No/v-74 1-241 объединенный ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ Дубна 'P2 5679 内子的 41 IOL

Л.И.Лапидус, М.М. Мусаханов

НУКЛОННЫЙ КОМПТОН-ЭФФЕКТ И ПРАВИЛО СУММ ДЛЯ ДИПОЛЬНОГО МОМЕНТА НУКЛОНА

n XIANG

Л.И.Лапидус, М.М. Мусаханов

НУКЛОННЫЙ КОМПТОН-ЭФФЕКТ И ПРАВИЛО СУММ ДЛЯ ДИПОЛЬНОГО МОМЕНТА НУКЛОНА

Направлено в ЯФ

SUMMARY

The sum rule for nucleon dipole moment is obtained with the help of the the dispersion relation and low energy theorem for the nucleon compton-effect amplitude without P-and T-invariance conditions.

In the general expression for nucleon compton-effect amplitude (2) the invariant functions $y_{L} \neq 0$ corresponds to P-invariance violation, $T_{4,6}, y_{1,3,7,8}$ violates PT-invariance.

For forward scatterings relations (4) and (5) between invariant functions spiral amplitudes with |m' - m| 7/2 are considered in (3). From (4) follow (10) and (11).

The quasi-local operator $\Lambda_{\mu}^{2}(2)$ in (12) does not contribute in $A_{\mu\nu}$ as determined in (13). Then (15) follows. virtue of (4) to For $\beta_{\mu\nu}$ (17) takes place with symmetry condition (18). Result (19) follows from (11) and (18). When the low energy theorem is considered here, its PT-invariance properties are taken into account. Then (21) follows from (20). Gradient invariance conditions (22) together with (15) allow to prove that (25) takes place. From (25) it follows that P_{oo}(k) does not contribute to the low energy amplitude. With the help of (24), (26) Singh lemma (27) and of most general PT-invariant low energy expression (28) and pole contribution (29)-(31), (34), results (32), (35), (33) and (33') follow. From low energy theorem (30) low energy expressions (37) and (38) for invariant functions follow. From (37) and (19) the sum rule (39) follows. The imaginary parts of compton-effect amplitudes are given through photoproduction amplitudes (41) with the help of unitarity condition (42). In (41) the amplitudes $G_i \neq 0$ and $F_i = 0$ correspond to the P-invariance condition. The first part of (44) is not valid when vector meson photoproduction takes place.

Введение

Целью настоящей работы является вывод правила сумм для дипольного момента из д.с. для амплитуд нуклонного комптон-эффекта.

Вначале в e² - приближении рассматривается теория нуклонного комптон-эффекта. Затем с помощью обобщения низкоэнергетической теоремы и д.с. получено правило сумм для дипольного момента нуклона. Ранее обобщение низкоэнергетической теоремы для амплитуды комптонэффекта рассматривали Кейзес¹¹и Алмонд²¹. В настоящей работе при выводе низкоэнергетической теоремы сняты некоторые предположения, содержащиеся в

В соответствии с полученным здесь правилом сумм дипольный момент нуклона выражается через интеграл по энергиям от произведения амплитуд фоторождения мезонов нуклонами, причем одна из амплитуд произведения обращается в нуль при справедливости Р -инвариантности, а все произведение обращается в нуль при справедливости Т инвариантности.

Полученное соотношение (39)-(44) может быть интересным в связи с продолжающимися экспериментальными попытками понизить предел для дипольного момента нейтрона.

Недавно изменение правила сумм для квадрата магнитного момента ^{/3/} в отсутствие требований Р – и Т – инвариантностей рассматривалось в ^{/2/}. Однако подобное рассмотрение очень малых добавок (пропорциональных квадрату дипольного момента) к квадрату магнитного момента в е² – приближении представляется малообоснованным, поскольку при этом пренебрегается (численно большим) вкладом следующих приближений по константе электромагнитного взаимодействия.

Полученное в настоящей работе соотношение (39)-(44) связано с существованием (в отсутствие требований Р – и Т –инвариантностей) новой спиновой структуры в амплитуде нуклонного комптон-эффекта на ненулевой угол рассеяния. Рассмотрение в е²-приближении новой амплитуды, исчезающей при справедливости Р – и Т –инвариантностей, представляется физически обоснованным. Для получения соотношения (39) мы рассматриваем предел амплитуды при $\theta \to 0^0$.

Авторы работ ^{/4,5/} недавно получили (другое) правило сумм для дипольного момента нейтрона, исходя из д.с. для форм-факторов нуклона по массе одного из "виртуальных хонцов".

Для получения соотношения (39) достаточны аналитические свойства амплитуд комптон-эффекта, устанавливаемые (в е²-приближении) обычными методами квантовой теории поля.

Амплитуда нуклонного комптон-эффекта

(1)

А. Амплитуда комптон-эффекта на нуклоне

 $\gamma(\mathbf{k}) + N(\mathbf{p}) \rightarrow \gamma(\mathbf{k'}) + N(\mathbf{p'})$

