СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ Дубие

NA OLA

Million and

C 346. Y 6

1-403

P2 - 5320

16/x1-70

М.И. Джгаркава, Ю.М. Казаринов, И.К. Поташникова, И.Н. Силин

ОПИСАНИЕ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ ПО П. N И К. N. РАССЕЯНИЮ В ОБЛАСТИ ВЫСОКИХ ЭНЕРГИЙ НА БАЗЕ ТЕОРИИ КОМПЛЕКСНЫХ УГЛОВЫХ МОМЕНТОВ. I.

P2 - 5320

М.И. Джгаркава, **Ю**.М. Казаринов, И.К. Поташникова, И.Н. Силин

ОПИСАНИЕ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ ПО П. N И К. N. РАССЕЯНИЮ В ОБЛАСТИ ВЫСОКИХ ЭНЕРГИЙ НА БАЗЕ ТЕОРИИ КОМПЛЕКСНЫХ УГЛОВЫХ МОМЕНТОВ. I.

8556/2 49

В настоящее время известны результаты нескольких попыток использования теории комплексных угловых моментов для описания экспериментальных данных по рассеянию частиц в области высоких энергий/1/. Однако все эти попытки проводились, как правило, по неполному объему экспериментальных данных, опубликованных в настоящее время, и результаты их могут претендовать, по-видийому, только на качественное описание эксперимента. Во всех упомянутых работах использовались данные, начиная с энергий 6-8 Гэв и выше, в интервале переданных импульсов до 1 Гэв/с.

Настоящая работа выполнена с целью изучить, насколько удовлетворительно вся совокупность экспериментальных данных по $\pi N - \mu KN$ рассеянию, опубликованных в настоящее время, может быть описана на основе представлений, развиваемых в теории комплексных угловых моментов, и попытаться предсказать результаты будущих экспериментов с помощью экстраполяции полученных зависимостей в область более высоких энергий. Работа состоит из двух частей. Ниже дается описание результатов, полученных в приближении "малых фаз", т.е. без учета ветвлений в плоскости комплексных моментов. Результаты второй части работы, где производится учет ветвлений, будут опубликованы позднее.

Постановка задачи

Амплитуда рассеяния частиц со спином "нуль" на мишени со спином "половина" записывается в виде:

 $M(s,t) = M_0 + iM_1(\overline{\sigma},\overline{n}), \qquad (1)$

где M_0 и M_1 – функции переменных $s = (p_1 + p_2)^2 = (p_3 + p_4)^2$ и $t = (p_1 - p_3)^2 = (p_2 - p_4)^2$, p_1, p_2 и p_3, p_4 – 4-импульсы частиц в с.ц.и. до и после столкновения соответственно, \vec{n} – нормаль к плоскости рассеяния, σ_1 – матрицы Паули.

После разложения по парциальным волнам M_0 и M_1 представляются в виде:

$$M_{0} = \frac{1}{2ik} \sum_{\ell=0}^{\infty} \left[\frac{\ell+1}{2\ell+1} e^{2i\delta} + \frac{\ell}{2\ell+1} e^{2i\delta} \right] P_{\ell} (\cos\theta)$$
(2)

$$M_{1} = \frac{1}{2ik} \sum_{\ell=0}^{\infty} \left[e^{2i\delta_{+}} + e^{2i\delta_{-}} \right] P_{\ell}^{1} (\cos \theta), \qquad (3)$$

где δ_{\pm} — фазовые сдвиги для состояний с $\ell_{\pm}1/2$, θ — угол рассеяния (с.ц.и.), k — импульс в с.ц.и.

