P2-5263

16/x7-7

В.А. Мещеряков, К.В. Рерих

статическая модель в -волн п N рассеяния и в -канальные особенности

1970

AABOPATOPHA TEOPETHUE(KOM ONINKN

C324.18

M-565

ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Дубна

СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА

alastates)

P2-5263

ş

В.А. Мещеряков, К.В. Рерих

статическая модель • -волн *п* N рассеяния и t -канальные особенности

1. Введение

Несмотря на большое количество работ, посвященных низкоэнергетическому πN -рассеянию, теория даже s -волнового рассеяния не может считаться завершенной^{/1/}. На основе метода двойных дисперсионных соотношений^{/2},3/ была выяснена важная роль ρ - и σ -мезонов в понимании хода фаз при низких энергиях. В последнее время в рамках гипотез РСАС и алгебры токов были получены приближенные величины для длин рассеяния $a_1 + 2a_3 \approx 0$, $a_1 - a_3 \approx 0.3$ ^{/4/}. Однако во всех этих работах условие двухчастичной унитарности явно не учитывалось.

Известно, что аналитические свойства парциальных волн, свойство перекрестной симметрии и условие двухчастичной унитарности дают возможность установить общий вид s -волновых матричных элементов S -матрицы в статическом пределе как функций энергии^{/5/}. Ранее было показано, что эти выражения можно с успехом применять для анализа экспериментальных данных по s -волнам при малых энергиях. Вид произвольных функций, содержащихся в общих выражениях для s -волн, выбирался только из условия хорошего описания экспериментальных данных в максимально широкой области^{/6/}. В настоящей работе предпринята попытка учесть дополнительные физические требования на s -волны, связанные с наличием ρ - и σ -мезонов.

Недавно Ширков и Серебряков ввели концепцию коротковолнового отталкивания (учёт области высоких энергий) для описания низкоэнергетического рассеяния адронов. Они показали, что эта концепция дает качественно хорошее описание в -волн *п* N системы.

Ниже не будет делаться каких-либо априорных предположений о влиянии области высоких энергий на низкоэнегетическое рассеяние.

2. Выбор общего вида функций для описания s -волн

<u> л N -рассеяния</u>

Исходными выражениями для дальнейшего рассмотрения являются следующие формулы^{/5/}:

$$S_{1}(\omega) = \frac{B(\omega)[B(\omega)-2]}{B^{2}(\omega)-1} \cdot D(\omega),$$

$$S_{3}(\omega) = \frac{B(\omega)}{B(\omega)-1} \cdot D(\omega),$$
(1)

 $S_{j}(\omega + i0) = e^{2i\delta_{j}(\omega)}$ для $\omega \ge 1$, где $\delta_{j}(\omega)$ - действительная

фаза рассеяния в состоянии с полным изотопическим спином, равным ј/2 ,

а ω - энергия π -мезона в с.ц.м. Здесь

И

$$\mathbf{D}(\omega) = \mathbf{D}(-\omega), \quad |\mathbf{D}(\omega)|^2 = 1, \quad \mathbf{D}^*(\omega) = \mathbf{D}(\omega^*)$$
(2)

$$D(\tilde{\omega}) = 1 + O[(\omega^{2} - 1)^{\frac{2m+1}{2}}].$$

$$\omega \to \pm 1$$

Функция $B(\omega)$ имеет вид:

$$B(\omega) = \frac{1}{\pi} \arcsin \omega + i \sqrt{\omega^{2} - 1} \cdot \beta(\omega),$$

$$\beta(\omega) = -\beta(-\omega), \quad \beta^{*}(\omega) = \beta(\omega^{*}).$$
(3)

В формулах (2) и (3) $D(\omega)$ и $\beta(\omega)$ – две произвольные мероморфные функции в комплексной плоскости ω с разрезами (- ∞ ,-1], [+1,+ ∞). В статической модели t -канальные полюса амплитуды рассеяния учитываются с помощью функции обрезания⁸. Наличие ее, а также низкоэнергетический вид функции обрезания будем учитывать с помощью введения полюсов в $S_{i}(\omega)$, соответствующих ρ - и σ -мезонам и расположенных на мнимой оси ω -плоскости на ее физическом листе. Как следствие изотопической перекрестной симметрии S_j (ω) в (1) обладают общей структурой

$$\begin{pmatrix} S_{\cdot 1} \\ S_{\cdot 3} \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} s^{(+)} + \begin{pmatrix} -2 \\ 1 \end{pmatrix} s^{(-)} ,$$

$$\Gamma \mathcal{A} e = s^{(\frac{1}{2})} (-\omega) = + \frac{s^{(\frac{1}{2})}}{s} (\omega).$$
(4)