без требований Р-и Т-инвариантностей может быть представлена в виде

$$N = e_{\mu}^{\prime *} e_{\nu} N_{\mu\nu} = e_{\mu}^{\prime *} e_{\nu} \left\{ \frac{P_{\mu}^{\prime} P_{\nu}^{\prime}}{P^{\prime 2}} \left[T_{1} + i \hat{K} T_{2} + \frac{i \gamma_{5}}{Y_{2}} \hat{K} y_{2} \right] + \frac{N_{\mu} N_{\nu}}{N^{2}} \left[T_{3} + i \hat{K} T_{4} + \frac{i \gamma_{5}}{Y_{5}} \hat{K} y_{4} \right] - i \frac{P_{\mu}^{\prime} N_{\nu} + N_{\mu} P_{\nu}^{\prime}}{(P^{\prime 2} N^{2})^{\frac{1}{2}}} \left[y_{5} + i \hat{K} y_{6} + \gamma_{5} T_{8} + i \gamma_{5} \hat{K} T_{6} \right] - i \frac{P_{\mu}^{\prime} N_{\nu} - N_{\mu} P_{\nu}^{\prime}}{(P^{\prime 2} N^{2})^{\frac{1}{2}}} \left[i y_{7} + \hat{K} y_{8} + \gamma_{5} T_{5} + i \gamma_{5} \hat{K} T_{7} \right] \right\}.$$

$$(2)$$

Здесь 4-векторы P'_{μ} , N_{μ} , K_{μ} построены в соответствии с результатами Пранге⁶, а введение ⁷⁷⁷ нормировки этих векторов приводит к тому, что все инвариантные функции T_1 , y_1 свободны от кинематических сингулярностей. Функции $T_{1,2,3,4,5,6}$ остаются неравными нулю при наложении условий P - u T -инвариантностей, T_7 и T_8 отличны от нуля при отсутствии T - инвариантности. Как нетрудно убедиться, например, аналогично тому, как это проведено при справедливости требований дискретных симметрий в ⁷⁸⁷, существование в (2) всех функций y_1 нарушает P - инвариантность, функции y_1 , y_8 , y_7 , y_8 , T_7 и T_8 нарушают T - инвариантность, и, наконец, y_2 , y_4 , y_5 , y_6 , T_7 и T_8 нарушают PT инвариантность. Эти обстоятельства будут учтены при доказательстве низкоэнергетической теоремы.

Б. Число независимых инвариантных функций при $\theta = 0^{\circ}$ уменьшается до 4-х. Чтобы установить связи, которые существуют между T_i и у при $\theta = 0^{\circ}$, рассмотрим, аналогично тому, как это делал

Шехтер ^{/9/}, в с.ц.м. спиральные амплитуды $\phi_{m',m}$, где m'(m) – -разность проекции спинов фотона и нуклона на направлениях их движе – ний в конечном (начальном) состоянии.

При рассеянии вперед (назад) проекция полного углового момента в конечном и начальном состояниях равна m' и m (- m' и +m).

Тогда из сохранения полного углового момента следует, что при рассеянии вперед $\phi_{m',m} \approx (\sin \frac{\theta}{2})^{|m'-m|}$, а при рассеянии назад $\phi_{m',m} \approx (\cos \frac{\theta}{2})^{|m'+m|}$.

Ограничиваясь кинематическими соотношениями при $Q^2 = 0$, выпишем спиральные амплитуды, у которых $|m'-m| \ge 2$

$$8\pi w \phi_{\pm 3/2, \mp 3/2} = \sin \frac{\theta}{2} [\pm (T_1 + T_3 \mp 2iy_7) E \mp (T_2 + T_4 \pm 2iy_8) Mp$$

 $-p(\bar{\tau} 2T_{5}+i(y_{1}+y_{3}))+wp(\bar{\tau} 2T_{7}+y_{2}+y_{4})$

$$8\pi w \phi_{\pm 1/2, \mp^{3/2}} = \sin \frac{\theta}{2} [M(T_1 + T_3 + 2iy_7) - wp(T_2 + T_4 \pm 2iy_8) \pm (3) \pm wp(+ 2T_7 + y_2 + y_4)]$$

$$8\pi w \phi_{\pm 3/2, \mp 1/2} = \sin \frac{\theta}{2} \left[M(T_1 + T_3 \bar{*} 2iy_7) - wp(T_2 + T_4 \pm 2iy) \bar{*} \right]$$

$$\bar{*} wp(\bar{*}2T_7 + y_2 + y_4) \right].$$

Здесь w - полная энергия в с.ц.м., а

$$w^{2} - M^{2} = 2M\nu + 2Q^{2}$$
, $E = (w^{2} + M^{2})/2w$, $p = (w^{2} - M^{2})/2w$.

Из требования обращения в нуль при $\theta = 0^{\circ}$ правых частей четырех последних равенств в (3) имеем:

$$T_{1} + T_{3} = \nu (T_{2} + T_{4}), \quad y_{4} = -y_{2} \qquad y_{7} = -\nu y_{8}$$
(4)
$$T_{8} = 0 \quad \Pi p \mu \qquad Q^{2} = 0.$$

С учетом (4) из первых двух равенств в (3) при $\theta = 0^{\circ}$ получаем

$$T_{5} = -\frac{1}{2} (T_{1} + T_{3}), \quad -y_{7} = \nu y_{8} = \frac{y_{1} + y_{3}}{2} ;$$
 (5)

при $Q^2 = 0$

Отметим, что остающиеся при справедливости Р – и Т – инвариантностей соотношения между функциями Т_i совпадают с результатами /10/ /9/ работ и •

Для рассеяния вперед амплитуда (2) обладает интересными свойствами. Чтобы установить их, выберем для направления векторов поляризации е_µ два вектора

$$\vec{\rho} = \frac{\left[\vec{k} \cdot \vec{k}\right]}{\left|\left[\vec{k} \cdot \vec{k}\right]\right|} \quad u \quad \vec{n} = \frac{\left[\vec{k} \cdot \vec{\rho}\right]}{\left|\left[\vec{k} \cdot \vec{\rho}\right]\right|},$$

