5-903 ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ Дубна. 3216 -11

197

Ю.А.Будагов, В.Б. Виноградов, Л.Л. Енковский, С.В. Клименко, Г. Мартинска, В.В. Тимохин, Л. Шандор,

13/9-71

P2 - 5943

ПРИМЕНЕНИЕ ОБОБЩЕННОЙ МОДЕЛИ ВЕНЕЦИАНО К РЕАКЦИИ **π− р→n π⁰ π⁰**

P2 - 5943

Ю.А.Будагов, В.Б. Виноградов, Л.Л. Енковский *, С.В. Клименко ** Г. Мартинска, В.В. Тимохин, Л. Шандор,

ПРИМЕНЕНИЕ ОБОБЩЕННОЙ МОДЕЛИ ВЕНЕЦИАНО К РЕАКЦИИ **π−** р → n π⁰ π⁰

Направлено в ЯФ

Объемененный систатут CASPENA ECCUCAOBANEN EME, MUROTEKA

*Институт теоретической физики АН УССР, Киев **Институт физики высоких энергий, Серпухов *** Киевский государственный университет В настоящее время наиболее общей динамической моделью для описания неупругих процессов типа 1 + 2 → 3 + 4 + 5 является обобщенная модель Венециано^{/1/}. Эта модель принадлежит к классу дуальных моделей и соединяет в себе свойства амплитуды Редже при высоких энергиях и амплитуды с резонансными полюсами при низких энергиях. С помощью обобщенной модели Венециано удалось успешно описать ряд процессов, в основном, связанных с образованием странных частии

and the second second

And And And

(1)

В данной работе обобщенная модель Венециано применяется для анализа реакции

$$\pi - p \rightarrow n \pi^0 \pi^0$$

в интервале энергий 1-10 Гэв.

e eestaan oo ah amerika ah ka di

1. Модель

В обобщенной модели Венециано амплитуда процесса 1 + 2 → 3 + 4 + 5 имеет вид:

х/ О применениях обобщенной модели Венециано см., например, обзоры/2,3/.

$$A = \sum_{1}^{12} KB_5(x_{12}, x_{23}, x_{34}, x_{45}, x_{51}),$$

где B_5 – пятиточечная функция^{/1/} (обобщение амплитуды Венециано на 5 частиц), $x_{ij} = J - a_{ij} (s_{ij}), a_{ij}$ – линейная траектория Редже, связанная с системой частиц *i* и *j* , $s_{ij} = (p_i + p_j)^2$, p_i и *m_i* – – четырехмерный импульс и масса *i* – ой частицы. Коэффициент J равен спину первой частицы на траектории при $\sqrt{s_{ij}} > m_i + m_i$ и равен 1 при $\sqrt{s_{ij}} < m_i + m_i$; $K = \epsilon_a \beta_\gamma \delta p_1^a p_2^\beta p_3^\gamma p_4^\delta$ – кинематический множитель^{/4/}. Суммирование производится по двенадцати неэквивалентным перестановкам внешних частиц.

Для реакции (1) такими перестановками будут:

a) $\pi^- p n \pi_1^0 \pi_2^0$	g) $\pi^{-}n\pi^{0}_{1}p\pi^{0}_{2}$
$b) \pi^{-} p \pi_{1}^{0} n \pi_{2}^{0}$	h) $\pi^- n \pi^0_2 p \pi^0_1$
c) $\pi^{-} p \pi_{1}^{0} \pi_{2}^{0} n$	i) $\pi^{-}\pi^{0}_{1}\pi^{0}_{2}$ pn
d) $\pi^- p \pi_2^0 n \pi_1^0$	$j) \ \pi^{-}\pi^{0}_{2} p n \ \pi^{0}_{1}$
e) $\pi^{-}p \ n \ \pi_{2}^{0} \ \pi_{1}^{0}$	k) π ⁻ π ⁰ ₁ pn π ⁰ ₂
f) $\pi^- n \pi_1^0 \pi_2^0 p$	1) π ⁻ n p π ⁰ ₁ π ⁰ ₂

Диаграммы a)-f) показаны на рис. 1. В каждом двухчастичном канале указана доминантная траектория. Выбор f -траектории в канале $\pi^0 \pi^0$ и Δ -траектории в канале $n\pi^0$ обусловлен экспериментальными данными, свидетельствующими о доминирующем образовании резонансов f и Δ в каналах $\pi^0 \pi^0$ и $n\pi^0$, соответственно. Выбор остальных траекторий неоднозначен. В каналах $\bar{p}n$ и $\pi^+\pi^0$ возможны $\pi - u$ ρ -траектории, а в каналах π^-p , $\bar{p}\pi^0$ и $\pi^+n - N - u \Delta$ -траектории. Сделанный нами выбор p - u N-траекторий произволен, однако, существенно влияет на конечный результат только использование ρ -траектории.