Такова же структура амплитуды рассеяния $f_1(\omega,t)^{9}$, для которой вклад ρ - и σ -мезонов, вычисленный в борновском приближении на основе эффективного лагранжиана

$$\mathcal{E} = \int_{\rho} \bar{N} \gamma_{\mu} \frac{\vec{\tau}}{2} N \cdot \vec{\rho}_{\mu} + \int_{\rho} \cdot \vec{\rho}_{\mu} \left[\frac{\partial \vec{\pi}}{\partial x_{\mu}} \times \vec{\pi} \right] + g_{\sigma N N} N \sigma + g_{\sigma \pi \pi} \sigma \cdot (\vec{\pi} \cdot \vec{\pi}),$$

в статическом пределе равен:

$$f_{1}^{(+)}(\omega, t) = \frac{2g_{\sigma N N}}{4\pi} \frac{g_{\sigma \pi \pi}}{4\pi} \cdot \frac{1}{m_{\sigma}^{2} - t},$$

$$f_{1}^{(-)}(\omega, t) = \frac{f_{\rho}^{2}}{4\pi} \frac{\omega_{\rho}^{2}}{m_{\rho}^{2} - t}.$$
(5)

С помощью формулы (5) можно установить связь вычетов функций $S_{i}(\omega)$ в ρ - и σ -полюсах с константами связи f_{ρ} , $g_{\sigma NN}$, $g_{\sigma nn}$. Однако для этого необходимо выделить из $f_{1}^{(\pm)}$ s -волны. Если воспользоваться дифференциальной техникой^{/3/}, то из формул

$$f_{s}^{(\pm)}(\omega) = \frac{1}{2} \left[f_{1}^{(\pm)}(\omega, 0) + f_{1}^{(\pm)}(\omega, -4q^{2}) \right]$$
(6)

получим

Res
$$\begin{pmatrix} S_1 \\ 0 \\ S_3 \end{pmatrix}_{\omega = \pm i \omega_{\sigma}} = \pm i \frac{q_{\sigma}}{4\omega_{\sigma}} \cdot \left(\frac{g_{\sigma NN} g_{\sigma \pi\pi}}{4\pi}\right) \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

5

(7)

Res $\begin{pmatrix} S_1 \\ S_3 \end{pmatrix}_{\omega = \pm i \omega_{\rho}} = \frac{1}{8} q_{\rho} \begin{pmatrix} f_{\rho}^2 \\ 4\pi \end{pmatrix} \begin{pmatrix} -2 \\ 1 \end{pmatrix},$

$$r \mu e \quad q_{\rho,\sigma} = m_{\rho,\sigma} / 2 \quad , \qquad \omega_{\rho,\sigma} = \sqrt{q_{\rho,\sigma}^2 - 1} \; .$$

Выделение s-волн интегрированием с полиномами Лежандра приводит к появлению логарифмических точек ветвления при $\omega = \pm i \omega_{\rho,\sigma}$. Сравним первые члены разложения $f(\pm)(\omega)$ по $\frac{q_2}{m_{\rho,\sigma}^2}$ при $\frac{q_2}{m_{\rho,\sigma}^2} << 1$ для обоих способов выделения s -волн. Второй способ приводит к величинам, в два раза

большим, чем первый. Поэтому для совпадения обоих способов в области малых энергий следует правые части формул (7) увеличить в два раза. К целесообразности такой нормировки вычетов можно придти также, если воспользоваться выражением для s⁽⁻⁾-волны, полученным на основе точного решения дисперсионных соотношений на левом разрезе. В приближении нулевой ширины ρ -мезона имеем^{/10/}

