C323.1 A-92 СООБЩЕНИЯ объединенного ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ Дубна

HAMEH

AA60DAT00M9 TE0DETM4E(KU

P2 - 5336

3/1-1971

А. Атанасов

К ВОПРОСУ О СВЯЗАННЫХ СОСТОЯНИЯХ РЕЛЯТИВИСТСКОЙ ТРЕХЧАСТИЧНОЙ СИСТЕМЫ

Атанасов А.

К вопросу о связанных состояниях релятивистской трахчастичной системы

В квазипотенциальном подходе проблема определения масс связанных состояний релятивистской трехчастичной системы с квазипарными взаимодействиями сводится к анализу собственных значений эрмитового оператора. При некоторых предположениях относительно двухчастичного взаимодействия получена оценка для верхнего предела числа связанных состояний и алгоритма приближенного вычисления масс связанных состояний.

Сообщения Объединенного института ядерных исследований Дубна, 1970

Atanasov A.

P2-5336

On the Bound States of the Relativistic Three-Particle System

In the quasipotential approach the problem of determination of the bound state masses in the three-particle system with the quasipair interaction is reduced to the analysis of the eigenvalues of the Hermitian operator. Under some assumptions concerning two-particle interaction an estimate is obtained for the upper limit of the bound state number and for the algorithm of the approximate calculation of the bound state masses.

Communications of the Joint Institute for Nuclear Research. Dubna, 1970

P2 - 5336

А. Атанасов

К ВОПРОСУ О СВЯЗАННЫХ СОСТОЯНИЯХ РЕЛЯТИВИСТСКОЙ ТРЕХЧАСТИЧНОЙ СИСТЕМЫ

\$1. В ведение

В квантовой теории поля задача трех частиц описывается системой трех интегральных уравнений /1/, которые аналогичны уравнениям Фаддеева в нерелятивистской квантовой механике. Определение энергий связанных состояний сводится к определению параметра Е , при котором соответствующая однородная система имеет решение. Точное решение этой проблемы связано с большими математическими трудностями. Поэтому приходится искать некоторые другие характеристики спектра и способы приближенной оценки масс связанных состояний.

В настоящей работе предлагается способ определения верхнего предела числа связанных состояний и алгоритма приближенного определения масс таких состояний в самой простой модели трехчастичной системы в квазипотенциальном подходе ^{/2,3/}. Получено уравнение, аналогичное нерелятивистскому уравнению Шредингера. При использовании подходящего преобразования оно сводится к эквивалентному уравнению с эрмитовым квадратично интегрируемым ядром. Следуя работе ^{/4,5/}, мы будем применять метод, который ранее применяли в нерелятивистской теории трехчастичной системы.

В §2 получено уравнение, сооственные значения которого рассматриваются как функции масс связанных состояний трехчастичной системы. Оценка числа связанных состояний и алгоритма определения их масс дается в §3.

§2. Уравнение на собственные значения трехчастичной релятивистской системы

Рассмотрим систему трех скалярных полей с массами m₁ , m₂ и m₃ , взаимодействующих между собой через поле массы µ . Трехчастичная функция Грина

$$\hat{G} = <0 | T(\Psi_{1}(x_{1})\Psi_{2}(x_{2})\Psi_{3}(x_{3})\overline{\Psi}_{1}(y_{1})\overline{\Psi}_{2}(y_{2})\overline{\Psi}_{3}(y_{3})) | 0 >$$
(1)

удовлетворяет уравнению Бете-Солпитера

$$\hat{\mathbf{G}} = \hat{\mathbf{G}}_{0} + \hat{\mathbf{G}}_{0} \hat{\mathbf{K}} \hat{\mathbf{G}}, \qquad (2)$$

где \hat{G}_0 - функция распространения трех невзаимодействующих частиц, \hat{K} - сумма всех неприводимых трехчастичных диаграмм. Двухвременная функция Грина, определенная равенством

 $x_{1}^{0} = x_{2}^{0} = x_{3}^{0}$

 $y_1^0 = y_2^{0} = y_3^0 = t',$

(4)