59454.37

Что же касается использования **N** -траектории, то замена ее на Δ -траекторию не произведет существенного изменения в предсказаниях модели. Это связано с тем, что отличие вкладов **N** и Δ -траекторий в прямом ($\pi^- p$) канале не велико из-за больших значений s_{ij} и примерного равенства наклонов траекторий⁵¹, а в обменных каналах ($\bar{p} \pi^0$ и $n\pi^+$) вклад барионного обмена мал по сравнению с мезонным обменом.

Для того чтобы избежать появления в системе $\pi^0 \pi^0$ резонансов с изотопическим спином 1, а в системе $n\pi^0$ изобар Δ с отрицательной четностью (5/2, 9/2 и т.д.), диаграммы, имеющие в прямом канале f – или Δ , должны складываться в амплитуде с аналогичными диаграммами, отличающимися перестановками π^0 -мезонов (соответственно, n и π^0 в случае Δ). Это приводит к разделению 12 диаграмм на четыре группы: групну A, состоящую из диаграмм a, b, c, d, e, f; B- из' g и j, C – из h и k, D- из i и l. Единственной группой, имеющей все необходимые свойства для описания образования резонансов в реакции (1), является группа A. Группы B и C не имеют в прямом канале f-резонанса, а группа $D - \Delta$ -резонанса. Поэтому для дальнейших вычислений была использована группа диаграмм A.

В таком случае амплитуда реакции (1) принимает вид:

$$A = \beta \cdot K \{ (a) + (b) + (c) + (d) + (e) + (f) \}, \qquad (2)$$

где *β*- нормировочный параметр,

$$(a) = B_{5}(1/2 - a_{N}(s_{12}), 1 - a_{\rho}(t_{23}), 3/2 - a_{\Delta}(s_{34}), 2 - a_{f}(s_{45}), 1 - a_{\rho}(t_{51})),$$

$$(b) = B_{5}(1/2 - a_{N}(s_{12}), 1 - a_{N}(t_{23}), 3/2 - a_{\Delta}(s_{34}), 3/2 - a_{\Delta}(s_{45}), 1 - a_{\rho}(t_{51}))$$

If Teller

$$a_{\rho}(t) = 0.48 \pm 0.9 t$$

$$a_{f}(s) = 0.48 \pm 0.92 s \pm i 0.14 (s - 0.07)^{1/2}$$

$$a_{N}(t) = -0.39 \pm 0.9 t$$

$$a_{N}(s) = -0.39 \pm 1.01 s \pm i0.12 (s - 1)$$

$$a_{\Lambda}(s) = 0.12 \pm 0.9 s \pm i0.14 (s - 1).$$

Параметры траекторий были определены из масс и ширин резонансов, а также из результатов экспериментов по рассеянию адронов /6,7/

2. Сравнение предсказаний модели с экспериментом

Для получения предсказаний амплитуда (2) интегрировалась по фазовому объему методом Монте-Карло с помощью программы FOWL ^{/8/}. При этом вычисление функции **B**₅ произволилось по программе Хопкинсона ^{/9/}. Погрешности вычислений составляли менее З" для полных сечений и 8% - для дифференциальных сечений. Результаты вычислений показаны на рис. 2,3 сплошными кривыми. Экспериментальные данные, показалные на этих рисунках, взяты из работ ^{/10-21/ х/}. Нормпровка предсказаний была произведена на величину полного сечения реакции (1) при 2,6 Гэв/с.

На рис. 2а представлена зависимость сечения реакции (1) от импульса налетающего π^- -мезона. Как видно из этого рисунка, предсказания модели хорошо согласуются с большинством экспериментальных данных.

х/Данные о сечениях реакции (1) взяты из работ $\pi^{-}p \rightarrow \pi^{0} \Delta^{0}$ - из работ /10,15,16/, $\pi^{-}p \rightarrow nf(f \cdot 2\pi^{0})$ из работ /10,17-21/

7

and the second second

Рис. 2. Сравнение предсказаний модели с экспериментальными данными: а) зависимость сечения реакции $\pi^- p \cdot n \pi^0 \pi^0$ от импульса налетаюшего π^- -мезона; значком \mathbf{f} обозначены данные работы/10/, \mathbf{f} - работы/11/, \mathbf{f} - работы/12/, \mathbf{f} - работы/13/, \mathbf{A} - работы/14/; \mathbf{b}) зависимость сечения реакции $\pi^- p \to \pi^0 \Delta^0 (1236) (\Delta^0 \cdot n \pi^0)$ от им пульса налетающего π^- -мезона; с) зависимость отношения сечений реакций $\sigma(\pi^- p \cdot \pi^0 \Delta^0 (1236))/\sigma(\pi^- p \cdot n \pi^0 \pi^0)$ от импульса налетающего π^- -мезона; d) зависимость сечения реакции $\pi^- p \to nf(f \cdot 2\pi^0)$ от импульса налетающего π^- -мезона.