Re
$$f_{s}^{(-)}(\omega) = a^{(-)}\omega F_{\pi}(q^{2}),$$

 $F_{\pi}(q^{2}) = \frac{m^{2}}{m^{2}\rho}.$

Учитывая соотношение Сакураи/11/ (в стат. пределе)

$$(-\underline{)} \quad \underline{1\rho^{-}} \\ 4\pi \mathbf{m}_{0}^{2}$$

приходим к установленному выше заключению. Окончательно вычеты нормируем соотношением

$$\operatorname{Res} \left(\begin{array}{c} S_{1} \\ S_{3} \end{array} \right)_{\omega = \pm i \omega_{\sigma}} = \pm i \frac{q_{\sigma}}{2 \omega_{\sigma}} \left(\frac{g_{\sigma NN} g_{\sigma \pi \pi}}{4 \pi} \right) \left(\begin{array}{c} 1 \\ 1 \end{array} \right),$$

$$\operatorname{Res} \left(\begin{array}{c} S_{1} \\ S_{3} \end{array} \right)_{\omega = \pm i \omega_{\rho}} = \frac{1}{4} q_{\rho} \left(\frac{f_{\rho}^{2}}{4 \pi} \right) \left(\begin{array}{c} -2 \\ 1 \end{array} \right).$$
(9)

Поскольку о константах $g_{\sigma NN}$ и $g_{\sigma \pi\pi}$ ничего не известно, ниже мы не будем фиксировать вычет в σ -полюсе. Для константы $f_{\rho}^{2}/4\pi$ примем ее значение из^{/11/}:

$$\frac{f_{\rho}^{2}}{4\pi} = 2,8.$$

Для того чтобы обеспечить вклад $\sigma - \kappa \rho$ -полюсов в s⁽⁺⁾ и s⁽⁻⁾ волны, соответственно, необходимо потребовать выполнения следующих равенств:

1)
$$B(\pm i \omega_{\rho}) = 0$$
, 2) $\lim_{\omega \to \pm i \omega_{\sigma}} (\omega) = \pm c$,
 $\omega \to \pm i \omega_{\sigma}$ (10
3) $B'(\pm i \omega_{\rho}) \neq 0$, 4) $\lim_{\omega \to \pm i \omega_{\sigma}} (\omega \to \pm i \omega_{\sigma}) = d_{\sigma}$,
 $\omega \to \pm i \omega_{\sigma}$
5) $\lim_{\omega \to \pm i \omega_{\rho}} (\omega^{2} + \omega_{\rho}^{2})^{2} D(\omega) = d_{\rho}$.

Ограничиваясь в $D(\omega)$ вкладом только σ – и ρ -полюсов, с учётом (2) и (10), получим следующее выражение для $D(\omega)$:

$$\mathbf{D}(\omega) = e^{2i\Delta(\omega)} \omega = \frac{(1-i\frac{q}{q\sigma})(1-i\frac{q}{q\rho})^2}{(1+i\frac{q}{q\sigma})(1+i\frac{q}{q\rho})^2}$$

где q = $\sqrt{\omega^2 - 1}$, а q_{σ} и q_{ρ} заданы (8). Результаты расчёта для $\Delta(\omega)$ с использованием экспериментальных значений для масс σ и ρ -мезонов (в единицах m_{π})

 $m_{o} = 765 M эв$, $m_{\sigma} = 410 M эв$

приведены на рис. 2 (сплошная кривая). Сравнение этой кривой с пунктирной кривой (рис. 2), вычисленной на основании формулы

 $tg \Delta(\omega) = q^{3} (-0.0495 + 0.00957 q^{2})$

из⁶, являющейся хорошей аппроксимацией экспериментальных данных, показывает сильное расхождение в большой области значений q и указывает на необходимость параметризации $D(\omega)$. Наиболее простой и естественный путь для обеспечения требуемого поведения $\Delta(\omega)$ заключается во введении в $D(\omega)$ нулей на физическом листе ω -плоскости.

