C324,10 A-92 СООБЩЕНИЯ объединенного ИНСТИТУТА ЯДЕРНЫХ исследований Дубна 2185

P2-5765

5/11.71

А. Атанасов

О ПРИМЕНЕНИИ ПАДЕ-АППРОКСИМАЦИИ В ЗАДАЧЕ ДЛЯ СВЯЗАННЫХ СОСТОЯНИЙ В КВАЗИПОТЕНЦИАЛЬНОМ ПОДХОДЕ

1971

DHAG TE

P2-5765

А. Атанасов

О ПРИМЕНЕНИИ ПАДЕ-АППРОКСИМАЦИИ В ЗАДАЧЕ ДЛЯ СВЯЗАННЫХ СОСТОЯНИЙ В КВАЗИПОТЕНЦИАЛЬНОМ ПОДХОДЕ

§ 1. Введение

В квазипотенциальном подходе система из двух взаимодействующих частиц в квантовой теории поля описывается уравнением типа Липмана-Швингера с комплексным потенциалом, зависящим от энергии. В настоящей работе предлагается способ приближенного решения квазипотенциального уравнения, описывающего систему из двух бесспиновых частиц. Взаимодействие задается локальным потенциалом, который является суперпозицией потенциалов Юкавы со спектральной функцией, зависящей от энергии/1/.

Показано, что решение уравнения методом итерации можно представить в виде Паде-дроби. Полюса этого решения дают возможность определить траекторию Редже в области связанных состояний. Задача определения полюсов Паде-дроби сводится к анализу собственных значений соответствующего однородного уравнения. Через следы ядра /2-4/ определяются приближенно собственные значения однородного уравнения, из которых можно определить энергии связанных состояний или константы связи.

В предлагаемом методе определяются энергии связанных состояний без использования разложения по константе связи, как в теории возмущений. В отличие от вариационного подхода здесь не требуется знания собственных функций. Вследствие простоты вычислений этот метод удобен для расчётов на электронно-вычислительной мащине.

В первой части рассматривается применение Паде-аппроксимации для определения энергий связанных состояний или константы связи для релятивистской двухчастичной системы. Во второй части показано, что задача сводится к приближенному определению собственных значений однородного уравнения через следы ядра.

§ 2. Паде-аппроксимация для связанных состояний релятивистской системы в квазипотенциальном подходе

В/1/ показано, что если в уравнении для парциальной амплитуды f_{ℓ}^{\pm} (р, р ') :

$$f_{\ell}^{+}(p,p') = gF_{\ell}^{+}(p,p';k^{2}) + g\int_{0}^{\infty} dq \frac{2\pi F_{\ell}^{+}(p,q;k^{2}) f_{\ell}^{+}(q,p')}{\sqrt{q^{2}+m^{2}} (k^{2}-q^{2})}$$
(1)

положим

$$K_{\ell}(p,p';k^{2}) = \phi(p) F_{\ell}(p,p';k^{2}) \phi(p')$$
(2)

$$R_{\rho}(p, p') = \phi(p) f_{\ell}(p, p') \phi(p') , \qquad (3)$$

где

$$\phi(\mathbf{p}) = \sqrt{2\pi} \left[\sqrt{\mathbf{p}^2 + \mathbf{m}^2} (\mathbf{k}^2 - \mathbf{p}^2) \right]^{-\frac{1}{2}}$$
(4)

$$F_{\ell}^{\pm}(p,q;k^{2}) = \int_{\mu^{2}}^{\infty} U^{\pm}(\nu,k^{2}) Q_{\ell} \left(\frac{p^{2}+q^{2}+\nu}{2pq}\right) d\nu , \qquad (5)$$

то получаем уравнение

$$R_{\ell}(p,p') = g K_{\ell}(p,p';k^{2}) + g \int_{0}^{\infty} dq K(p,q;k^{2}) R_{\ell}(p,q') .$$
 (6)