(5)

$$G = G(t, \vec{x}_1, \vec{x}_2, \vec{x}_3; t', \vec{y}_1, \vec{y}_2, \vec{y}_3) =$$

$$= <0 \mid T(\Psi_{1}(x_{1}) \Psi_{2}(x_{2}) \Psi_{3}(x_{3}) \overline{\Psi}_{1}(y_{1}) \overline{\Psi}_{2}(y_{2}) \overline{\Psi}_{3}(y_{3})) \mid 0$$

удовлетворяет уравнению

$$\mathbf{G} = \mathbf{G}_{o} + \mathbf{G}_{o}\mathbf{K}\mathbf{G}$$

где G₀ - двухвременная функция распространения трех невзаимодействующих частиц, а оператор К определяется равенством

$$(\hat{G}_{0}\hat{K}\hat{G}) = x_{2}^{0} = x_{3}^{0} = t$$

$$y_{1}^{0} = y_{2}^{0} = y_{3}^{0} = t$$

Ядро К можно представить в виде

$$\hat{\mathbf{K}} = \hat{\mathbf{K}}_{1} + \hat{\mathbf{K}}_{2} + \hat{\mathbf{K}}_{3} + \hat{\mathbf{K}}_{T},$$

где. К_а – сумма всех неприводимых несвязанных диаграмм, когда а –ая частица проходит без взаимодействия, К_т – сумма всех неприводимых связанных диаграмм. Каждый член можно представить как произведение

$$\widehat{\mathbf{K}}_{a}(\mathbf{x}_{a},\mathbf{x}_{\beta},\mathbf{x}_{\gamma};\mathbf{y}_{a},\mathbf{y}_{\beta},\mathbf{y}_{\gamma}) = \mathbf{S}_{a}^{-1}(\mathbf{x}_{a}-\mathbf{y}_{a})\mathbf{K}_{a}^{(2)}(\mathbf{x}_{\beta},\mathbf{x}_{\gamma};\mathbf{y}_{\beta},\mathbf{y}_{\gamma}), \quad (7)$$

(6)

причем $S_a(x_a - y_a)$ – пропагатор a -ой частицы, $K_a^{(2)}$ – ядро уравнения Бете-Солпитера для двухчастичной функции распространения $G_a^{(2)}(x_{\beta}, x_{\gamma}; y_{\beta}, y_{\gamma})$ – подсистемы (β , γ) . Аналогично уравнению (6), ядро К можно представить в виде

$$K = K_{1} + K_{2} + K_{3} + K_{T},$$
 (8)

где К определяется равенством

$$\mathbf{G}_a = \mathbf{G}_0 + \mathbf{G}_0 \mathbf{K}_a \mathbf{G}_a$$

а G - двухчастичная функция Грина:

$$G_a = G_a(x_a, x_\beta, x_\gamma; y_a, y_\beta, y_\gamma) = S_a(x_a - y_a)G_a^{(2)}(x_\beta, x_\gamma; y_\beta, y_\gamma)$$

В квазипарном приближении ядро К можно представить как сумму

$$K = K_{1} + K_{2} + K_{3}$$
 (10)

Мы рассмотрим самую простую модель, когда частицы взаимодействуют между собой путем обмена скалярного мезона в лестничном приближении. В этом случае, так как имеется мгновенное взаимодействие, ядро К совпадает с квазипотенциалом, определенным равенством

$$G^{-1} = G_0^{-1} - V.$$
(11)

Если в системе центра масс трех частиц ввести трехмерный относительный импульс подсистемы (β,γ):

$$q_{a} = \frac{1}{m_{\beta} + m_{\gamma}} [m_{\beta} p_{\gamma} - p_{\beta} m_{\gamma}], \qquad (12)$$

где $p_a(a=1,2,3)$ - трехмерные импульсы частиц с массами m_a , то ядро V_a можно представить в виде

$$V_{a}(q_{a}, p_{a}; q_{a}', p_{a}') = \frac{g^{2}}{4(2\pi)^{3}} \cdot \frac{1}{(q_{a} - q_{a}')^{2} + \mu^{2}} \delta^{(3)}(p_{a} - p_{a}').$$
(13)

Используя представление (13), можно показать, что ядра V_a являются положительно определенными, эрмитовыми и с ограниченной нормой

$$||V_{\alpha}|| = Sup \frac{|(\phi, V_{\alpha}\Psi)|}{||\phi|| ||\Psi||}.$$
(14)