В области очень высоких энергий при малых θ число состояний по ℓ , которые необходимо учитывать в выражениях (2) и (3), велико, и, следовательно, суммирование можно заменить интегрированием. Кроме того, в этом случае в суммах (2) и (3) главную роль играют члены с большими ℓ . При этом $P_{\ell}(\cos \theta)$ и $P_{\ell}^{1}(\cos \theta)$ можно заменить функциями Бесселя. После этого имеем:

$$M_{0} = \frac{1}{2i} \int_{0}^{\infty} \left[\frac{e^{2i\delta_{+}} e^{2i\delta_{-}}}{2} - 1 \right] J_{0} (\kappa b) b db$$
(4)

$$M_{1} = \frac{1}{2i} \int_{0}^{\infty} \left[e^{2i\delta_{+}} - e^{2i\delta_{-}} \right] J_{1}(\kappa b) b db, \qquad (5)$$

где $\kappa^2 = -t$, $b = \frac{\ell}{k}$ - прицельный параметр.

Если предположить, что вклад в амплитуду от каждого полюса Редже имеет такой же вид, как и полная амплитуда рассеяния (1)

$$M_{a}^{(1)} = M_{0_{a}}^{(1)} + i(\overline{\sigma} n) M_{1_{a}}^{(1)}, \qquad (6)$$

то фазовые сдвиги δ_{\pm} в (4) и (5) определяются как

$$\delta_{\pm} = \delta_{0} (\mathbf{b}, \mathbf{s}) \pm \mathbf{i} \delta_{1} (\mathbf{b}, \mathbf{s}), \tag{7}$$

где фазовые сдвиги δ_0 и δ_1 в "оптическом" приближении определяются выражениями^{/2/}:

$$\delta_{0}(\mathbf{b},\mathbf{s}) \approx \int_{0}^{\infty} \sum_{\mathbf{a}} M_{0\mathbf{a}}^{(1)} \mathbf{J}_{0}(\kappa \mathbf{b}) \kappa d\kappa$$
(8)

$$\delta_{1}(\mathbf{b},\mathbf{s}) \approx -i \int_{0}^{\infty} \sum_{\mathbf{a}} M_{1_{\mathbf{a}}}^{(1)} \mathbf{J}_{1}(\kappa \mathbf{b}) \kappa d \kappa.$$
(9)

В выражении для амплитуд M_0 и M_1 в дальнейшем удобно перейти к фазовым сдвигам δ_0 и δ_1 . После перехода имеем $\frac{2}{2}$:

$$M_{0}(t,s) = \frac{1}{2i} \int_{0}^{\infty} \left[e^{2i\delta_{0}(b,s)} \operatorname{ch} 2\delta_{1}(b,s) - 1 \right] J_{0}(\kappa b) b d b$$
(10)

$$M_{1}(t,s) = \frac{i}{2} \int_{0}^{\infty} e^{2i\delta_{0}(b,s)} sh 2\delta_{1}(b,s) J_{1}(\kappa b) b db .$$
(11)

В случае, если фазовые сдвиги δ₀ и δ₁ малы, то, используя ортогональность функций Бесселя

$$\int_{0}^{\infty} \mathbf{J}_{n} (\kappa \mathbf{b}_{1}) \mathbf{J}_{n} (\kappa \mathbf{b}_{2}) \kappa d \kappa = \delta (\mathbf{b}_{1} - \mathbf{b}_{2}), \qquad (12)$$

можно показать, что амплитуды s -канала M₀ и M₁ просто равны сумме амплитуд, соответствующих обмену одним реджеоном.

$$M_{0}(t,s) = \sum_{a} M_{0_{a}}^{(1)}$$
(13)

$$M_{1}(t, s) = \sum_{a} M_{1_{a}}^{(1)} .$$
 (14)

Для описания вклада в амплитуду рассеяния от обмена одним реджеоном можно взять выражение^{/2/}:

$$M_{0_{a}}^{(1)} = \gamma_{0_{a}}(t) \eta_{a}(\frac{E}{E_{0}})^{a_{a}(t)-1}$$
(15)

4

$$M_{1_{a}}^{(1)} = \gamma_{1_{a}}(t) \eta_{a} \left(\frac{E}{E_{0}}\right)^{\alpha_{a}(t)-1} \frac{\kappa}{2m_{N}}, \qquad (16)$$

где
$$\eta_a = -\frac{1+\sigma_a e^{i\pi a_a(t)}}{\sin \pi a_a(t)}$$
 - сигнатурный множитель,

а (t) - траектория а- того реджеона.

