i = a_i \rho(0)$, где $a_i = 0.9; 0.2$ и 0.01. Б – импульсное распределение внутриядерных нуклонов в модели с тремя зонами. В – импульсное распределение внутриядерных нуклонов, рассчитанное без разделения ялра на зоны. Пунктиром показана расчётная плотность $\omega(p) = w(p)/4\pi p^2$ и соответствующая аппроксимирующая кривая.

Рис. 2. Энергетическая зависимость средней множественности s -, g и h -треков, образовавшихся при взаимодействии протонов с ядрами фотоэмульсии. Экспериментальные значения \bar{n}_{s} , \bar{n}_{s} , \bar{n}_{h} нанесены соответственно квадратами, треугольниками и кружками. Светлыми эначками нанесены данные, полученным просмотром эмульсии "вдоль следа", заштрихованные - "по области". Сплошная и пунктирная кривые - результаты расчёта для ядра Ga, соответственно при условии $n_{h} > 1$ и $n_{h} \geq 0$.

величины, как это видно из таблиц 1 и 2, практически не зависят от конкретного выбора радиуса ядра R, если только $\rho(R) / \rho(0) \leq 0,1$. В модели с разбиением ядра на зоны эта зависимость, особенно для сечений, значительно более сильная; отношение $\rho(R) / \rho(0)$ в этом случае является, по-существу, дополнительным подгоночным параметром теории.

Рассматриваемый подход значительно упрошает расчёты, особенно в случае столкновений двух ядер, когда учёт перекрытий отдельных сферических зон налетающего ядра и ядра-мишени представляет собой весьма сложную задачу.

Литература

- 1. H.W.Bertini. ORNL-3383, Oak Ridge, 1963.
- 2. В.С. Барашенков, К.К. Гудима, В.Д. Тонеев. Препринт ОШЯИ, Р2-4065, Дубна, 1968.
- 3. K.Chen, Z.Fraenkel, G.Friedlander, J.R.Grover, J.M.Miller, Y.Shimamoto. Phys.Rev., 166, 949 (1968).
- 4. В.С. Барашенков, В.Д. Тонеев. Взаимодействие высокоэнергетических частиц и ядер с ядрами, Атомиздат, М., 1972.
- 5. V.S.Barashenkov, A.S.Iljinov, V.D.Toneev. Communications JINR E2-5282, Dubna, 1970.
- 6. В.С. Барашенков, А.С. Ильинов, В.Д. Тонеев. ЯФ, <u>13</u>, 743 (1971).

Рукопись поступила в издательский отдел 7 июня 1972 года.

Таблица 1

Сечения неупругих взаимодействий протова с ядром U при энергии T в зависимости от величины отношения $\alpha = \rho(R)/\rho(0)$.

ŧ.

d T, F9B	0,I	0,01	0 ,00 I
0,14	I890 <u>+</u> 76	1960 <u>+</u> 84	2000 <u>+</u> 96
I,00	1980 <u>+</u> 75	2090 <u>+</u> 85	2I20 <u>+</u> 98

Таблица 2

Среднее число треков различных типов $\binom{n}{h} \ge 0$, образующихся при неупругих стопкновениях 2-Гэвных протонов со средним ядром фотоэмульсии $\binom{n}{b}$ са в зависимости от величины отношения $\alpha = \rho(R) / \rho(0)$.

n	0 , İ	0,05	0,001
n _s n _g n _b	0,98 ± 0,05 I,8 ± 0,I 3,2 <u>+</u> 0,2 5,0 ± 0,3	0,84 <u>+</u> 0,05 I,8 <u>+</u> 0,I 3,0 <u>+</u> 0,2 4,8 <u>+</u> 0,3	0,98 <u>+</u> 0,05 I,7 <u>+</u> 0,I 3,I <u>+</u> 0,2 4,8 <u>+</u> 0,3

ω

œ