5-245 объединенный ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ Дубна. 212

P2 - 6395

26/11-12

АНАЛИЗ НЕУПРУГИХ СТОЛКНОВЕНИЙ ЧАСТИЦ С ЯДРАМИ В ОБЛАСТИ

В.С.Барашенков, С.М.Елисеев

ОЧЕНЬ ВЫСОКИХ ЭНЕРГИЙ

1972

Ĭ

BHAQ

ه

P2 - 6395

В.С.Барашенков, С.М.Елисеев

АНАЛИЗ НЕУПРУГИХ СТОЛКНОВЕНИЙ ЧАСТИЦ С ЯДРАМИ В ОБЛАСТИ ОЧЕНЬ ВЫСОКИХ ЭНЕРГИЙ

Направлено. в. ЯФ

В работах /1-4/ было показано, что при энергиях T >> 10 Гэв общепринятая модель внутриядерных каскадов приводит к резкому противоречию с опытом, которое может быть устранено путем учета многочастичных взаимодействий внутри ядра x/. Относительный вклад таких взаимодействий, определенный из сравнения результатов каскадных расчетов с экспериментом, был весьма значительным уже при энергиях порядка нескольких десятков Гэв /2/. Однако новые экспериментальные данные, полученные в космических лучах и в опытах на ускорителе с энергией 70 Гэв в Серпухове, значительно уточнили наши представления как о взаимодействиях частиц, так и о столкновениях частиц с ядрами при очень высоких энергиях. Внутри же самой каскадно-испарительной модели в последние годы был достигнут существенный прогресс, связанный с учетом изменений свойств ядра-мишени в процессе развития внутриядерного каскада /5-7/. В этих условиях выводы работ /1-4/ можно рассматривать лишь как ориентировочные. Все это побудило нас еще раз вернуться к вопросу о применимости каскадно-испарительной модели и вкладе многочастичных взаимодействий при энергиях T >> 10 Гэв, что и является целью данной статьи.

x/ Здесь и везде далее T - кинетическая энергия первичной частицы в лабораторной системе координат.

Для того, чтобы возможно более точно выделить пункты, в которых каскадно-испарительная модель без учета многочастичных взаимодействий расходится с опытом, расчеты выполнялись по тем же программам, что и в области ускорительных энергий T < 30 Гэв, где результаты вычислений хорошо согласуются с экспериментом /7/: в частности, принималось во внимание уменьшение плотности числа нуклонов в ядре-мишени /6/. Весьма существенное отличие заключалось в способе расчета высокоэнергетических п – N и N – N – столкновений внутри ядра. В области T > 30 Гэв учитывалась лидирующая частица, энергия которой разыгрывалась по экспериментальному распределению . Для определения энергий других коэффициента неупругости W(k) вторичных частиц из неупругих п – N и N – N – столкновений использовались полиномиальные аппроксимации известных экспериментальных рас пределений, при этом учитывалась зависимость этих распределений от угла вылета частиц, и в каждом акте *п* – *N* и *N* – *N* –взаимодействий точно удовлетворялись законы сохранения энергии-импульса /8/. Расчетные характеристики неупругих $\pi - N$ и N - N -столкновений хорошо согласуются с опытом, во всей области энергий вплоть до нескольких тысяч Гэв.

Поскольку множественность образования антибарионов в высокоэнергетических $\pi - N$ и N - N-столкновениях известна сейчас очень плохо (для $\pi - N$ столкновений она, по-видимому, составляет $\leq 5\%$, а для N - N столкновений $\leq 10\%$ от всех вторичных частиц), аннигиляционные процессы мы не рассматривали.

Для расчета упругих взаимодействий частиц внутри ядра при T < 30 Гэв использовались полиномиальные аппроксимации из работы /8/. При больших энергиях угол рассеяния разыгрывался по дифференциальному сечению $d\sigma / dt = Ae^{-\beta(T)/t/}$ с коэффициентами A и β из

работ ⁷⁹⁷. Поскольку рассеяние происходит на очень малые углы, дальнейшая детализация углового распределения рассеянных частиц практически не увеличивает точности расчетов.