Функции γ (t) и γ (t) можно записать в виде:

$$\gamma_{0,1_{a}}(t) = \frac{\gamma_{0,1_{a}}}{(1+R^{2}\kappa^{2})^{2}} U^{-1}(\kappa^{2}), \qquad (18)$$

либо в виде/2/:

$$\gamma_{0,1_{a}}(t) = \gamma_{0,1_{a}} e^{-R^{2} \kappa^{2}} U^{-1}(\kappa^{2}), \qquad (19)$$

где $\gamma_{0,1}$ и $R_{0,1_{\alpha}}^2$ - свободные параметры, а

$$U(\kappa^{2}) = \frac{\cos \frac{\pi}{2} \left[\frac{\sigma_{a}+1}{2} - a_{a}(0)\right]}{\cos \frac{\pi}{2} \left[\frac{\sigma_{a}+1}{2} - a_{a}(\kappa^{2})\right]}.$$
 (20)

Вклад в амплитуды процессов, экспериментально наблюдаемых в πN и KN – рассеянии, от обмена реджеонами р , р', ρ , ω и Λ_2 , приведены в таблице 1.

В обработку включались следующие экспериментальные данные: полное сечение взаимодействия

 $\sigma^{\text{tot}}(\mathbf{k}) = 8\pi \text{ Jm } \mathbf{M}_0(\mathbf{k}, \mathbf{0})$ (21)

дифференциальное сечение

$$\frac{\mathrm{d}\sigma}{\mathrm{d}t} (t, \mathbf{k}) = 4\pi \left(|\mathbf{M}_0|^2 + |\mathbf{M}_1|^2 \right)$$
(22)

поляризация

A CANADA

(17)

$$P(t,k) = \frac{2 J_{m} (M_{0} M_{1}^{*})}{|M_{0}|^{2} + |M_{1}|^{2}}$$
(23)

параметры Вольфенштейна

$$A = \frac{-(|M_0|^2 - |M_1|^2) \sin a - 2 \operatorname{Re}(M_0 M_1^*) \cos a}{|M_0|^2 + |M_1|^2}$$
(24)

$$R = \frac{(|M_0|^2 - |M_1|^2)\cos \alpha - 2\operatorname{Re}(M_0M_1^*)\sin \alpha}{|M_0|^2 + |M_1|^2}.$$
 (25)

На заключительной стадии обработки были учтены также значения масс резонансов, принадлежащих соответствующим траекториям ^{/9,5/}. Траектории при этом считались чисто действительными.

Определение параметров, которые входят в выражение для амплитуды, проводилось методом наименьших квадратов. Минимизировался функционал

$$\chi^{2} = \sum_{m,n} \omega_{m,n} \left[A (k,t) - A (a, R, \gamma) \right]_{m,n}^{2},$$
(26)

где A(k,t) – экспериментально-найденное значение величины A при заданном начальном импульсе k и для заданного t в m – ой точке для n –ого эксперимента. $A(a, R, \gamma)$ – вычисленное значение A , $\omega_{m,n} = \frac{1}{\sigma_{m,n}^2}$ –

вес данного измерения, $\sigma_{m,n}$ - дисперсия экспериментальной величины. Поиск минимума осуществлялся методом линеаризации.

Поиск решений со случайных начальных условий не проводился в силу чисто технических трудностей. Решение (набор параметров) находилось в несколько этапов:

1. Определение а₀и γ₀для обмена р, р'и ρ реджеонами, при обработке полных сечений π⁺р и π⁻р - взаимодействия.

2. Определение остальных параметров **ρ**, **ρ**' и ρ - траекторий и констант R_{0,1} и γ₁ при обработке дифференциальных сечений, поляризации в π N - рассеянии, параметров тройного рассеяния и спектра масс резонансов.