адля e'_{μ} – векторы $\vec{\rho}$ и

$$\vec{n}' = \frac{[\vec{k'}, \vec{\rho}]}{|[\vec{k'}, \vec{\rho}]|} .$$

Нетрудно видеть из (2), что

$$N(\vec{\rho}', \vec{\rho}) = N(N_{\mu}, N_{\nu})$$

$$N(\vec{n}',\vec{n}) = -N(P'_{\mu},P'_{\nu})$$
(7)

(6)

$$N(\vec{\rho}, \vec{n}') = N(P_{\mu}', N_{\nu})$$
(8)

$$N(\vec{n}, \vec{\rho}) = N(N_{\mu}, P_{\nu})$$
(9)

так, что, например,

$$N(\vec{\rho}, \vec{n}') = -i [(y_5 + i y_7) + i \hat{K} (y_6 - i y_8) + \gamma_5 (T_5 + T_8) + i \gamma_5 \hat{K} (T_6 + T_7)],$$

$$N(\vec{n}, \vec{p}) = i[(y_5 - iy_7) + i\hat{K}(y_6 + iy_8) + \gamma_5(T_8 - T_5) +$$

$$+ i \gamma_5 \hat{K} (T_6 - T_7)$$
]

Устремим θ к 0^0 . Тогда из соображений симметрии векторы $\vec{\rho}$ и $\vec{n} = \vec{n}$ физически равноправны. Это означает, что

$$N(\vec{\rho}, \vec{\rho}) = N(\vec{n}, \vec{n})$$

$$(10)$$

$$N(\vec{\rho}, \vec{n}) = -N(\vec{n}, \vec{\rho}).$$

Условие (10) опять приводит к (4), и , наоборот, из (4) вытекает свойство (10).

Рассмотрим теперь асимптотическое поведение амплитуд при 0^2 фикс. $\nu \to \infty$. В лабораторной системе

$$\nu = \frac{1}{2} (\omega + \omega'); Q^2 = \frac{1}{2} \omega \omega' (1 - \cos \theta).$$

При фиксированном Q^2 , при $\nu \to \infty$, $\theta \to 0^0$. При этом имеет место (10).

Из (10) следует, что при $\nu \rightarrow \infty$

$$Y_{1}(\nu, 0) + y_{3}(\nu, 0) \rightarrow 0$$
, $T_{5}(\nu, 0) \rightarrow 0$, (11)
 $\nu \rightarrow \infty$

Эти свойства позволяют получить д.с. без вычитания для амплитуды $y_1(\nu, 0) + y_3(\gamma, 0)$ и правило сумм для дипольного момента.

В. Аналитические свойства амплитуды рассеяния основаны на /11/ представлении амплитуды в виде

$$\overline{\mathbf{u}}' \mathbf{N}_{\mu\nu} \mathbf{u} = \overline{\mathbf{u}}' (\mathbf{N}_{\mu\nu}^{\text{ret}} + \mathbf{P}_{\mu\nu} (\mathbf{K})) \mathbf{u} =$$

$$= 2\pi^{2} i \left(\frac{p_{0} p_{0}'}{M^{2}} \right)^{\frac{1}{2}} \int d^{4} z e^{-iKz} < p' | \theta(z) \left[i \mu(\frac{z}{2}), i \nu(-\frac{z}{2}) \right] + \Lambda_{\mu\nu}(z) \left[\frac{12}{p} \right]$$

і _µ - гайзенберговский эрмитов оператор электромагнитного тока,

$$\theta(z) = \frac{1}{0} \frac{z_0 > 0}{z_0 < 1} \qquad K = \frac{1}{2} (k + k'),$$

Λ_{μν} (z) - произвольный квазилокальный оператор.

Представляя $\theta(z)$ в виде

$$\theta(z) = \frac{1 + \epsilon(z)}{2}, \qquad \text{где } \epsilon(z) = \frac{1}{-1} \frac{z}{z} \frac{2}{z} 0$$

разобьем амплитуду на

$$\overline{u}'(D_{\mu\nu} + i\Lambda_{\mu\nu})u$$
,

где

$$\mathbf{u}' \mathbf{A}_{\mu\nu} \mathbf{u} = \pi^{2} \left(\frac{\mathbf{p}_{0} \mathbf{p}'_{0}}{\mathbf{M}^{2}} \right)^{\frac{1}{2}} \int \mathbf{d}' \mathbf{z} \, e^{-i\mathbf{K} \, \mathbf{z}} < \mathbf{p}' | \left[i \, \mu(\frac{\mathbf{z}}{2}), \right]$$
$$\mathbf{i}_{\nu}(-\frac{\mathbf{z}}{2}) |\mathbf{p}\rangle = \frac{\mathbf{N}_{\mu\nu}^{\text{ret}}(\mathbf{p}', \mathbf{k}'; \mathbf{p}, \mathbf{k}) - \mathbf{N}_{\nu\mu}^{\text{ret}}(-\mathbf{p}', -\mathbf{k}; \mathbf{p}, -\mathbf{k}')}{2i} .$$
(13)

Покажем, что квазилокальный оператор не дает вклада в (13), Для этого воспользуемся свойством симметрии /11/

$$\Lambda_{\mu\nu}(z) = \Lambda_{\nu\mu}(-z), \qquad (14)$$

из которого следует, что

$$P_{\mu\nu}(K) = 2 \pi^{2} i \left(\frac{P_{0}P_{0}}{M^{2}}\right)^{\frac{1}{2}} \int d^{4} z e^{-iKz} < p'|\Lambda_{\mu\nu}(z)|_{p} > = P_{\nu\mu}(-K). (15)$$