Ограничиваясь соображениями простоты, примем для D (ω) следующее выражение

$$(\omega) = \frac{(1 - i - \frac{q}{q_{\sigma}})(1 - i - \frac{q}{q_{\rho}})^{2} (1 + i - \frac{q}{a_{\sigma}})(1 + i - \frac{q}{a_{\sigma}})^{2}}{(1 + i - \frac{q}{q_{\sigma}})^{2}(1 - i - \frac{q}{a_{\sigma}})(1 - i - \frac{q}{a_{\sigma}})^{2}},$$
(1)

где а₀ и а₁ - свободные параметры. Предварительный расчёт позволяет надеяться, что выражение (11) при значениях а₀ и а₁ , близких к q_σ и q_ρ , обеспечит требуемое поведение.

Перейдем к построению функции β(ω) из (3). Для обеспечения правильного порогового поведения

 $S_{j}(\omega) = e^{2i\delta_{j}(\omega)} = 1 + 2ia_{j}q + ...$

необходимо, чтобы $\beta(\omega)$ при $\omega \rightarrow 1$ имело разложение:

$$S(\omega) = \frac{1}{q^2} \left(\frac{3}{2(a_1 - a_3)} + O(\omega - 1) \right).$$
(12)

Исходя из (12) и (3), в качестве $eta(\omega)$ выберем следующее выраже-

ние

$$\beta(\omega) = \frac{\omega}{q^2} R(\omega), \qquad (13)$$

где

$$\mathbf{R}(-\omega) = \mathbf{R}(\omega)$$
, $\mathbf{R}^*(\omega) = \mathbf{R}(\omega^*)$.

В силу чётности $R(\omega)$ можно понимать как функцию ω^2 . Ограничиваясь наличием в $B(\omega)$ полюсов при $\omega = \pm i \omega_\sigma$ в соответствии с условием 2) из (10), зададим $R(\omega)$ формулой:

$$R(\omega) = \frac{b_0 + b_1 q^2 + b_2 q^4 + b_3 q^6}{(1 + -\frac{q^2}{q})}, \qquad (14)$$

в которой b_0 и b_1 являются свободными параметрами, а b_2 и b_3 ниже будут выражены через b_0 и b_1 , исходя из условия 1) в (10) и требования нормировки вычетов $S_1(\omega)$ при $\omega = \pm i \omega_p$ согласно (9).

Из условия 1) в (10) и определений (3), (13) и (14) получим первое соотношение на коэффициенты b_i в (14):

$$b_{0} - b_{1}q_{\rho}^{2} + b_{2}q_{\rho}^{4} - b_{3}q_{\rho}^{6} = c_{1}, \qquad (15)$$

8

$$\mathbf{r}_{\mu} \mathbf{c}_{1} = \frac{1}{\pi} \, \left(\mathbf{n} \left(\omega_{\rho} + \mathbf{q}_{\rho} \right) \cdot \frac{\mathbf{q}_{\rho}}{\omega_{\rho}} \left(\frac{\mathbf{q}_{\rho}^{2}}{\mathbf{q}_{\sigma}^{2}} - 1 \right) \right)$$

Из (1), (9) и (10) имеем соотношение на вычеты:

Res
$$S_{i}(\pm i \omega_{\rho}) = -B'(\pm i \omega_{\rho}) d_{\rho}(\frac{-2}{1}) = \frac{1}{4} q_{\rho}(\frac{f_{\rho}}{4\pi})(\frac{-2}{1}).$$
 (16)

Находя В $(\pm i \omega_{\rho})$ из (3), (13) и (14) и d_{ρ} , определенное 5) в (10), из (11), получим из (16) второе соотношение на коэффициенты b_i : $b_1 - 2b_2q_{\rho}^2 + 3b_3q_{\rho}^4 = c_2 + c_3$,

где

$$c_{2} = -\frac{1}{32 q_{\rho}^{2}} \left(\frac{f_{\rho}^{2}}{4\pi}\right) \left(\frac{q_{\rho}}{q_{\sigma}} - 1\right)^{2} \frac{\left(1 + \frac{q_{\rho}}{a_{0}}\right) \left(1 + \frac{q_{\rho}}{a_{1}}\right)^{2}}{\left(1 - \frac{q_{\rho}}{a_{0}}\right) \left(1 - \frac{q_{\rho}}{a_{1}}\right)^{2}},$$

$$c_{3} = -\frac{1}{2\pi\omega_{\rho}^{2}} \left(\frac{q_{\rho}^{2}}{q_{\sigma}^{2}} - 1\right) \left[1 + \frac{\omega_{\rho}}{q_{\rho}} \ln(\omega_{\rho} + q_{\rho}) \left(1 - \frac{q_{\rho}^{2}}{\omega_{\rho}^{2}} + \frac{2q_{\rho}^{2}}{q_{\rho}^{2} - q_{\sigma}^{2}}\right)\right].$$
(17)