3. Определение параметров A_2 и ω -траекторий и констант $\gamma_{A_2,\omega}$ и $R_{A_2,\omega}$ при обработке данных по KN -рассеянию. При этом параметры траекторий р , р , и ρ считались заденными из пунктов 1 и 2.

Экспериментальные данные

Более или менее убедительные теоретические оценки нижней границы области энергий, где применимы представления теории комплексных угловых моментов (гипотезы полюсов Редже), отсутствуют. В связи с этим была сделана попытка установить эту границу экспериментально по энергетическим зависимостям полных сечений взаимодействия. Известно, что любой вариант теории комплексных моментов дает для σ^{tot} (E) очень простую зависимость вида:

$$\sigma^{\text{tot}}(\mathbf{E}) = \mathbf{B}\mathbf{E}^{-\alpha(0)-1}$$
, (27)

где a(0) ≤ 1. Если использовать выражение (27) для аппроксимации $\sigma^{\text{tot}}(E)$, то можно установить, что, начиная с энергии 3,5 Гэв, это выражение вполне удовлетворительно (в смысле χ^2 -критерия) описывает энергетическую зависимость полных сечений π N-и KN -взаимодействия. Таким образом и была установлена первая граница отбора данных для обработки.

По переменной t был задан интервал 10⁻² ≤ |t| ≤ 1,0 Гэв²/с². Верхняя граница выбрана на основании результатов, полученных ранее в работах^{/1/}. Нижняя - результат оценки примеси кулоновского взаимодействия. В самом деле, амплитуда кулоновского рассеяния при малых углах рассеяния:

$$M_{q} = \frac{a}{k^{2} v \theta^{2}}, \qquad (28)$$

где a = 1/137, v - скорость, должна быть заметно меньше амплитуды ядерного рассеяния, которая по порядку величины определяется ее мнимой частью

$$Jm M_{N} \stackrel{\simeq}{=} \frac{\sigma^{\text{tot}}}{8\pi} . \tag{29}$$

Сравнивая (28) и (29), получаем:
|t|
$$\geq 10^{-2}$$
. (30)

В обработку включались экспериментальные точки, которые отклонялись от расчетных кривых, полученных при обработке данных для $E \ge 3.5$ Гэв, не более чем на три ошибки (вклад в минимизируемый функционал $\Delta \chi$ = 9). Обработанные экспериментальные данные приведены в таблицах 2 и 3.

Из выражений для амплитуд M_0 и M_1 легко установить число варьируемых параметров, которое, по-видимому, потребуется для описания экспериментальных данных. Вклад в амплитуду от каждого реджеона при линейной аппроксимации траекторий содержит шесть параметров a_0 , a_1 , γ_0 , R_0^2 , γ_1 , R_1^2 . В таком случае для описания πN -рассеяния потребуется восемнадцать параметров (обмен р, р' и ρ -реджеонами), а для описания KN -данных можно вводить двадцать четыре свободных параметра (обмен пятью реджеонами при параметрах р, р' и ρ -траекторий, взятых из обработки πN -рассеяния). В действительности число свободных параметров в рассматриваемом варианте должно быть взято несколько большее, для того чтобы учесть возможную кривизну траекторий. В нашем случае, стремясь получить наилучшее описание экспериментальных данных, мы увеличили число свободных параметров для каждой траектории до пяти.

В рассматриваемом варианте описания экспериментальных данных с помощью теории комплексных угловых моментов есть заметный недостаток. Использованное приближение теории предсказывает отсутствие поляризации в обменном πN -рассеянии. Однако измерения, выполненные при двух энергиях 5,9 и 11,2 Гэв, указывают на наличие поляризации около десяти процентов^{/4/}, правда, ошибки измерений в большинстве точек - того же порядка. Если наличие поляризации в обменном πN - рассеянии будет подтверждено с большей точностью, то для устранения разногласий с экспериментом в полюсном варианте теории комплексных угловых моментов придется учитывать обмен ρ -реджеоном.