Рассмотрим уравнения, характеризующие связанные состояния трех частиц в импульсном представлении, которые получены в работе /3/.

$$G_{0}^{-1}\Psi_{B} = V\Psi_{B}, \quad \Psi_{B}^{*}G_{0}^{-1} = \Psi_{B}^{*}V.$$
(15)

В квазипарном приближении уравнения (15) не относятся к типу Гильберта-Шмидта, так как в подинтегральном выражении Sp $[(G_0V)(G_0V)^+]$ появляются члены типа $[\delta^{(3)}(p_a^- - p_a^-)]$, которые получаются вследствие присутствия несвязанных диаграмм (рис. 1). Соответствующее интегральное уравнение является существенно сингулярным, и ни один из известных методов теории интегральных уравнений к нему неприменим. Поэтому мы преобразуем уравнение (15) в эквивалентное ему, которое будет иметь хорошее ядро.

Представим в первом уравнении (15). V в виде V = V₁ + V₂ + V₃. Если в полученное уравнение

$$\left(\frac{3}{a=1}V_{a}\right)\Psi_{B}=G_{0}^{-1}\Psi_{B}$$
(16)

подставить 6, из уравнения (9), получаем:

$$\mathbf{V}_{a} \Psi_{\mathbf{B}} = \mathbf{V}_{a} \mathbf{G}_{a} (\mathbf{V}_{\beta} + \mathbf{V}_{\gamma}) \Psi_{\mathbf{B}} \quad .$$
(17)

Суммируя уравнения (17) с учетом (16), получаем новое уравнение для Ψ_в :

$$\Psi_{\rm B} = I \Psi_{\rm B}$$

где I есть оператор

$$I = \sum_{\alpha} \sum_{\beta \neq \gamma} G_0 V_\alpha G_\alpha V_\beta.$$
(19)

(18)

Уравнение (19) является аналогом уравнения Вайнберга ^{/67}, описывающего связанные состояния нерелятивистской трехчастичной системы. В ядре этого уравнения несвязанные диаграммы отсутствуют (рис. 2).

Мы покажем, что определенный так оператор, при выбранном предположении относительно взаимодействия между частицами, представляет ядро Гильберта-Шмидта. Для этого нужно установить, что каждый член G₀ V_a G_a V_b является оператором Гильберта-Шмидта. Оператор G_a

Рис. 2

удовлетворяет уравнению (9), ядро которого квадратично интегрируемо, так как для нормы Гильберта-Шмидта выполнено условие

$$|| G_0 V_a ||_2 \le || G_0 ||_2 || V_a ||, \qquad (20)$$

оператор

$$G_{0} = -\pi^{2} \frac{\omega_{1}(p_{1}) + \omega_{2}(p_{2}) + \omega_{3}(p_{3})}{\omega_{1}(p_{1})\omega_{2}(p_{2})\omega_{3}(p_{3})} \cdot \frac{\delta(p_{1}-p_{1}')\delta(p_{2}-p_{2}')\delta(p_{3}-p_{3}')}{M^{2} - [\omega_{1}(p_{1}) + \omega_{2}(p_{2}) + \omega_{3}(p_{3})]^{2}}$$

$$\omega_{1} = \sqrt{\pi_{1}^{2} + p_{1}^{2}}.$$
(21)

квадратично интегрируем, и V_a обладает ограниченной нормой. Следовательно, согласно теореме (С-7)^{/6/}, оператор G_a - ограничен. Для каждого члена суммы (19) получаем оценку,

$$||G_{0}V_{a}G_{a}V_{\beta}||_{2} \leq ||G_{0}||_{2} ||V_{a}|| ||G_{a}|| ||V_{\beta}||$$
(22)

и, разумеется, операторы $G_0 V_a G_a V_\beta$ и их сумма будут операторами Гильберта-Шмидта.