Мы будем предполагать, что спектральная функция U⁺ (ν, k²) имеет такое поведение, что для k² < 0 и Rel>- 1 симметричное ядро К является квадратично интегрируемым. Уравнение для волновой функции

$$\eta_{\ell \alpha} (k^2) \phi_{\ell \alpha} (p) = g \int_{0}^{\infty} \frac{2\pi}{\sqrt{k^2 - p^2}} \frac{F_{\ell} (p,q;k^2)}{[p^{2+m^2}]^{1/4}} \frac{1}{\sqrt{k^2 - q^2}} \phi_{\ell \alpha} (q) dq (7)$$

имеет квадратично интегрируемое симметричное ядро. Собственные функции уравнения (7) являются ортогональными между собой, а соответствующие собственные эначения - реальными. Из теорий Гильберта-Шмидта известно, что п -тое итерированное ядро

$$K_{\ell_n} (q,q') = \int \dots \int K_{\ell} (q,q_1) K_{\ell} (q_1,q_2) \dots K_{\ell} (q_{n-1},q') d_1 \dots d_{n-1} (8)$$

можно представить в виде

$$K_{\ell_{n}}(q_{1},q_{2};k^{2}) = \sum_{\alpha=1}^{n} \frac{\phi_{\ell_{\alpha}}(q_{1},k^{2})\phi_{\ell_{\alpha}}(q_{2},k^{2})}{\eta_{\ell_{\alpha}}^{n}(k^{2})} .$$
(9)

Обозначим буквой $K_{\ell_n}^{[\nu]}$ ядро, полученное обрезанием ряда (9) до ν -ого члена и образуем ряд

$$X_{\ell}^{[\nu]}(p,p';k^{2}) = 1 + g R_{\ell}^{[\nu]}(p,p';k^{2}) =$$

$$= 1 + g K_{\ell_{1}}^{[\nu]}(p,p';k^{2}) + g^{2} K_{\ell_{2}}^{[\nu]}(p,p';k^{2}) + \dots$$
(10)

Диагональную Паде-дробь ряда (10) можно представить в виде

$$\begin{bmatrix} \nu \end{bmatrix} \qquad \qquad \sum_{p=0}^{n} a_{p} g^{p}$$

$$X_{\ell} [n,n] = \frac{\sum_{q=0}^{n} b_{q} g^{q}}{\sum_{q=0}^{n} b_{q} g^{q}}, \qquad (11)$$

где коэффициенты a и b определяются условием

$$\left(\sum_{q=0}^{n} g^{q} b_{q}\right) \left(\sum_{r=0}^{n} g^{r} K_{\ell r}^{[\nu]}\right) = \sum_{p=0}^{n} a_{p} g^{p} + 0 \left(g^{2n+1}\right) .$$
(12)

Приравнивая коэффициенты перед g^k для k = n+1, $n+2 \dots 2n$, нолучаем систему уравнений для коэффициентов, знаменателя Q_n Паде-дроби (11). Знаменатель, нормированный к единице, можно представить в виде /5,6/.

$$Q_{n}^{[\nu]} = 1 - g \frac{D_{1}^{(n)}}{D_{0}^{(n)}} - g^{2} \frac{D_{2}^{(n)}}{D_{0}^{(n)}} \cdots - g^{n} \frac{D_{n}^{(n)}}{D_{0}^{(n)}} , \qquad (13)$$

$$D_{0}^{(n)} = \begin{pmatrix} K_{\ell_{1}}^{[\nu]} & K_{\ell_{2}}^{[\nu]} & \dots & K_{\ell_{n}}^{[\nu]} \\ K_{\ell_{2}}^{[\nu]} & K_{\ell_{3}}^{[\nu]} & \dots & K_{\ell_{n+1}}^{[\nu]} \\ \\ \dots & \dots & \dots & \dots \\ K_{\ell_{n}}^{[\nu]} & K_{\ell_{n+1}}^{[\nu]} & K_{\ell_{n-1}}^{[\nu]} \end{pmatrix}, \qquad (14)$$