8

Результаты

Результаты первого этапа обработки приведены в первой колонке (k > 3,5 Гэв/с) таблиц 2,3,4,5,6. Обрабатывались данные по полным и дифференциальным сечениям и поляризации. Суммарное значение χ^2 , полученное при обработке πN и KN – данных, составляет 1678. Полное число обработанных экспериментальных точек 1601. Число свободных параметров 41. Таким образом, описание в среднем можно считать почти удовлетворительным. Однако легко проверить, что полученные при этом параметры траекторий не описывают масс известных резонансов. Кроме того, значения параметров Вольфенштейна R и

А , рассчитанные по найденному решению, невозможно согласовать с данными работы /7/, выполненной при энергии 6 Гэв. В связи с этими обстоятельствами такое решение следует отбросить, несмотря на низкое значение χ^2 .

На втором этапе обработки объем использованных данных был расширен за счет включения значений параметров Вольфенштейна R и A при энергии 6 Гэв и масс резонансов, принадлежащих р р', ρ , ω и A₂ -траекториям⁹. Нижняя граница по энергиям была сдвинута до 5 Гэв для КN - данных и до 6 Гэв для π N - данных. Число параметров увеличено за счет введения R₁. Результаты обработки для двух параметризаций (18) и (19) функции $\gamma(\kappa^2)$ приведены в таблицах 2,3,4,5,6 в колонках 2 и 3 (k \geq 6 Гэв/с), соответственно.

Суммарное значение $\chi_1^2 = 1493$ и $\chi_2^2 = 2222$. Полное число экспериментальных точек по πN и KN -рассеянию 1221. Число свободных параметров 47. Вероятность появления столь больших значений χ^2 по чисто статистическим причинам при заданном числе степеней свободы мала. В связи с этим можно считать, что рассмотренный вариант модели полюсов Редже не дает возможности описать экспериментальные данные в столь широком интервале энергий и переданных импульсов. Однако предварительно необходимо убедиться, что появление больших значений χ^2 не является результатом систематических ошибок, допушенных в эксперименте. Последнее, однако, потребует введения норм на каждый эксперимент - дополнительных свободных параметров.

В заключение авторам приятно поблагодарить Л.И. Лапидуса и К.А. Тер-Мартиросяна, разговоры с которыми инициировали эту работу, С.Т. Сухорукова за критические замечания.

Литература

- R.J.N. Phillips, W. Rarita. Phys.Rev., <u>139B</u>, 1336, 1965.
 V. Barger', R.J.N. Phillips. Phys.Lett., <u>26B</u>, 730, 1968.
 G.V. Dass, C. Michael, R.J.N. Phillips. Nucl.Phys., <u>9B</u>, 549,1969.
 V. Barger', R.J.N. Phillips. Phys.Lett., <u>29B</u>, 503, 1969.
 V. Barger', R.J.N. Phillips. Phys.Lett., <u>29B</u>, 676, 1969.
- 2. В.Ю. Глебов, А.Б. Кайдалов, С.Т. Сухоруков, К.А. Тер-Мартиросян. ЯФ, <u>10</u>, 1065 (1969).
- 3. С.Н. Соколов, И.Н. Силин. Препринт ОИЯИ, Д-810, Дубна, 1966.
- 4. G. Giaconelli, P. Pini, Só Stagni, CERN-NERA, 69-1, 1969.
- 5. N. Barash-Schmidt, A. Barbaro-Galtier, L.R. Price, A.H. Rosenfeld, P.Soding, C.G. Wohe, M. Roos. UCRL-8030, 1968.
- J.V. Allaby, Yu.B. Bushnin, S.P. Denisov, A.N. Diddens, R.W. Dobinson, S.V. Donskov, G. Giacomelli, Yu.P. Gorin, A. Klovning, A.I. Petrukhin, Yu.D. Prokoshkin, R.S. Shuvalov, C.A. Stahlbrand, D.A. Stoyanova. Phys.Lett., <u>30B</u>, 500, 1969.
- 7. Amblard B., Cozzica G., Ducros Y., Hansroul M., Lesquen A., Merio J.P., Movchet J., Van Rossum H. Proc. of the Lund Intern. Conf. of Elementary Particles, Lund, Sweden, 1969.
- 8. L. Price, N. Barash-Schmidt, O. Benary, R.W. Bland, A. Rosenfeld, C.G. Wohl. UCRL-20000, 1969.