Как видно из рис. 1 и 2, где сравниваются расчетные и экспериментальные значения средней множественности частиц из фотоэмульсионных звезд x', более точное моделирование неупругих $\pi - N$ и N - N -взаимодействий и учет уменьшения внутриядерной плотности под действием лавины каскадных частиц, позволяет получить согласие с опытом в области энергий вплоть до $T \sim 100$ Гэв xx'. Это относится также к распределению множественности рождающихся частиц и к их корреляциям (см. таблицу 1 и рис. 3,4). Существенное расхождение отмечается только для ливневых частиц в звездах с $n_h = 0,1$. Причина этого расхождения заключается в том, что наблюдаемые события наряду с пион-ядерными взаимодействиями содержат значительный вклад $\pi - N$ столкновений, где множественность ливневых частиц < n > > = 10 /8/. Если учесть эти столкновения, то расчетная величина W_n для n = 0,1совпадает с экспериментальной.

Заметные расхождения, которые трудно устранить путем варьирования параметров, описывающих неупругие π – Nи N – N столкновения (если не выходить за пределы, допустимые современными экспериментальными данными), имеют место лишь при энергиях T > 150-200 Гэв.

Из таблицы II видно, что энергия возбуждения ядра после завершения каскадной стадии процесса и число нуклонов, теряемых ядром-

x/ Мы используем следующие обозначения: E_m -взаимодействие
 со средним ядром фотоэмульсии; LE_m, HE_m -взаимодействия с
 группой легких и группой тяжелых ядер фотоэмульсии.

xx/ Ошибки расчетных значений на рис. 1 и везде далее - чисто статистические.

мишенью, в среднем такие же, как и при $T \approx 10$ Гэв. Это объясняет, почему число серых и черных следов на рис. 1,2 почти не зависит от энергии первичной частицы $x^{/}$.

Что касается угловых характеристик вторичных частии, то теория и опыт здесь достаточно хорошо согласуются (см. рис. 5 и 6). Неплохое согласие имеется и в области больших энергий. Однако этому согласию нельзя придавать слишком серьезного значения, так как, например, расхождения с экспериментальными данными для ливневых частиц в значительной степени могут маскироваться лоренцевским сжатием углов при переходе к лабораторной системе координат. Более показательным было бы сравнение экспериментальных и теоретических угловых распределений в системе центра масс налетающей частицы и ядра-мишени. К сожалению, таких экспериментальных данных еще не имеется.

На рис. 7 сравниваются расчетные и экспериментальные средние поперечные импульсы рождающихся частиц. В области $T \leq 100$ Гэв эначения $\langle P_{\downarrow s} \rangle$ остаются практически постоянными, при больших энергиях средний поперечный импульс π -мезонов остается неизменным (для взаимодействий $p + E_m$), а величина $\langle P_{\downarrow s} \rangle$ медленно возрастает, что обусловлено как большим вкладом лидирующей частицы, так и увеличением поперечных импульсов остальных нуклонов.

Средние поперечные импульсы частиц с серыми следами в пределах статистических ошибок не зависят от первичной энергии. На -

x' Если в расчете не учитывать эффекта уменьшения внутриядерной плотности, то аномально большие значения ΔA и E* - получаются уже при $T \sim 1$ Гэв/13/; следствием этого являются очень большие значения < $n_a > u < n_b >$.

пример, для столкновений $p + E_m$ при T = 250 и 10^3 Гэв $\langle p_{\downarrow g} \rangle = 320$ и 360 Мэв/с.