Аналогично нерелятивистскому случаю /4,5/, можно показать, что ядро I представимо в виде

$$I = 1 - (\sum_{\alpha=1}^{3} G_{\alpha} - 2G_{0})(G_{0}^{-1} - \sum_{\beta=1}^{3} V_{\beta}) = 1 - A(G_{0}^{-1} - \sum_{\beta=1}^{3} V_{\beta}), \qquad (23)$$

где

$$A = \sum_{a=1}^{3} G_{a} - 2G_{0} = G_{3} + \sum_{a \neq 3} G_{0} V_{a} G_{0} + \sum_{a \neq 3} G_{0} V_{a} G_{a} V_{a} G_{0}$$
(24)

является эрмитовым положительно определенным оператором. Если в уравнении (18) положим $\Psi_{\rm B} = {\rm A}^{\frac{1}{2}} \phi$, получаем урав-

нение

(92)

вдтэмвдвп то мишериясе ,модля - эрмитовый оператор с квадратичноннтегрируемым $LUG D = V_{-1/2} IV_{1/2}$

хиннысказ впэиг впедено отенхцев эмнеледено. 88

ИННВОТООО ХІННИВЕВЕЗ ООВМ И ВИНВОТООО

гассмотрим уравнения

 $\phi' \eta = \phi_0$

• φ **(** = φ

ность вещественных чисел, предельная точка которых есть ноль. Из урави, кинэрвие энинэатодоо тээми . которые образуют последовательпадают с решениями уравнения (25). Уравнение с ядром данного типа решения которых, соответствующие собственным значениям и = 1 , сов-

кин эн

 $0 = < \frac{1}{2} \Phi \left[\left(\sqrt{-1 - 0} \right) - \sqrt{1 - 1} \right] + \frac{1}{2} \Phi \left[\sqrt{-1 - 1} \right] + \frac{1}{$ (*L*Z)

мэвгүлоп кинаводициэдэффид элооп.

 $\cdot < \frac{1}{4} \Phi \left| \frac{r - \Lambda b}{M b} \right| \left| \frac{1}{4} \Phi > \left(\frac{1}{4} - 1 \right) + \frac{1}{4} \Phi \right|$

(82) $+ < i\Phi | \frac{1}{Mb} = 2M < \Phi_{1} | \pi^{2} = \frac{1}{Mb} = 2M < \Phi_{1} | \pi^{2} = \frac{1}{Mb} | \pi^{$

 $0 < \frac{\mu_{\rm b}}{Mb}$, $l = \frac{1}{4}$ хідотоя вид авиене сэдэр тидохэдэп но вотох самую большую массу связанных состояний. М сэдэг мигансодО

т.е. μ_1 переходит через единицу в положительную сторону. Следовательно, число связанных состояний равно числу μ_1 , которые больше единицы. Это число меньше, чем $\sum_{l=1}^{\infty} \mu_l^2 = \text{Sp} [D(M')]^2$ и

 $N(M) < S_{p}[D(M')]^{2} = S_{p}[I(M')]^{2}.$ (29)

Остается открытым проблема о значениях параметра М для соответствующих связанных состояний.

Для того чтобы получить приближенные уравнения для спектра масс, образуем шпур 2 п - той степени оператора D

$$A_{2n} = Sp D^{2n} = Sp I^{2n}$$
 (30)

Обозначим множество переменных P_1 , P_2 , P_3 через q и $dp_1 dp_2 dp_3$ через dq. В импульсном представлении 2n-той шпур ядра l представим в виде

$$A_{2n} = \int 1^{2n} (q, q) dq, \qquad (31)$$

где

$$I^{2n}(q,q') = \int \dots \int I(q,q_1) I(q_1,q_2) \dots I(q_{2n-1},q') dq_1 \dots dq_{2n-1}.$$
(32)

В общем случае вычисление A_{2n} является трудной задачей, и обычно приходится использовать сепарабельное приближение. Так как мы доказали,что оператор I относится к типу Гильберта-Шмидта, то его можно представить в виде:

$$I(q,q') = \sum_{k=1}^{m} U_{k}(q)W_{k}(q')$$

(33)

Для шпура А 2 в этом случае получаем

$$A_{2n} = \sum_{\substack{k_1 \\ k_2 \\ \dots \\ k_{2n}}}^{m} \Gamma_{k_1 \\ k_{2n}} \Gamma_{k_2 \\ k_{2n}} \Gamma_{k_2 \\ k_{2n}} \Gamma_{k_2 \\ k_{2n}} \dots \Gamma_{k_{2n} \\ k_{2n-1}},$$