9. Д.В. Ширков. Препринт ОИЯИ Р2-4726, Дубна 1969.

- 10. P. Astbury, G. Brautti, G. Finocchiaro, A. Michelini, K. Terwilliger, D. Websdale, C.H. West, P. Zanella. Phys.Lett., 23, 396, 1969.
- 11. W.F. Baker, R.L. Cool, E.W. Jenkins, T.E. Kycia, R.H. Phillips, A.L. Read. Phys.Rev., 129, 2285, 1963. W. Galbraith, E.W. Jenkins, T.F. Kycia, B.A. Leontik, R.H. Phyllips, A.L. Read R. Rubinstein. Phys. Rev., 138, 913, 1965.
- 12, V. Cook, B. Cork, T.F. Hoang, D. Keefe, L.T. Kerth, W.A. Wenzel, T.F. Jipf. Phys.Rev., 123, 320, 1960.
- 13, K.J. Foley, R.S. Gilmore, S.J. Lindenbaum, W.A. Love, S. Ozaki, E.H. Willen, R. Yamada, L.C.L. Yuan. Phys.Rev.Lett., 15, 45, 1965. M. Aderholz, J. Bartsch, E. Keppel, K. Rumpf, R. Speth, C. Grote, J. Klugow, H.W. Meier, D. Pose, M. Bardadin-Otwinbwska, V.T. Cocconi, E. Flaminio, J.D. Hansen, H. Hromadnik, G. Kellner, M. Markytan, D.R.O. Morrison, D.P. Dallman, S.J. Goldsack, M.E. Mermikides, N.C. Mukherjee, W.W. Neale, A. Fröhlich, G. Otter, I. Wacek., H. Wahl. Phys.Lett., 24B, 434, 1967. K.J. Foley, S.L. Lindenbaum, W.A. Love, S. Ozaki, J.J. Russell, L.C.L. Yuan. Phys.Rev.Lett., <u>11</u>, 503, 1963.

Рукопись поступила в издательский отдел 19 августа 1970 года.

Таблица І.					
АМПЛИТУДА					
$M_{p} + M_{p'} + M_{p}$					
Mp + Mp' - Mp					
NZ Mp					
•					
$M_p + M_{p'} + M_{A_s} + M_{p'} + M_{\omega}$					
Mp + Mp - Ma - Mp + Hw					
$H_p + H_{p'} + H_{A_2} - H_p - M_{\omega}$					
$M_p + M_{p'} - M_{A_2} + M_p - M_{\omega}$					
$2(H_{p}+H_{R_{a}})$					
$2(-M_{p}+M_{R_{2}})$					