Тогда

$$\frac{N_{\mu\nu}(p',k';p,k) - N_{\nu\mu}(p',-k;p,-k')}{2i} = A_{\mu\nu} + \frac{P_{\mu\nu}(K) - P_{\nu\mu}(-K)}{2i} = A_{\mu\nu}, (16)$$

откуда

$$A_{\mu\nu}(\nu, Q^{2}) = \begin{pmatrix} Im T_{1} & Im T_{2} & Im y_{1} & Im y_{2} \\ Im T_{3} & Im T_{4} & Im y_{3} & Im y_{4} \\ Im y_{5} & Im y_{6} & -i Re T_{8} & Im T_{6} \\ Im y_{7} & Im y_{8} & Im T_{5} & -i Re T_{7} \end{pmatrix}$$
(17)

Из эрмитовости электромагнитного тока и из (13) получаем

$$I_{m} T_{i}(-\nu, Q^{2}) = -I_{m} T_{i}(\nu, Q^{2}), i = 1,3,6.$$

$$I_{m} T_{i}(-\nu, Q^{2}) = +I_{m} T_{i}(\nu, Q^{2}), i = 2,4.$$

$$I_{m} y_{i}(-\nu, Q^{2}) = -I_{m} y_{i}(\nu, Q^{2}), i = 1,3,6,7.$$

$$(18)$$

$$I_{m} y_{i}(-\nu, Q^{2}) = I_{m} y_{i}(\nu, Q^{2}), i = 2,4,5,8.$$

Так как согласно (11), $y_1(\nu, 0) + y_3(\nu, 0) \rightarrow 0$ при $\nu \rightarrow \infty$, то для $y_1(\nu, 0) + y_3(\nu, 0)$ можно записать д.с. без вычитаний

$$\operatorname{Re}(y_{1}+y_{3})(\nu,0) = \frac{2}{\pi} P \int_{\nu_{t}}^{\infty} \frac{\nu' \operatorname{Im}(y_{1}(\nu')+y_{2}(\nu'))}{\nu'^{2}-\nu^{2}} d\nu', (19)$$

в котором использовано (18).

Чтобы получить из (19) правило сумм, остается найти

$$\lim \operatorname{Re} (y_{1}(\nu, 0) + y_{3}(\nu, 0)) \qquad \text{при} \quad \nu \to 0$$

и выражение для Im (у₁ + у₃) с помощью условий унитарности через амплитуды фоторождения пионов на нуклонах.

Низкоэнергетическая теорема

Доказательство низкоэнергетической теоремы методом Лоу при справедливости требований P - u T - инвариантностей основанона вычислении вклада однонуклонного промежуточного состояния в $предположении, что квазилокальный член <math>P_{00}(K) = 0$. Как следует из дальнейшего, можно, однако, показать, что $P_{00} \approx 0 (\omega^2)$, что является достаточным для доказательства теоремы в этом случае.

В отсутствие требований P - и T - инвариантностей амплитуда комптон-эффекта содержит дополнительные неинвариантные слагаемые. Тем не менее оказывается, что дополнительных предположенийдля доказательства низкоэнергетической теоремы делать не нужно. Вотличие от работы Алмонда ^{/2/}, мы не будем предполагать, что $<math>P_{10}(K) = P_{01}(K) = 0.$

С самого начала будем учитывать свойство РТ – инвариантности для амплитуды реального комптона-эффекта в низкоэнергетическом пределе. Указанное свойство амплитуды отмечено Алмондом. Его можно установить следующим образом. При вычислении однонуклонного вклада нам понадобится матричный элемент <p's'|j_µ|ps>. Из требований градиентной и лоренц-инвариантностей/12/

$$< \mathbf{p's'} | \mathbf{j}_{\mu} | \mathbf{ps} > = \frac{\mathbf{i}}{(2\pi)^3} \overline{\mathbf{u}} (\mathbf{p'}) \{ [\mathbf{F}_1 (\mathbf{k}^2) + \mathbf{F}_2 (\mathbf{k}^2)] \gamma_5 +$$
(20)

+ i
$$\frac{F_{2}(k^{2})}{2M}$$
 (p + p')_µ + $\frac{F_{3}(k^{2})}{2M}$ γ_{5} (p + p')_µ + $F_{4}(k^{2})$ ($k^{2}\gamma_{\mu}$ + + 2 i M k_µ)} u (p),

При $k^2 = 0$

$$F_{1}(0) = e$$
, $F_{2}(0) = \Delta \mu$, $F_{3}(0) = a$; $F_{4}(0) = b$,

где с , $\Delta \mu$, а, b – электрический заряд, аномальный магнитный момент, электрический дипольный момент, анапольный момент нуклона.

Совершив PT – преобразогание
$$|\vec{\mathbf{p}}, \vec{\mathbf{s}} \rangle \rightarrow \langle \vec{\mathbf{p}}, -\vec{\mathbf{s}} | \langle \vec{\mathbf{p}}', \vec{\mathbf{s}}' | \rightarrow | \vec{\mathbf{p}}', -\vec{\mathbf{s}}$$

и сравнивая результат пре образования с результатом эрмитового сопряжения, видим, что только отличный от нуля анапольный заряд нарушает требование РТ – инвариантности. Для процессов с реальными фотонами k² = 0 и вклад анаполя обращается в нуль.

Таким образом, низкоэнергетический предел амплитуды реального комптон-эффекта удовлетворяет требованию РТ – инвариантности а, следовательно, при

$$\nu = 0, \quad Q^2 = 0$$

 $_2 = y_4 = y_5 = y_6 = T_7 = T_8 = 0.$ (21)

Для рассмотрения вопроса о квазилокальном члене Р_{µν} (К) используем требования градиентной инвариантности

$$k'_{\mu} N_{\mu\nu} = N_{\mu\nu} k_{\nu} = 0$$
 (22)

и представление амплитуды N $_{\mu
u}$ в виде (12) и (13).