а определитель $D_{m}^{(n)}$ получается из $D_{0}^{(m)}$ подстановкой n-m+1-го столбца в $D_{0}^{(n)}$ через $K_{\ell,n+1}^{[\nu]}$, $K_{\ell,n+2}^{[\nu]}$... $K_{\ell,2n}^{[\nu]}$ Аналогично работе $^{/6/2}$ можно показать и в этом случае, что знаменатель Паде-дроби является выражением типа

$$Q_{\nu}^{[\nu]} = \prod_{a=1}^{\nu} \left(1 - \frac{g}{\eta_{\rho_{a}}(k^{2})}\right) .$$
(15)

Если продолжить (15) для положительных значений k^2 , и если индекс ν будет возрастать неограниченно, аппроксимированное ядро $K_{\ell_n}^{[\nu]}$ стремится к точному ядру K_{ℓ_n} и правая часть последнего равенства стремится к бесконечному произведению $\prod_{a=1}^{\infty} (1 - \frac{g}{\eta_{\ell_a}(k^2)})$, которое совпадает с определителем Фредгольма. Таким образом, доказано, что знаменатель Паде-дроби и знаменатель Фредгольма вне энергетической поверхности не зависят от Р и q, а зависят только от ℓ и k^2 через собственные значения $\eta_{\ell_a}(k^2)$ уравнения (7).

§ 3. Определение энергий съязанных состояний через следы ядра

Траектории Редже для связанных состояний определяются из условия обращения в нуль знаменателя Паде-дроби, т.е.

$$Q_{\nu}^{[\nu]} = \prod_{\alpha=1}^{\nu} (1 - \frac{g}{\eta_{\beta_{\alpha}}(k^2)}) = 0 ,$$

которое выполняется, когда

$$\frac{g}{\eta_{\ell a}(k^2)} = 1 \quad . \tag{16}$$

Для того чтобы найти приближенную оценку для $\eta_{\ell a}$ (k²), рассмотрим следы интегрированных ядер

$$A_{\ell_n} = \int_{0}^{\infty} K_{\ell_n} (q, q) dq , \qquad (17)$$

где К_{ln} определяется из (8). Так как ядро является квадратично интегрируемым, след с чётными индексами связан с собственными эначениями уравнением

$$A_{\ell_{1,2^{n}}} = \sum_{a=1}^{\infty} \frac{1}{\eta_{\ell_{a}}^{2^{n}} (k^{2})} .$$
 (18)

Известно, что следы А_{ℓ, 2}можно представить в виде /2/

$$A_{\ell, 2n} = \int_{0}^{\infty} \int_{0}^{\infty} |K_{\ell n}(q, q')|^2 dq dq'.$$
 (19)

Предположим, что числа $\eta_{\ell a}$ расположены в порядке возрастания, т.е. $\eta_{\ell 1} < \eta_{\ell 2} < \eta_{\ell 3} < \dots$. Так как ряд (18) сходится, они возрастают быстрее числа в γ , где $\gamma > \frac{1}{2}$. С другой стороны, так как ядра являются симметричными и компактными, спектр уравнения (7) невырожден. Представим ряд (18) в виде

$$A_{\ell,2n} = \frac{1}{\eta_{\ell_1}^{2n} (k^2)} \quad (1 + \epsilon_{\ell_n}),$$
 (20)

где величина

$$\ell_{n} = \sum_{a=2}^{n} \left(\frac{\eta_{\ell_{1}}(k^{2})}{\eta_{\ell_{a}}(k^{2})} \right)^{2_{n}}$$
(21)