13

Экспериментальная	K ≥ 3.5 гэв/с		К≥ 6 гэв/с			
величина	Число точек	ΔX ² I	ЧИСЛО точек	ΔX ² F	۵x ² 2	Литература
$G^{tot}(\pi^+p+\pi^+p)$	92	76,8	77	80,5	80,5	4
σtot (π-p+π-p)	95	45,4	75	25,2	25,2	4,6
∰ (₩ ⁺ p → № ⁺ p)	270	273,9	229	248,0	453,0	4
25 (T-L-T-D)	455	416,4	3 90	522,0	1005,9	4
$\frac{d}{d} = \frac{d}{d} = \frac{d}$	297	415,3	116	308,7	343,9	4
$\frac{1}{16} \left(\frac{1}{16} \frac{1}{16$	38	81,1	31	43,7	34,0	4
$\frac{P}{P} \left(\pi^{-} p \rightarrow \pi^{-} p \right)$	62	67,I	45	37,3	42,0	4
$P(\mathbf{x}^{-}b + \mathbf{x}^{\circ}n)$	21	47,2	12	30	30	4
$R\left(\overline{N}^{*}b \rightarrow \overline{N}^{*}b\right)$	-		4	4,20	7,5	7
$A(\overline{n} - p + \overline{n} - p)$	-		4	2,2	2,3	7
m; (1260)	-		I			5
my (1515)	-		I			5
mp (2651	-		I	0,1	I, 50	5
mg (1660)	-		I			5
m _t (2190)	-		I		×	5
Bcero:	1330	I423 、	988	1301	2028	
Примечание:	х ² 1-и	^{X²2^{-значе}}	ния х ² дл	ія решениі	і, получен	ных для
	параметризаций (18) и (19) функции 🎢 соответственно.					

	Таблица 2.		•
Обработанные	экспериментальные данные	по	Я N-рассеянию

Таблица 3.

Обработанные экспериментальные данные по К № -рассеянию

Экспериментальная	K ≥ 3.5 ГЭВ/С		К≥ 5 гэв _{/с}			Линово
величина	Число точек	Δx _I ²	Число точек	۵x _I ²	۵x ₂ ²	литера- тура
Gtet (K+D+K+D)	24 .	17	19	21,8	21,3	(8)
$\sigma^{tot} (\kappa^+ n \rightarrow \kappa^+ n)$	9	14	7	1,3	I, 0	(8)
Gtet (K-p-K-p)	36	32	28	24,I	29,5	(II,6)
$\nabla^{tot} (\kappa^- n \to \kappa^- n)$	15	I 4	15	11,5	II,2	(6,11,12)
# /de (K+ p + K+ p)	90	88	60	36,8	37,9	(8)
do / (r b + r-p)	77	72	55	65	64,8	(13)
$P(\mathbf{k}^{\dagger}\mathbf{p} \bullet \mathbf{k}^{\dagger}\mathbf{p})$	20	18	-	-		(8)
$m_{1}(783)$	-	-	I	0,00	0,00	(5)
m _A (1300)	-	-	T	0,00	0,00	(5)
$\frac{d\sigma}{dt} (\kappa^{-}p \rightarrow \tilde{\kappa}^{\circ}n)$			47	37,0	28,2	(10)

15

Всего: Примечание: 271 255 233 192 193,9 X_I² и X₂² значения X² для решений, полученных для двух параметризаций (18) и (19) функции /⁴ соответственно.

Таблица 4. Параметры траекторий

K≥ 3.5 r∂B/c	K z		
$X_{1^2} = 1404$	$X_{I}^{2} = 1406$	$x_2^2 = 1789,8$	Примечание
I d., I,0	I ,0	I ,0	
2 %, 0	-0,580±0,037	-0,472±0,017	5
3 d ₂ 0,272±0,128	-0,219 [±] 0,059	-0,03 1 ±0,037	5ر
4 d, -I,I4I [±] 0,336	0,106±0,013	0,053±0,036	
5 dy 0,644±0,235	0,163±0,035	0,083±0,036	
6 do 0,116±0,041	0,092±0,062	0,077±0,062	
7 d, 1,926±0,105	0 ,425±0,11 8	5,258±0,279	
8 d₂ -5,872±0,295	- I ,642 ± 0, I 20	- 1,II5± 0,I96	Þ'
9 d, 3,705±0,223	-I,684±0,074	-I,647±0,36	
IO d		0	
II do +0,355±0,209	0, 343± 0,123	0,336±0,075	
I2 d, -I3,77±I0,42	0 ,129±0,600	-0,II6±0,496	
13 dz	-I,I64±0,828	- I ,009±0,974	А.
I4 d,	0,004±0,173	0,096±0,161	2
15 x,	0,640±0,425	0,591±0,474	
16 💪 0,611±0,03ò	0,6 14±0,03 4	0,6 17± 0,0 3 4	
17 d, 0,037±0,123	-0,843±0,021	-0,751±0,035	
I8 dz 8,085±0,603	-0,268±0,040	-0,001±0,081	0
19 d, 13,750±0,950	-0,155±0,022	-0,025±0,040	50
20 d6,078 ±0,461	-0,020±0,004	-0,003±0,005	
21 d, 0,418 ±0,040	0,857±0,025	0,841±0,026	
22 a,-4,994 ±1 ,955	0,465±0,111	0,677±0,156	
23 d. 25,73 ±8,580	0,093±0,132	0,156±0,221	(\cdot)
24 2,-37,08 ±12 ,09	-I,247±0,309	-I,438±0,45I	2
25 d, 16,48 * 5,40	0,736±0,364	I,292±0,44I	