Окончательно из (15) и (17) имеем:

$$b_{2} = \frac{2b_{1}}{q_{\rho}^{2}} - \frac{3(b_{0}-c_{1})}{q_{\rho}^{4}} + \frac{1}{q_{\rho}^{2}}(c_{2}+c_{3}),$$

$$b_{3} = \frac{b_{1}}{q_{\rho}^{4}} - \frac{2(b_{0}-c_{1})}{q_{\rho}^{6}} + \frac{1}{q_{\rho}^{4}}(c_{2}+c_{3}).$$
(18)

Воспользовавшись соотношением

arc sin
$$\omega = \frac{\pi}{2}$$
 + i ln (ω + q),
из(3), (13) и (14) получим окончательное выражение для $B(\omega)$

$$\mathbf{B}(\omega) = \frac{1}{2} + \mathbf{i} \phi(\mathbf{q}),$$

$$\phi(q) = \frac{1}{\pi} \ell_{n}(\omega + q) + \frac{\omega}{q} \cdot \frac{b_{0} + b_{1}q^{2} + b_{2}q^{4} + b_{3}q^{6}}{(1 + \frac{q^{2}}{q_{\sigma}^{2}})}.$$
 (19)

Представляя D(ω) в (11) в виде

$$D(\omega) = \frac{1 + i \operatorname{tg} \Delta(q)}{1 - i \operatorname{tg} \Delta(q)}, \qquad (20)$$

для $tg\Delta(q)$ имеем следующее выражение:

$$tg\Delta(q) = \frac{(g_0 - d_0)q_{-} + (g_1 d_{-0} - g_0 d_{-1} + d_{-2} - g_2)q^3 + (g_2 d_{-1} - g_1 d_{-2})q^5}{1 + (g_0 d_0 - g_1 - d_{-1})q_{-}^2 + (g_1 d_{-1} - g_2 d_{-0} - g_0 d_{-2})q^4 + g_2 d_{-2}q^6}$$

$$g_0 = \frac{1}{a_0} + \frac{2}{a_1}, \quad g_1 = \frac{2}{a_0 a_1} + \frac{1}{a_1^2}, \quad g_2 = \frac{1}{a_0 a_1^2};$$

$$d_0 = \frac{1}{q_\sigma} + \frac{2}{q_\rho}, \quad d_1 = \frac{2}{q_{\sigma} q_{\rho}} + \frac{1}{q_{\rho}^2}, \quad d_2 = \frac{1}{q_{\sigma} q_{\rho}^2}.$$
(21)

Окончательно из (1), (19) и (20) получим следующие формулы для $tg\delta_1$ и $tg\delta_3$:

$$\iota_{g} \delta_{1} = \frac{(1 + \frac{4}{3} \phi^{2}) \iota_{g} \Delta_{+} + \frac{4}{3} \phi}{(1 + \frac{4}{3} \phi^{2}) - \frac{4}{3} \phi \iota_{g} \Delta}$$
(22)

$$\operatorname{tg} \delta_{3} = \frac{2\phi \cdot \operatorname{tg} \Delta - 1}{\operatorname{tg} \Delta + 2\phi}$$

3. Анализ экспериментальных данных

Экспериментальные данные по s -фазам πN -рассеяния анализируются с помошью формул (22), в которых $\lg \Delta(q)$ и $\phi(q)$ заданы посредством (19) и (21). Экспериментальные данные были взяты из работ /14-21/. Последняя из рассмотренных точек имеет энергию 258 Мэв в л.с.к. Результаты анализа, проведенного по методу наименьших квадратов, приведены в табл. 1 (первый столбец).