Таким образом, более точное восстановление характеристик неупругих *п* – *N* и *N* – *N* –взаимодействий, а, главным образом, - учет уменьшения внутриядерной плотности по мере развития каскада позволяют согласовать каскадно-испарительную модель с известными сейчас экспериментальными данными при всех энергиях *T* ≤ 100 Гэв. Для согласования с опытом при больших энергиях в теорию необходимо ввести механизм, уменьшающий число рождающихся ливневых частиц. Таким механизмом могут быть многочастичные взаимодействия /2/.

Следует подчеркнуть, что из согласия расчетных данных с опытом в области T = 10 + 100 Гэв еще нельзя с уверенностью заключить о том, что доля многочастичных взаимодействий эдесь пренебрежимо мала, так как экспериментально в этой области изучалось всего лишь небольшое число средних величин, весьма грубо характеризующих процесс взаимодействия. Как показывают оценки, учет многочастичных взаимодействий сравнительно слабо влияет на эти характеристики при T = 10 + 100 Гэв.

Литература

- 1. I.Z.Artykov, V.S.Barashenkov and S.M.Eliseev. Nucl. Phys., 87, 241 (1966).
- 2. I.Z.Artykov, V.S.Barashenkov and S.M.Eliseev. Nucl. Phys., B6, 11 (1968).
- 8. J.Z.Artukov, V.S.Barashenkov. Nucl. Phys., <u>B6</u>, 628 (1968).

4. 11.3. Артыков, В.С. Барашенков. ЯФ, 11, 1070 (1970).

- Б. Н.С. Барашенков, К.К. Гудима, В.Д. Тонеев. ЯФ, <u>10</u>, 755 (1969).
- И. В.С. Барашенко, А.С. Ильинов, В.Д. Тонеев. ЯФ, <u>13</u>, 743 (1971).

7. А.С. Ильинов. ОИЯИ, Б1-4-5477, Дубна, 1971.

- 8. G.G.Beznogikh, A.Buyak, K.I.Iovchev, L.F.Kirillow, P.K.Markov, B.A.Morozov, V.A.Nikitin, P.V.Nomokonov, M.G.Shafranova, V.A.Sviridov, Truong Bien, V.I.Zayachki, N.K.Zhidkov, L.S.Zolin, S.B.Nurushev and V.I.Solovianov. Phys.Lett., <u>30B</u>, 274 (1969). M.Holder, E.Radermacher, A.Staude, G.Barbiellini, P.Darriulat, M.Hansroul, S.Orito, P.Palazzi, A.Santroni, P.Strolin, K.Tittel, J.Pilcher, C.Rubbia, G.DeZorzi, M.Macri, G.Sette, C.Grosso-Pilcher, A.Fainberg and G.Maderni. Phys.Lett., <u>35B</u>, 355 (1971). U.Amaldi, R.Biancastelli, C.Bosio, G.Matthiae, J.V.Allaby, W.Bartel, G.Cocconi, A.N.Diddens, R.W.Dobinson, V.Elings, J.Litt, L.S.Rochester and A.M.Wetherell. Phys.Lett., <u>36B</u>, 504 (1971).
- 9. В.С. Барашенков, С.М. Елисеев, С.Е. Чигринов. Сообщение ОИЯИ, P2-6022, Дубна, 1971.
 В.С. Барашенков, К.К. Гудима, В.Д. Тонеев.
 Acta Phys.Pol., <u>36</u>, 415 (1969).
- 10. В.С. Барашенков, В.Д. Тонеев, Взаимодействие высокоэнергетических частиц и ядер с ядрами. "Атомиздат", М., 1972.
- 11.3.В. Анзон, Ж.С. Такибаев, И.Я. Часников. Письма ЖЭТФ, 14, 405 (1971).
- 12. Н. Далхажаев, К.Д. Толстов, Г.С. Шабратова. Сообщение ОИЯИ, Р1-5326, Дубна, 1970.
- 13. В.С. Барашенков, К.К. Гудима, А.С. Ильинов, В.Д. Тонеев. Сообщения ОИЯИ, Р2-5118, Дубна, 1970.
- 14. А.А. Горячих, Ж.С. Такибаев, Н.С. Титова, Е.В. Шалагина. ЯФ, <u>13</u>, 1267 (1971).