На рис. 2в показаны предсказания модели для сечения образования изобары Δ^0 (1236) в канале $\pi^- p \rightarrow \pi^0 \Delta^0$ (1236) ($\Delta \rightarrow n\pi^0$). На рис. 2с эти данные представлены в виде относительных вероятностей $R = \sigma (\pi^- p \rightarrow \pi^0 \Delta^0) / \sigma (\pi - p \rightarrow n \pi^0 \pi^0)$ (в %). В пределах погрешностей наблюдается согласие экспериментальных величин R с предсказаниями модели.

На рис. 2d показаны предсказания модели для сечения реакции $\pi^- p \rightarrow nf (f \rightarrow \pi^0 \pi^0)$. Модель качественно правильно описывает зависимость сечения этой реакции от энергии налетающего π^- -мезона (максимум сечения в области 4-6 Гэв/с). Что же касается абсолютных величин сечений, то предсказания модели лучше согласуются с экспериментом при более высоких энергиях (>5 Гэв); при меньших энергиях они в ≈ 2 раза меньше экспериментальных.

На рис. З приведены предсказания для распределений по переданному импульсу и косинусу угла вылета нейтрона в системе центра масс первичного взаимодействия. Соответствующие экспериментальные данные отсутствуют. Поэтому для сравнения на этом рисунке показаны данные $^{/18,22,23/}$ для аналогичной по множественности и типу бариона реакции $\pi^- p \rightarrow n \pi^+ \pi^-$. Модель качественно правильно описывает периферический характер взаимодействий и увеличение анизотропии вылета нуклона с ростом энергии налетающего пиона.

Таким образом, сравнение предсказаний модели с экспериментом показало, что используемая модель удовлетворительно описывает основные характеристики реакции π⁻p → n π⁰ π⁰ при энергиях налетающего пиона в интервале 1-10 Гэв/с.

Мы благодарны В.П. Джелепову и В.П. Шелесту за постоянный интерес и помощь в работе, а А.Г. Володько, В.И. Журавлеву, В.В. Кухтину и Б.В. Струминскому за полезные обсуждения.

Рис. 3. Распределения по переданному импульсу и косинусу угла вылета нейтрона в системе центра масс первичного взаимодействия. Кривыми показаны предсказания модели, гистограммы – экспериментальные данные для реакции $\pi^- p \rightarrow n \pi^+ \pi^-$.

Литература

1.	K.Bardakci and H.Ruegg. Phys. Lett., 28B, 342 (1968).
	M. Virasoro. Phys. Rev. Lett., <u>22</u> , 37 (1969).
2.	Л.Л. Енковский и др. Препринт ИТФ-70-43, Киев, 1970.
3.	H.Schreiber, PHE 71-5, Berlin-Zeuthen (1971).
4.	B.Petersson and N.A.Törnqvist, Nucl. Phys., <u>B</u> 13, 629 (1969).
5.	P.A.Collins et al. Nucl. Phys., <u>B 22</u> , 150 (1970).
6.	Д.В. Ширков. ОИЯИ, Р2-4726, Дубна, 1969.
7.	Chan Hong Mo et al. Nucl. Phys., <u>B</u> 19, 165 (1970).
8.	F.James. FOWL, CERN Program Library, W 505 (1965).
9.	J.F.Hopkinson. Preprint RITP 3-69, Helsinki (1969).
10.	Ю.А. Будагов и др. ЯФ, <u>12</u> , 1222 (1970).
11.	H.R.Crouch et al. Phys. Rev. Lett., <u>21</u> , 845 (1968).
12.	Я.Я. Шаламов, В.А. Шебанов. ЖЭТФ, <u>39</u> 1232 (1960).
13.	A.S.Caroll et al. Phys. Rev., <u>177</u> 2047 (1969).
14.	Я. Гладки. ОИЯИ, 1-4766, Дубна 1969.
15.	I.F.Corbett et al. Nuovo Cim., <u>39</u> , 979 (1965).
16.	M.Feldman et al. Phys. Rev. Lett. <u>22</u> , 316 (1969).
17.	M.Wahling et al. Phys. Rev., <u>147</u> , 941 (1966).
18.	L.Bondar et al. Nuovo Cim., <u>31</u> , 729 (1964).
19.	D.H.Miller et al. Phys. Rev., <u>153</u> , 1423 (1967).
20.	G.Bellini et al. Nuovo Cim. <u>53A</u> , 798 (1962).
21.	W.Selove et al. Phys. Rev. Lett., <u>9</u> , 272 (1962).
22.	J.Alitti et al. Nuovo Cim., 29, 515 (1963).
23.	A.R.Erwin et al. Phys. Rev. Lett. <u>6</u> , 628 (1961).
,	Рукопись поступила в излательский отлал.
	. Judines neorganica s negatomotina organ

19 июля 1971 года.