стремится к нулю, когда $n \to \infty$. Если напишем аналогичное выражение для $A_{\ell, 2n+2}$ и разделим почленно $A_{\ell, 2n}$ на $A_{\ell, 2n+2}$, получим

$$\eta_{\ell_1} (k^2) = \lim_{n \to \infty} \left(\frac{A_{\ell, 2n}}{A_{\ell, 2n+2}} \right)^{\frac{1}{2}}.$$
 (22)

Другая приближенная формула получается, если в ряде (18) пренебречь всеми членами за исключением первого, т.е

$$\eta_{\ell_1}(k^2) = \lim_{n \to \infty} \left(\frac{1}{A_{\ell,2n}}\right)^{\frac{1}{2n}}.$$
 (23)

Очень часто можно использовать приближенные формулы

$$\eta_{\ell_1}'(\mathbf{k}^2) = \left(\frac{A_{\ell,2n}}{A_{\ell,2n+2}}\right)^{\frac{1}{2}}, \quad \eta_{\ell}''(\mathbf{k}^2) = \left(\frac{1}{A_{\ell,2n}}\right)^{\frac{1}{2n}}, \quad (24)$$

где первая дает η_{l_1} с избытком, а вторая – с недостатком. Это легко можно установить из неравенства

$$\eta_{\ell_1} = \left(\frac{1+\epsilon_{\ell_n}}{A_{\ell,2_n}}\right)^{1/2_n} > \left(\frac{1}{A_{\ell,2_n}}\right)^{1/2_n}, \qquad (25)$$

$$\frac{A_{\ell,2n}}{A_{\ell,2n+2}} = \eta_{\ell,1}^2 \frac{1 + \epsilon_{\ell,n}}{1 + \epsilon_{\ell,n+1}} > \eta_{\ell,1}^2$$
(26)

Таким образом, определяя $\eta_{\ell 1}$ из (25) и (26) и подставляя в (16), получаем уравнения двух кривых, между которыми находится настоящая траектория Редже. Зная $\eta_{\ell 1}^2(\mathbf{k}^2)$, легко определить $\eta_{\ell 2}(\mathbf{k}^2)$. Для этой цели рас-

смотрим выражения

$$B_{\ell,2n} = A_{\ell,2n}^2 - A_{\ell,4n}$$
(27)

и аналогичным способом в случае η_{l1} находим

$$\eta_{\ell_{2}}(\mathbf{k}^{2}) = \frac{1}{\eta_{\ell_{1}}(\mathbf{k}^{2})} \lim_{n \to \infty} \frac{1}{(B_{\ell_{1}2n})^{1/2n}} = \frac{1}{\eta_{\ell_{1}}(\mathbf{k}^{2})} \lim_{n \to \infty} \frac{(B_{\ell_{1}2n})^{1/2}}{(B_{\ell_{1}2n+2})^{1/2}} .$$
(28)

Таким образом, можно построить формулы и для следующих собственных значений. Например, зная η_{l1} и η_{l2} , получаем

$$\eta_{\ell_3} = \frac{1}{\eta_{\ell_1}^2 (k^2) \eta_{\ell_2}(k^2)} \lim_{n \to \infty} \left(\frac{8}{B_{\ell_1 2n}^2 - 2B_{\ell_1 4n}} \right)^{1/2n} .$$
(29)

В случае, когда ядро не является ядром типа Гильберта-Шмидта, этот метод не пригоден. Тогда Паде-дробь находится из ряда теории возмущений, полученным для точных ядер, что связано с большими вычислительными трудностями. Таким образом, предложенный метод дает возможность найти траектории Редже только в области связанных состояний.