Рукопись поступила в издательский отдел 17 апреля 1972 года.

Таблица І

Средняя множественность заряженных ливневых и медленных частиц в фотоэмульсионных звездах, образованных \mathfrak{N} -мезонами с энергией $\mathcal{T} = 60$ Гэв

h.	e an starte Gan Startes Startes	<ns></ns>	$< n_{k} >$		
''h	Теория	Опыт/II/	Теория	OUNT/II/	
0 + I	3,9±0,3	6,18 [±] 0,11	0,35±0,03	0,42 [±] 0,03	
2+7	6,3 ± 0,3	7,6I±0,II	4,4 [±] 0,2	4,03±0,03	
≥8	II ± 0,6	II,77±0,13	13,3 ± 0,9	15,22±0,15	
>0	8,I ± 0,4	9,23 [±] 0,07	7,2±0,3	7,02±0,05	

Таблица П

Средняя энергия возбуждения остаточных ядер и среднее число нуклонов, теряемых ядром-мишенью в ходе каскадного процесса

Взаимод.	Т, Гэв	<Е*> мэв	<2 A>
JT+LEm	60	30	2,0
st+Em	60	IIO	12,9
9T+HEm	60	150	19,3
p+Em	250	I 54	17,4
p+Em	500	160	.18,2
p+Em	10 ³	163	I8,6

Рис. 1. Энергетическая зависимость средней множественности частии, образующихся при неупругих взаимодействиях протонов и π -мезонов с фотоэмульсией. n_s , n_g -число частиц, оставляющих тонкие и серые следы, n_h -среднее число частиц, оставляющих серые или черные следы. Кружки относятся к взаимодействиям $p + E_m$, треугольники - к взаимодействиям $\pi + E_m$. Заштрихованные значки - результат расчета, полые кружки и треугольники - экспериментальные данные /10,11/

Рис. 2. Энергетическая зависимость средней множественности частиц, образующихся при неупругих взаимодействиях π -мезонов с легкими и тяжелыми ядрами фотоэмульсии. n_s , n_g , n_h имеют тот же смысл, что и на рис. 1. Кружки и треугольники относятся соответственно к взаимодействиям $\pi + H E_m$ и $\pi + L E_m$. Заштрихованные значки - теоретические данные, полые значки – эксперимент /10,12/.

Рис. 3. Распределение числа серых и черных следов в звездах, образовавшихся при взаимодействии *п* - мезонов с энергией 60 Гэв с тяжелыми ядрами фотоэмульсии. Заштрихованные кружки - расчет, полые треугольники - эксперимент /12/.

Рис. 4. Средняя множественность тонких следов в звездах с различным числом серых и черных следов, образовавшихся при неупругих столкновениях <u>п</u>-мезонов с энергией 60 Гэв с тяжелыми ядрами фотоэмульсии. Заштрихованные кружки - расчет, полые треугольники - эксперимент/12/

Рис. 5. Угловые распределения частиц с тонкими и серыми следами в звездах, образовавшихся при неупругих столкновениях *п* -мезонов с энергий 60 Гэв с тяжелыми ядрами фотоэмульсии. Гистограммы расчет, экспериментальные точки взяты из работы /14/. Указаны теоретические значения углов, в которые вылетает половина вторичных частиц.

Рис. 6. Изменение с ростом энергии угла, в который вылетает половина заряженных ливневых частиц, рождающихся в неупругих столкновениях протонов и π -мезонов с ядрами фотоэмульсии ($\theta_{1/2}$ в градусах). Все обозначения, как на рис. 1

Рис. 7. Энергетическая зависимость средних поперечных импульсов π - мезонов и всех заряженных ливневых частиц, образующихся в неупругих столкновениях $p + E_m$ и $\pi + E_m$ (P_{\perp} в единицах Гэв/с). Все обозначения, как на рис. 1.