Таблица	1
---------	---

χ 2	20	21,8
a ₀	1,125 <u>+</u> 0,025	1,157+0,012
a ₁	3,724 <u>+</u> 0,090	3,629 <u>+</u> 0,058
ь _о	4,888 <u>+</u> 0,197	5,018 <u>+</u> 0,181
. b ₁	0,307 <u>+</u> 0,072	0,2438 <u>+</u> 0,0605
b ₂	-0,0364	-0,0353
ь _з	-0,00186	-0,00023

Длины рассеяния, как нетрудно получить из (19), (21) и (22), определяются формулами:

$$a_{1} - a_{3} = \frac{3}{2b_{0}},$$
(23)
$$a_{1} + 2a_{3} = 3\left(\frac{1}{a_{0}} + \frac{2}{a_{1}} - \frac{1}{q_{\sigma}} - \frac{2}{q_{\rho}}\right).$$

Численные значения $(a_1 - a_3)$ и $(a_1 + 2a_3)$ есть: $a_1 - a_3 = 0,307 \pm 0,012$, $a_1 + 2a_3 = 0,029 + 0,099$.

Поскольку ошибка в определении (a₁+2a₃) превышает ее величину, целесообразно положить

$$\frac{1}{a_0} + \frac{2}{a_1} - \frac{1}{q_\sigma} - \frac{2}{q_\rho} = 0.$$

Результаты анализа с этим дополнительным условием представлены в таблице (второй столбец). Для этих значений параметров получаем следующие длины рассеяния:

10

11

.

$$a_1 - a_3 = 0,299 \pm 0,011,$$

 $a_1 + 2a_3 = 0,$

которые находятся в прекрасном согласии с результатами $^{/12,13/}$. Соответствующие последним значениям параметров теоретические кривые $\iotag\delta_1/q$ и $\iotag\delta_3/q$ изображены на рис. 5,6. Описание зависимости фазовых сдвигов s -волн от энергии следует признать хорошим, поскольку $\frac{\chi^2}{N} \approx 0.91$, где N -число степеней свободы распределения χ^2 . Выше при построении D(ω) мы предполагали, что введение нулей в D(ω), близких к σ и ρ -полюсам, позволит устранить сильное расхождение кривых на рис. 2. Как видно из рис. 3, где сплошная кривая соответствует второму набору значений a_0 и a_1 , это достигается, причём значения a_0 и a_1 близки к q_{σ} и q_{ρ} :

$$\frac{a_0}{q_0} = 0,79 , \quad \frac{a_1}{q_{\rho}} = 1,33.$$

На рис. 4 приведены для наглядности графики $R(q^2)$ для второго набора значений b₁ (сплошная кривая) и $R(q^2)$ из^{/6/} (пунктирная кривая).

Обсудим вопрос о положении полюсов S_j(ω) на физическом листе ω -плоскости. Нас будет интересовать только область блиузйших особенностей, границу которой условно зададим следующим образом

$$|\omega| \leq \sqrt{\frac{M^2}{4}-1}$$
,

где M=1 Гэв (пунктирная окружность на рис. 1). Единственные полюса на физическом листе в S₁(ω), связанные с D(ω), как это видно из построения, есть σ -и ρ -полюса (рис. 1). Полюса, связанные с функцией B(ω), определяются как корни уравнения

 $\mathbf{B}(\omega) \pm \mathbf{1} = \mathbf{0}.$

Расчёт, проведенный на ЭВМ, показывает, что это уравнение в рассматриваемой области имеет только два действительных корня при $\omega = \pm \omega 0$ ($\omega_0 = 0,1083$), а S_j(ω) имеют простые полюса в этих точках (рис.1). Отметим, что наличие этих дополнительных полюсов связано только с данной параметризацией и от них можно избавиться путем усложнения параметризации B(ω). Влияние указанных полюсов на низкоэнергетическое поведение ^s -волн можно охарактеризовать их вкладом в длины рассеяния. В соответствии с нормировкой вычетов (9) ρ -мезонный полюс дает доминирующий вклад в ($a_1 - a_3$):

$$(a_1 - a_3)_0 \approx 0,284$$

Вычисляя вычеты $S_{j}(\omega)$ в полюсах при $\omega = \pm \omega_{0}$, получим их вклад в $(a_{1} + 2a_{3})$ и $(a_{1} - a_{3})$: $(a_{1} + 2a_{3})_{\omega_{0}} = -0,0105$, $(a_{1} - a_{3})_{\omega_{0}} = 0,096$.