След ядер можно представить в более удобной для вычисления форме, если факторизовать ядра. Имея в виду, что ядро интегрального уравнения (17) является компактным, его можно представить в виде

$$K_{\ell}(p,q;k^{2}) = \sum_{i=1}^{r} a_{\ell}^{(i)}(p) b_{\ell}^{(i)}(q).$$
(30)

Подставляя К, из (30) в (9) и (17), получаем

$$A_{\ell,2n} = \sum_{k_1, k_2 \dots k_{2n}=1} J_{k_1, k_2 \dots k_{2n}=1} J_{k_1, k_{2n}, k_{2n}} \dots J_{k_{2n}, k_{2n-1}}, \qquad (31)$$

где

$$J_{is} = \int_{0}^{\infty} a \frac{(i)}{\ell} (q) b \frac{(s)}{\ell} (q) dq. \qquad (32)$$

Если в выражениях для η заменить $A_{\ell,2n}$ на $A_{\ell,2n}^{(r)}$ и $A_{\ell,2n+2}$ на $A_{\ell,2n+2}^{(r)}$, получаем приближенные выражения для

$$\eta \frac{(\mathbf{n},\mathbf{r})}{l_1}, \eta \frac{(\mathbf{n},\mathbf{r})}{l_2} \dots \eta \frac{(\mathbf{n},\mathbf{r})}{k} \dots$$
(33)

Интересно отметить, что если ядро можно представить точно в виде $K_{\ell}(p,q;k^2) = a_{\ell}(p) b_{\ell}(q)$, то $\eta_{\ell a}$ вычисляется через следы ядра и полученный результат совпадает с найденными другими методами. Факторизация ядра осуществляется разными способами, самым удобным из которых является метод Беймана⁷⁷⁷. Другой способ факторизации для потенциалов, являющихся суперпозицией потенциалов Юкова, предложен Фонгом⁸⁷. В качестве примера рассмотрим S состояние дейтрона, принимая, что протон и нейтрон взаимодействуют между собой обменом скалярных мезонов в лестничном приближении. При энергии связи B=2,226 Мэв, m = 6,721 m $_{\pi}$, и m $_{\pi}$ =139,579 Мэв. Численно интегрируя, находим A $_{0,2}$ =0,80, A $_{0,4}$ = 0,64. Для нижнего и верхнего предела константы получаются значения λ '= 0,89 и λ ''= 1,118.

 $B^{/9/}$ для той же самой задачи при определении константы связи и энергий связанного состояния решается уравнение Бете-Солпитера при помощи метода Фредгольма. Ограничиваясь членами порядка λ^2 в определителе Фредгольма для константы связи, в^{/9/} получили значение 0,80, которое ниже наших значений.

Заключение

Предложенный метод дает возможность свести задачу определения полюсов Паде-дроби квазипотенциального парциального уравнения двухчастичной задачи к анализу спектра соответствующего однородного уравнения. Через следы ядра можно оценить собственные значения уже в первом приближении. Вследствие простоты вычислительной схемы этот метод удобен для практических вычислений.

Автор выражает глубокую благодарность за плодотворное обсуждение проф. Ив. Тодорову, Д.Ц. Стоянову, В.И. Журавлеву, Л. Александрову и Н. Ангелову за вычисления на машине.

Литература

1. Б.А. Арбузов, А.А. Логунов, А.Т. Филиппов, О.А. Хрусталев. ЖЭТФ, 46, 1266 (1964).

2. С.Г. Михлин. Интегральные уравнения, Москва, 1949.

3. A. Atanasov, Acta Phys. Polonica, A137, 337 (1970).

- 4. А. Атанасов, Препринт ОИЯИ, Р2-5336, Дубна, 1970.
- 5. C. Georgalas. Letter al Nuovo Cimento, Serie 1, <u>1</u>, 871 (1969).

D. Bessis, M. Pusterala, Nuovo Cimento, <u>54A</u>, 343 (1968).
 H. Bateman. Proc.Roy.Soc., <u>A100</u>, 441, 1922.
 K.W. Wong. Nuovo Cimento., 34, 816 (1964).
 M. Kawaguchi. Nuovo Cimento., <u>34</u>, 791 (1964).

Рукопись поступила в издательский отдел 21 апреля 1971 года.