Из (22) и (12) получаем

$$\overline{u'} k'_{\mu} P_{\mu\nu} (K) u = \int e^{-iK' \cdot \vec{x}} d^{3}x < p[[j_{0}(\vec{x}, 0) j_{\nu}(0)] | p >$$

Дифференцируя это соотношение по \mathbf{k}'_{λ} , получаем

$$P_{\lambda\nu}(K) = -k'_{\mu} \frac{\partial}{\partial k'_{\lambda}} P_{\mu\nu}(K) + \frac{\partial}{\partial k'_{\lambda}} \int e^{-i\vec{K}'\vec{x}} d^{3}x < p' [[j_{0}(\vec{x},0)j_{\nu}(0)]_{p}] > . (23)$$

Отсюда видно, что

$$\mathbf{P}_{0\nu}(\mathbf{K}) = -\mathbf{k}_{\mu}' \frac{\partial}{\partial \mathbf{k}_{0}} \mathbf{P}_{\mu\nu}(\mathbf{K}) \approx \mathbf{O}(\omega).$$
(24)

Из свойства симметрии (15) следует, что Р₀₀(К) содержит лишь четные степени К. Тогда (24) означает, что

$$P_{00}(K) \approx O(\omega^2). \tag{25}$$

Дальнейшее вычисление проведем в поперечной калибровке

$$\vec{e} \vec{k} = \vec{e} \vec{k} = 0$$
 $e_0 = e_0 = 0$

и в лабораторной системе. Так же, как и в работе Алмонда, представим N _{µν} в виде

$$N_{\mu\nu} = u_{\mu\nu} + E_{\mu\nu} ,$$

где $u_{\mu\nu}$ – вклад однонуклонного промежуточного состояния, а $E_{\mu\nu} = E_{\mu\nu}^{ret} + P_{\mu\nu}(K)$.

Из (22) и (25) следует, что

$$k'_{i}k_{j}(u_{ij} + E_{ij}) = \omega'\omega(u_{00} + E_{00}^{ret}) + O(\omega^{4}).$$
(26)

В силу леммы Синга /13/

$$E_{00}^{\text{ret}} \approx O(\omega^2) \qquad (27)$$

и последние два соотношения (26) и (27) позволяют выразить Е 11 с точностью до членов порядка ω^2 . В лабораторной системе наиболее PT - инвариантным выражением для $E_{11} \approx 0(\omega)$ общим будет $\mathbf{E}_{ij}(\vec{k'},\vec{k},\vec{\sigma}) = A\delta_{ij} + B\epsilon_{ijk}\sigma_{k} + ck'_{i}\sigma_{j} + F\sigma_{i}k_{j} + ck'_{i}\sigma_{j} + ck'_{i}\sigma_{$ (28)+D($\sigma_i \mathbf{k}'_i - \mathbf{k}_i \sigma_i$)+G $\epsilon_{ijk} (\mathbf{k} - \mathbf{k}')_k$ +I $\delta_{ij} (\vec{\sigma}, \vec{k} - \vec{k}')$. С помощью (20) нетрудно вычислить однонуклонный вклад $\mathbf{u}_{i,i} = -\left[\frac{2i\mu^2}{\omega} \left(\epsilon_{\ell_{mn}}\sigma_{\ell}\epsilon_{mpi}\mathbf{k}'_{p}\epsilon_{nqj}\mathbf{k}_{q}\right) + \right]$ (29) $+ \frac{i e \mu}{M \epsilon_{i}} \left(k_{p} k_{i} \epsilon_{pjm} \sigma_{m} - k'_{p} k'_{j} \epsilon_{pjm} \sigma_{m} \right) +$

$$+ \left(\frac{e}{2M}\right)^{2} \frac{2}{\omega} \left(k_{i} k_{j} - k_{i}' k_{j}'\right)$$

$$u_{00} = -\frac{1}{\omega \omega'} \left[\frac{e^{2}}{M} \vec{k'} \vec{k} + \frac{iea}{M} (\vec{k'} \vec{k}) (\vec{\sigma}, \vec{k} - \vec{k'}) + (30)\right]$$

$$+ i\omega \left\{ \frac{e}{M} \left(2\mu - \frac{e}{2M} \right) - 2a^{2} \right\} \left(\vec{\sigma} [\vec{k} \vec{k'}] \right) \right\}$$

$$u_{0j} = -\frac{1}{\omega} \left[2ia \left(\mu + \frac{e}{2M} \right) \left(\vec{\sigma} \vec{k'} \right) k'_{j} - \frac{iea}{M} \left(\vec{\sigma} \vec{k'} \right) k'_{j} + \frac{e^{2}}{M} k'_{j} - 2ia\mu \left(\vec{k'k} \right) \sigma_{j} \right].$$

$$(31)$$

Здесь $\mu = \frac{c}{2M} + \Delta \mu$ – полный магнитный моме Подставляя (29), (30) и (31) в (28), получаем (32) A = $-\frac{e^2}{M}$, C = F = 0 B = i $\omega \{ -\frac{e}{M} (2\mu - \frac{e}{2\mu}) - 2a^2 \}$

 $I - D = - \frac{i e a}{M}$ G - неопределено.