Вклад σ -мезонного полюса в $(a_1 + 2a_3)$ оказывается очень большим $(a_1 + 2a_3)_{\sigma} \approx 0.99$,

а поскольку $a_1 + 2a_3 = 0$, то его вклад компенсируется вкладом далеких особенностей.

4. Обсуждение результатов

Нами получено хорошее количественное описание энергетического хода s -фаз π N -рассеяния до энергий 260 Мэв в л.с.к. При этом мы получили подтверждение принятой нами картины взаимодействия при низких энергиях. Оказалось, что с помощью ρ - и σ -полюсов, расположенных внутри круга С (рис. 1), можно количественно описать экспериментальные данные. Роль подпороговых полюсов $\pm \omega_0$, существование которых заранее не предполагалось, не является главной, на что указывает малость их вклада в длины рассеяния. Подпороговые полюса могут быть уничтожены с помощью усложнения параметризации функции $\mathbf{B}(\omega)$. Это усложнение можно попытаться провести на основе следующего физического требования; подпороговые полюса моделируют вклады разрезов в s -волнах, возникающие от нуклонного полюса в u-канале.

Полюса, расположенные вне круга С (рис. 1), весьма существенны для понимания s⁽⁺⁾ -волн и дают небольшие (~ 30%) поправки к s⁽⁻⁾ -волнам. Этот результат не противоречит концепции коротковолнового отталкивания.

Литература

- 1. J.Hamilton. Strong Interactions and High Energy Physics 281-369, Oliver and Boyd, Edinbyrgh, 1964.
- 2. Bowcock T., Cottingham W., Lurie D., Nuovo Cim. <u>16</u>, 918 (1960), Phys. Rev.Lett., <u>5</u>, 385 (1962).
- 3. Д.В. Ширков, В.В. Серебряков, В.А. Мещеряков. "Дисперсионные теории сильных взаимодействий при низких энергиях". "Наука", 1967.
- 4. S.Weinberg, Phys. Rev. Lett., <u>17</u>, 616 (1966).
- 5. G. Wanders. Nuovo Cim., 23, 816 (1962).
- б. В.А. Мещеряков. ЖЭТФ. Письма <u>4</u>, 282 (1966).
- 7. D.V. Shirkov, V.V. Serebriyakov. Nucl. Phys., <u>В6</u>, 607 (1968). Д.В. Ширков, В.В. Серебряков. ЯФ, <u>7</u>, 170 (1967).
- 8. В.А. Мешеряков. ЖЭТФ, <u>53</u>, 175, (1967)."
- 9. G.F.Chew, M.L.Golderberger, F.E.Low, Y.Nambu, Phys. Rev., <u>106</u>, 1337 (1957).
- 10. П.С. Исаев, В.А. Мещеряков. ЖЭТФ, <u>43</u>, 1339 (1962).
- 11. J.J. Sakurai. Phys. Rev. Lett., <u>17</u>, 1021 (1966).
- 12.V.K. Samaranayke, W.Woolcock. Phys. Rev. Lett., 15 936 (1966).
- 13.R.A. Donald, W.H. Evans et al. Proc. Phys. Soc., <u>87</u>, 445 (1966).
- 14. H. Anderson, W. Davidon. Nuovo Cim., <u>5</u>, 1238 (1957).
- 15. G. Ferrari et al., Proc. Annual Inter. Conf., CERN p. 230 (1956).
- 16. J. Orear, J. Lord, A. Weaver. Phys. Rev., 93, 575 (1954).
- 17. D. Miller, J. Ring., Phys. Rev., <u>117</u>, 582 (1960).
- 18. G.F.Fisher, E.W.Jenkins. Phys. Rev., 116, 749 (1959).
- S. Barnes, B. Rose. Phys. Rev., <u>117</u>, 226 (1960).
 S. Barnes et al., <u>117</u>, 238 (1960).
- 20. В.Г. Зинов и др. ЖЭТФ, <u>38</u>, 1407 (1960).
- 21. J. Deahl et al. Proc. Annual Inter. Conf. Rochester 1960, p. 185.

14

Рукопись поступила в издательский отдел 15 июля 1970 года.

Puc.5