Таблица	5
---------	---

Параметры 🕺 и R для 🖅 -рассеяния

		K = 3.5 F9B/C	К≥ 6 гэв _{/с}			
		$x^2 = 1404$	$X_{I}^{2} = 1406$	$x_2^2 = 1789,8$	чание	
I	80	2,353±0,013	2, 36 5±0,015	2,359±0,015		
2	R.L	3,754±0,108	1,522±0,046	2,412 [±] 0,049	5	
3	8.	6,615 [±] 0,697	0,077±0,085	0,185±0,108	Ρ	
4	R, ²		0	<u>ن</u>		
5	¥.	2,077±0,009	2,204±0,194	2,251±0,194		
6	R.ª	3,972±0,026	39,629±0,749	81,319 [±] 1,712	b'	
7	81	4,838±0,519	3.10 ⁻⁴ ±4,7.10 ⁻⁴	-8.10 ⁻⁵ ±2.10 ⁻⁵		
8	R,*		0	0		
9	80	0,249±0,016	0,245±0,021	0,244±0,02I		
10	R.L	3,227±0,142	10 ³	10 ²	•	
11	f.	-2,364±0,089	-4,045 [±] 0,090	-3,027±0,053	P	
12	R,L		5,509±0,196	5 ,927± 0 ,19 6		

	K = 3.5 гав/с		K= 5r	Попнотенно	
		X _I ² = 255	$x_{I}^{2} = 196, 3.$	$X_2^2 = 193,9$	приночанио
I	<i>j</i> .	I ,942±0,0I2	1,864±0,011	1,88 ±0,013	
2	R.1	6,6I0±0,56I	I,522	2,412	n
3	y.	19,08 ±2,471	10 ⁻³ ±5.10 ⁻³	0,393±0,060	P
4	R, 2		0	0	
5	y.	0,287 ±0,062	1,065±0,105	0,919±0,124	
6	R.1	1,614 ±0,301	39,63	81,319	p'
7	8.	2,592 ±0,434	2.10 ⁻³ ±5.10 ⁻³	2.10 ⁻⁴ ±6.10 ⁻⁵	• '
.8	R,*		0	0	
9	8.	1,012±0,363	0,195±0,056	0,206±0,025	
10	R,	0	7,625 ±18 ,876	10,206 ±11, 620	Л
II	8.	0	1,711±0,612	I,042±0,347	~2
<u>12</u>	R, ²		2,233±0,773	I,806±0,637	
13	8.	0,098±0,015	0,163±0,018	0,164±0,018	
I4	R.L	1,911±0,720	100	100	
15	y.	-2,780 [±] 0,927	-I,215±0,316	- I,248±0,3 64	ſ
16	R, ²		5,510	5,93	
17	7.	0,837±0,071	0,285±0,21	0,293±0,024	
I 8	R°,	3,744 [±] 0,683	2,281±0,238	6,600 ± 0,279	
19	8.	4,130 [±] 1,290	0,0I3±0,04I	I,097±0,279	ω
20	R, ²	-	0	4 ,181± 0 ,6 59	

Таблица 6. Параметры / и R для KN-рассеяния