Для дальнейшего учтем, что в силу (22)

$$\omega'(\mathbf{u}_{0j} + \mathbf{E}_{0j}) = \mathbf{k}_{i}(\mathbf{u}_{ij} + \mathbf{E}_{ij}).$$

(22')

(33)

Алмонд /2/ показал, что

$$\mathbf{E}_{0j}^{\text{ret}} = -\mathbf{k}_{1} \tilde{\mathbf{M}}_{1j} + \mathbf{O}(\omega^{2}).$$

Тогда с учётом (24)

$$E_{0j} = E_{0j}^{ret} + P_{0j}(K) = -k_{i}M_{ij} + O(\omega^{2}),$$

где наиболее общей структурой для М (и для М) является

$$\mathbf{M}_{\mathbf{ij}} = \mathbf{A} \cdot \mathbf{\delta}_{\mathbf{ij}} + \mathbf{B} \cdot \mathbf{\epsilon}_{\mathbf{ijk}} \sigma_{\mathbf{k}}$$

Таким образом,

$$\mathbf{k}_{i}' \left(\mathbf{E}_{ij} + \omega'\mathbf{M}_{ij}\right) = -\mathbf{k}_{i}' \mathbf{u}_{ij} + \omega'\mathbf{u}_{0j} + \mathbf{0} \left(\omega^{3}\right).$$
(34)

Подставляя (28), (29) и (31) в (22) и учитывая (33), находим, что

$$M_{ij} \approx O(\omega), \quad I = -2ia(\mu + \frac{e}{2M}); \quad G = 0,$$
 (35)

откуда следует, что

$$\mathbf{E}_{0j} = \mathbf{E}_{0j}^{\text{ret}} + \mathbf{P}_{0j}(\mathbf{K}) \approx \mathbf{O}(\omega^2).$$
(33')

Таким образом, без требований Р-и Т-инвариантностей низкоэнергетический предел для амплитуды комптон-эффекта имеет вид

$$\mathbf{e}_{i}^{\prime*} \mathbf{e}_{j} \mathbf{N}_{ij} = -\frac{\mathbf{e}^{2}}{M} (\vec{\mathbf{e}}^{\prime} \vec{\mathbf{e}}) - \frac{2i\mu^{2}}{\omega} (\vec{\sigma} [\vec{\mathbf{k}}^{\prime} \vec{\mathbf{e}}^{\prime}] \cdot [\vec{\mathbf{k}}^{\prime} \vec{\mathbf{e}}]) + \\ + i\omega \{ -\frac{\mathbf{e}}{M} (2\mu - \frac{\mathbf{e}}{2M}) - 2a^{2} \} (\vec{\sigma} [\vec{\mathbf{e}}^{\prime} \vec{\mathbf{e}}]) - \frac{ie\mu}{M\omega} \{ (\vec{\mathbf{e}} \vec{\mathbf{k}}^{\prime}) (\vec{\sigma} [\vec{\mathbf{e}}^{\prime} \vec{\mathbf{k}}^{\prime}]) -$$

(36)

$$-(\vec{e}'\vec{k})(\vec{\sigma}[\vec{e}\vec{k}]) - 2ia\mu\{(\vec{\sigma}\vec{e}')(\vec{e}\vec{k}') - (\vec{\sigma}\vec{e})(\vec{e}'\vec{k}) \} -$$

$$- 2ia \left(\mu + \frac{e}{2M}\right) \left(\vec{e} \cdot \vec{e}\right) \left(\vec{\sigma}, \vec{k} - \vec{k}\right).$$

С помощью (34) находим, что при $\nu = 0$, $Q^2 = 0$

$$\frac{y_1 + y_3}{2} |_{x_0} = \nu y_8 |_0 = -y_7 |_0 = -4 a \mu M.$$
 (37)

Кроме того, из (36) имеем

$$\frac{y_{1} - y_{3}}{2} |_{0} = 2 e a, \quad T_{3} |_{0} = -\frac{e^{2}}{M} + 4 \mu^{2} M$$

$$\nu T_{4} |_{0} = + 4 M \mu^{2}, \quad T_{1} |_{0} = -8 M a^{2}$$

$$(38)$$

$$\nu T_{2} |_{0} = -\frac{e^{2}}{M} - 8 M a^{2}; \quad T_{6} |_{0} = -2 \mu^{2} + \frac{e}{M} (2\mu - \frac{e}{2M}) - 2 a^{2}$$

$$T_{5} |_{0} = -[2\mu^{2} + \frac{e}{M} (2\mu - \frac{e}{2M}) - 2 a^{2}]M + 2 e \mu.$$

Соотношения (21), (37) и (38) определяют ниэкоэнергетический предел для всех инвариантных функций T_1 и y_1 . Как было отмечено ранее, учёт возникающих из-за нарушения P - и T -инвариантностей малых добавок в амплитуды T_1 , T_2 , T_5 , T_6 в e^2 приближении физически необоснован.

Объединяя (37), (19) при ν→0 , получаем

$$-4 \mathbf{a} \,\mu \,\mathbf{M} = \frac{1}{\pi} \int_{\nu_{t}}^{\infty} I_{\mathbf{m}} \left(\mathbf{y}_{1} + \mathbf{y}_{3}\right) \frac{d \,\nu}{\nu}. \tag{39}$$

Это же соотношение может быть получено, если написать д.с. без вычитания для у₈(ν,Q²), вычислить однонуклонный вклад в это д.с., а затем, положив Q²=O, устремить v→∞ и воспользоваться (5) и (11).

Условие унитарности

В е²-приближении мнимые части амплитуд нуклонного комптонэффекта определяются амплитудами неупругих процессов фоторождения мезонов на нуклонах. Ограничимся опять амплитудами, спиновые структуры которых исчезают при наложении требований Р – и Т -инвариантностей.