где 🗄

$$\Gamma_{k\ell} = \int U_k(q) W_{\ell}(q) dq.$$
(35)

(34)

Если вместо чисел μ_1 ввести их обратные значения $\lambda_1 = \frac{1}{\mu_1}$, шпуры с четными индексами A_{2n} можно представить в виде

$$A_{2n} = Sp D^{2n} = \sum_{i=1}^{n} \mu_{i}^{2n} = \sum_{i=1}^{n} \frac{1}{\lambda^{2n}}.$$
 (36)

Пусть собственному эначению λ_1 соответствует р линейно независимых собственных функций, а числу – λ_1 , если оно тоже собственное значение, будет соответствовать q линейно независимых собственных функций. Следовательно, в ряде (36) член с λ_1 содержится г = -p+q раз. При этих предположениях ряд представим в виде:

$$A_{2n} = \frac{r}{\lambda_{1}^{2n}} (1 + \epsilon_{n}), \qquad (37)$$

где через с обозначена величина

$$\epsilon_{n} = \frac{1}{r} \sum_{i=r+1}^{n} \left(\frac{\lambda_{1}}{\lambda_{i}} \right)^{2n}.$$
(38)

Примем, что собственные значения расположены в порядке возрастания, т.е. $|\lambda_i| > |\lambda_1|$ при i > r, тогда $\epsilon_n \to 0$ при $n \to \infty$. Для Λ_{2n+2} аналогично равенству (37), получаем:

$$A_{2n+2} = \frac{r}{\lambda_1^{2n+2}} (1 + \epsilon_{n+1}).$$

Деля почленно (37) на (39), получаем выражение для

(39)

(40)

(41)

(42)

(43)

$$\lambda_{1} = lim \left(\frac{A_{2n}}{A_{2n+2}} \right)^{\frac{1}{2}}$$

Если n в уравнении (40) растет неограниченно, то

$$\lambda'_{1} = lim \left(\frac{A_{2n}}{A_{2n+2}}\right)^{\frac{1}{2}}$$

Учитывая вид оператора D , для А_{2n} получим.

$$A_{2n} = SpD^{2n} = Sp(A^{-\frac{1}{2}}I^{2n}A^{\frac{1}{2}}) = SpI^{2n}$$

И

$$\lambda_{1} = lim \left(\frac{Sp I^{2n}}{Sp I^{2n+2}} \right).^{\frac{1}{2}}$$

Из уравнения

$$\lambda_{1}(M) = 1,$$

где λ_1 (M) определяется из (42), получаем значения параметра М, для которых уравнение (18) имеет отличные от ноля решения. Эти значения М являются массами связанных состояний трехчастичной релятивистской системы. Зная $\lambda_1(M)$, мы можем определить собственное значение $\lambda_2(M)$ уравнения (26), как показано в работе ^{/5/} для нерелятивистской задачи. Этот способ можно продолжить и для следующих собственных значений, и, таким образом, получаем возможность для определения полного спектра масс связанных состояний трехчастичной релятивистской системы.

§4. Заключение

Предлагаемый метод отличается от известных способов определения масс связанных состояний трехчастичной релятивистской системы. В нем не используется разложение по константе связи, причем не нужны собственные функции как при вариационном методе. Этот. способ легко можно обобщить и для системы с произвольным числом частиц.

Автор выражает глубокую благодарность за плодотворные обсуждения Г.М. Десимирову, Д.С. Стоянову, Р.Н. Фаустову, В.И. Журавлеву.

Литература

D.Ts. Stoyanov, A.N. Tavkhelidze. Phys.Lett., <u>13</u>, 76 (1964).
 P.H. Фаустов. ЖТМФ, <u>3</u>, 240 (1970).

3. А.Н. Квинихидзе, Д.Ц. Стоянов. Препринт ОИЯИ, Р4-4814, Дубна, 1969. 4. G.C. Girardi and H.Rimini. Nuovo Cimento, 37, 450 (1965).

5. A. Atanasov. Acta Phys.Polonica, A37, 337 (1970).

6. S. Weinberg, Phys.Rev., 133, B 232 (1964).

Рукопись поступила в издательский отдел 19 августа 1970 года.