В отсутствие требований Р -инвариантности амплитуду процесса

$$y(k) + N \rightarrow N + \pi(q)$$
 (40)

можно представить в с.ц.м. в виде

$$T_{\gamma\pi} = i(\vec{\sigma} \cdot \vec{e}) G_1 + (\vec{\sigma} \cdot \vec{q}) (\vec{\sigma} \cdot \vec{s}) G_2 + i(\vec{\sigma} \cdot \vec{k}) (\vec{q} \cdot \vec{e}) G_3$$

$$-\mathbf{i} \left(\vec{\sigma} \vec{q} \right) \left(\vec{q} \vec{e} \right) \mathbf{G}_{4} + \mathbf{i} \left(\vec{\sigma} \vec{s} \right) \mathbf{F}_{1} + \left(\vec{\sigma} \vec{q} \right) \left(\vec{\sigma} \vec{e} \right) \mathbf{F}_{2} + \mathbf{i} \left(\vec{\sigma} \vec{q} \right) \left(\vec{\sigma} \vec{e} \right) \mathbf{F}_{2} + \mathbf{i} \left(\vec{\sigma} \vec{q} \right) \left(\vec{\sigma} \vec{e} \right) \mathbf{F}_{2} + \mathbf{i} \left(\vec{\sigma} \vec{q} \right) \left(\vec{\sigma} \vec{e} \right) \mathbf{F}_{2} + \mathbf{i} \left(\vec{\sigma} \vec{q} \right) \left(\vec{\sigma} \vec{e} \right) \mathbf{F}_{2} + \mathbf{i} \left(\vec{\sigma} \vec{q} \right) \left(\vec{\sigma} \vec{e} \right) \mathbf{F}_{2} + \mathbf{i} \left(\vec{\sigma} \vec{q} \right) \left(\vec{\sigma} \vec{e} \right) \mathbf{F}_{2} + \mathbf{i} \left(\vec{\sigma} \vec{q} \right) \left(\vec{\sigma} \vec{e} \right) \mathbf{F}_{2} + \mathbf{i} \left(\vec{\sigma} \vec{q} \right) \left(\vec{\sigma} \vec{e} \right) \mathbf{F}_{2} + \mathbf{i} \left(\vec{\sigma} \vec{q} \right) \left(\vec{\sigma} \vec{e} \right) \mathbf{F}_{2} + \mathbf{i} \left(\vec{\sigma} \vec{q} \right) \left(\vec{\sigma} \vec{e} \right) \mathbf{F}_{2} + \mathbf{i} \left(\vec{\sigma} \vec{q} \right) \left(\vec{\sigma} \vec{e} \right) \mathbf{F}_{2} + \mathbf{i} \left(\vec{\sigma} \vec{q} \right) \left(\vec{\sigma} \vec{e} \right) \mathbf{F}_{2} + \mathbf{i} \left(\vec{\sigma} \vec{q} \right) \left(\vec{\sigma} \vec{e} \right) \mathbf{F}_{2} + \mathbf{i} \left(\vec{\sigma} \vec{q} \right) \left(\vec{\sigma} \vec{e} \right) \mathbf{F}_{2} + \mathbf{i} \left(\vec{\sigma} \vec{q} \right) \left(\vec{\sigma} \vec{e} \right) \mathbf{F}_{2} + \mathbf{i} \left(\vec{\sigma} \vec{q} \right) \left(\vec{\sigma} \vec{e} \right) \mathbf{F}_{2} + \mathbf{i} \left(\vec{\sigma} \vec{q} \right) \left(\vec{\sigma} \vec{e} \right) \mathbf{F}_{2} + \mathbf{i} \left(\vec{e} \right) \mathbf{F}_$$

(41)

$$+i(\vec{\sigma}\vec{k})(\vec{q}\vec{s})F_{a}+i(\vec{\sigma}\vec{q})(\vec{q}\vec{s})F_{4}$$
,

где s = [ke], функции F_i исчезают при справедливости P инвариантности. Ясно, что в функциях G_i также появляются добавки, обусловленные несохранением пространственной чётности.

Из матричного условия унитарности

$$A = \nu (TT^{+}) = \frac{\nu}{4\pi} \int d\theta(q) T^{*}_{\gamma\pi}(k') T_{\gamma\pi}(k)$$
(42)

нас будет интересовать лишь вклад в

$$I_{\rm m} y_{1}(\nu, 0) + I_{\rm m} y_{3}(\nu, 0) = 2\nu I_{\rm m} y_{8}(\nu, 0).$$
(43)

Подстановка (41) в (42) приводит к условию

Im y₁ = Im y₃ (
$$\nu$$
, 0) = $\frac{\nu}{\omega}$ (E + M) Re { F₁ (G₁^{*} +
+ $\frac{1}{3}$ G^{*}₄) + F₄ $\cdot \frac{1}{3}$ G^{*}₁ + F₂ (G^{*}₂ + $\frac{1}{3}$ G^{*}₃) - $\frac{1}{3}$ F₃ G^{*}₂}. (44)

В (44) Е и ω – энергия нуклона и фотона в с.ц.м. процесса (40).
 Результаты (44) и (39) дают искомое правило сумм для дипольного момента нуклона.

Заключительные замечания

А. Поскольку в низкоэнергетическом пределе амплитуда комптонэффекта при рассеянии вперед не содержит новых спиновых структур вида

$i R_{7}(\omega) (\vec{k} [\vec{e}'\vec{e}]) + R_{8}(\omega) (\vec{\sigma} \vec{k}) (\vec{e}'\vec{e}),$

правая часть (44) не сводится к полному сечению взаимодействия поляризованных фотонов с поляризованными нуклонами. Общее выражение для полного сечения взаимодействия у -квантов с нуклонами будет иметь вид

$$\sigma_{\mathbf{p}_{z}\mathbf{p}_{z}\mathbf{p}_{2}}^{\text{tot}} = \sigma_{0}^{\text{tot}} + \sigma_{1}^{\text{tot}} (\vec{\mathbf{p}}_{2}\vec{\mathbf{k}})(\vec{\mathbf{p}}_{\gamma}\vec{\mathbf{k}}) + \sigma_{2}^{\text{tot}} (\vec{\mathbf{p}}_{2}\vec{\mathbf{k}}) + \sigma_{3}^{\text{tot}} (\vec{\mathbf{p}}_{\gamma}\vec{\mathbf{k}}), \quad (45)$$

где $\vec{p}_{z} = (\vec{p}_{\gamma}\vec{k}) \neq 0$ соответствует круговой поляризации γ -квантов, а \vec{p}_{2} - поляризация мишени. В (45) σ_{0}^{tot} - полное сечение взаимодействия неполяризованных γ -квантов с неполяризованными нуклонами; σ_{1}^{tot} - дополнительное слагаемое в выражении для полного сечения, возникающее для взаимодействия γ -квантов с продольно поляризованной мишенью; σ_{2}^{tot} и σ_{3}^{tot} - дополнительные слагаемые в выражении для полного сечения, возникающие при нарушении требований P - uT -инвариантностей. При $\sigma_{2}^{\text{tot}} = \sigma_{3}^{\text{tot}} = 0$ (45) переходит в формулу (18) работы $^{14/}$.

Б. Как видно из (44), $\operatorname{Im} y_1(\nu, 0)$, а, следовательно, и дипольный момент обращаются в нуль при обращении в нуль функций F_1 (P-инвариантность), а также в том случае, когда разность фаз функций F_1 , и G_{1,4}, F₂ и G_{2,3}, а также F₃ и G₂ различаются на $\pi/2$ (T -инвариантность). В последнем свойстве нетрудно убедиться, проводя (в предельном случае отсутствия эффектов взаимодействия в конечном состоянии) Т -преобразование в (41) и сравнивая результат с тем, что получается при эрмитовом сопряжении.

С. В правую часть отношения (39) дают вклад процессы фотообразования и нескольких пионов. При учёте фоторождения векторных мезонов первое равенство в (44) перестает быть справедливым.

Д. Доказательство аналитичности на основе (12) включает также требование стабильности однонуклонного состояния, что означает пренебрежение взаимодействиями, приводящими к распаду нейтрона типа уп → реν.

Авторы благодарны С.Б. Герасимову за полезные обсуждения.

Литература

- 1. E. Kazes, Nuovo Cim., 20, 20, 1961.
- 2. D.I. Almond. Nucl. Phys., <u>B11</u>, 277, 1969.
- 3. Л.И. Лапидус, Чжоу Гуан-чжао. ЖЭТФ, 41, 1546, 1961.
 - С.Б. Герасимов, ЯФ, 2, 598 (1965).
 - S.B. Drell, A.C. Hearn. Phys.Rev.Lett., 16, 908, 1966.
- 4. G. Barton, E.D. White. Phys.Rev., <u>184</u>, 1660, 1969.
- 5. D.I. Broadhurst, Nucl. Phys., <u>B20,</u> 603, 1970.
- 6. R.E. Prange, Phys.Rev., <u>110</u>, 240, 1958.
- 7. Л.И. Лапидус, Чжоу Гуан-Чжао, ЖЭТФ, <u>37</u>, 1714, 1959.
- В.Б. Берестецкий, Е.М. Лифшиц, Л.П.Питаевский. "Релятивистская квантовая теория", §71, "Наука", Москва, 1968.
- 9. В.М. Шехтер, ЯФ, 7, 1272, 1968.

- 10. Л.И. Лапидус, Чжоу Гуан-чжао. ЖЭТФ, 41, 491, 1961.
- Н.Н. Боголюбов, А.А. Логунов, И.Т. Тодоров. "Основы аксиоматиче-ского подхода в квантовой теории поля", "Наука", Москва, стр. 282-288, 1969.
- 12. Я.Б. Зельдович. ЖЭТФ, 33, 1531, 1957.
- 13. V. Singh. Phys.Rev.Lett., 19, 730, 1967.
- 14. Л.И. Лапидус, ЯФ, 7, 178, 1968.

Рукопись поступила в издательский отдел

12 марта 1971 года.

Лапидус Л.И., Мусаханов М.М.

P2-5679

Нуклонный комптон-эффект и правило сумм для дипольного момента нуклона

Рассматривается теория нуклонного комптон-эффекта в условиях нарушения Р и Т инвариантности. В этих условиях нуклон может иметь электрический дипольный момент, который проявится в Р и Т нечет.ных структурах в амплитуде комптон-эффекта. Доказана низкоэнергетическая теорема с учетом Р и Т нарушения. С использованием доказанных аналитических свойств для амплитуды в е² -приближении, низкоэнергетической теоремы и поведения Р и Т нечетной амплитуды при больших энергиях получено правило сумм.

Препринт Объединенного института адерных исследований. Дубна, 1971

Lapidus L.I., Mušakhanov M.M.

P2-5679

Nucleon Compton-Effect and Sum Rules for Dipole Nucleon Momentum

See the Summary on the reverse side of the title-page.

Preprint. Joint Institute for Nuclear Research. Dubus, 1971