5-972 объединенный институт ядерных исследований

HMMEMO

ABOPATOPMS TEOPETMUELKON

Million and

Дубна.

P2-5260

5/x-70

А.П. Бухвостов, В.А. Вартанян, 3. Озевич, Н.П. Попов, Р.А. Эрамжян

АСИММЕТРИЯ ЯДЕР ОТДАЧИ ПРИ ЗАХВАТЕ / - МЕЗОНОВ ЯДРОМ 11 В

1970

P2-5260

\$

А.П. Бухвостов *, В.А. Вартанян **, 3. Озевич ***, Н.П. Попов *, Р.А. Эрамжян

АСИММЕТРИЯ ЯДЕР ОТДАЧИ ПРИ ЗАХВАТЕ *µ*-мезонов ядром ¹¹ в

Направлено в ЯФ

* Физико-технический институт им. А.Ф. Иоффе АН СССР

** Ереванский государственный университет

*** Институт теоретической физики, Вроцлавский университет, Польша

EDALP -

8480/2 up

Изучение элементарного акта захвата *µ* -мезона протоном не дает исчерпывающей информации о константах мюон-пуклонного взаимодействия. В связи с этим возникает необходимость получения дополнительной информации из опытов по захвату *µ*- -мезонов сложными ядрами. В последнее время экспериментаторы проявляют большой интерес к парциальному переходу^{/1,2/}

$$\mu^{-} + {}^{11}B \rightarrow {}^{11}Be + \nu \quad , \tag{1}$$

з котором возбуждается уровень $J^{\pi} = 1/2^{-}$ (E*= 320 кэв) ядра¹¹ Ве. Интерес к нему обусловлен тем фактом, что состояние $1/2^{-}$ является единственным связанным в ядре¹¹ Ве, и поэтому такой переход легко выделить. Однако прежде чем извлекать из результатов такого эксперимента информацию о мюон-нуклонном взаимодействии, необходимо проанализировать возможности теоретического описания указанного перехода. Этому вопросу и посвящена настоящая работа.

Спин основного состояния ядра ¹¹В равен J_i =3/2. Поэтому мезоатомы ¹¹В находятся в одном из двух состояний сверхтонкой структуры: F_± = J_i ±1/2 . Первоначальное заселение уровней нарушается из-за конверсии внутри сверхтонкого дублета.

При исследовании указанного перехода представляют интерес следующие характеристики:

А. Вероятность парциального перехода W(t)

$$W(t) = W_{+} p^{0} \exp(-Rt) + W_{-} (1 - p^{0} \exp(-Rt)),$$
 (2)

где R – скорость конверсии внутри сверхтонкого дублета, а p^0 – первоначальное заселение состояния F $_+$. При $p^0 = \frac{J_1 + 1}{2J_1 + 1} = 5/8$ и R =0 имеем статистическое заселение

$$W_{\text{CTAT.}} = \frac{5}{8} W_{+} + \frac{3}{8} W_{-}$$
 (3)

Б. Отношение вероятности захвата W_+ из состояния F_+ к ве-

$$\eta = \mathbb{W}_{+} / \mathbb{W}_{-} . \tag{4}$$

В. Асимметрия ядра отдачи относительно вектора поляризации *µ* - мезонов

$$\mathbf{W}(\theta) \sim \mathbf{1} + \mathbf{C}(\mathbf{t}) \cos \theta , \qquad (5)$$

где θ есть угол между импульсом ядра отдачи и направлением спина μ -мезона. Если циркулярная поляризация γ -квантов, испускаемых ядром ¹¹ Ве, не регистрируется, то указанная корреляция ^{/3/} является единственно возможной в этом переходе. Коэффициент асимметрии ядра отдачи имеет вид

$$C(t)W(t) = \frac{8}{25} p^{0} \lambda_{+} \exp((-Rt)D + 4\left[\frac{1}{3}(1-p^{0})\lambda_{-} + \frac{1}{5}p^{0}\lambda_{+}(1-\exp((-Rt))E\right],$$

где λ_{\pm} – параметры, определяющие поляризацию мезоатома в состояниях сверхтонкой структуры. Величины **D**, **E**, **W**₊ и **W**₋ выражаются через комбинации констант взаимодействия и ядерных матричных элементов через величины $\mu_{u}(\mathbf{k})$:

$$\mathbf{D} = \frac{1}{10} \left\{ 3\sqrt{5} \,\mu_1(2) - \sqrt{3} \,\mu_2(2) - 4\sqrt{2} \,\mu_2(-3) \right\}^2 \mathbf{F}$$
(6)

$$\mathbf{E} = \frac{1}{6} \{ 4\sqrt{2} \mu_{1} (-1) + \mu_{1}(2) + \sqrt{15} \mu_{2}(2) \}^{2} \mathbf{F}$$

$$\mathbf{W}_{+} = \frac{1}{10} \{ 15 \mu_{1}^{2}(2) + \mu_{2}^{2}(2) + 16 \mu_{2}^{2}(-3) - 2\sqrt{15} \mu_{1}(2) \mu_{2}(2) \} \mathbf{F}$$

$$\mathbf{W}_{-} = \frac{1}{6} \{ 16 \mu_{1}^{2}(-1) + \mu_{1}^{2}(2) + 15 \mu_{2}^{2}(2) + 2\sqrt{15} \mu_{1}(2) \mu_{2}(2) \} \mathbf{F} , \qquad (7)$$

где

$$F = 2(\alpha Z m_{\mu})^{3} q^{2} \left(\frac{Z \Rightarrow \phi}{Z}\right)^{4}.$$
 (8)

Величины $\mu_{u}(k)$ являются функциями констант взаимодействия и ядерных матричных элементов и определены в работе $^{/4/}$. Если пренебречь всеми поправочными матричными элементами (см. классификацию, например, в работе $^{/4/}$), тогда

$$\mu_{1}(2) = -\frac{2\sqrt{3}}{9} G_{p}[101],$$

$$\mu_{1}(-1) = \sqrt{\frac{2}{3}} (\frac{1}{3} G_{p} - G_{A}) [101].$$
(9)

Здесь [101] - гамов-теллеровский матричный элемент, а G_P и G_A комбинации констант мюон-нуклонного взаимодействия. Остальные $\mu_u(\mathbf{k})$ в этом приближении равны нулю. Вклад отброшенных матричных элементов порядка 10% от основного [101]. Поэтому в этом случае, когда необходимо извлекать информацию о константах мюон-нуклонного взаимодействия с большой точностью, их вкладом пренебрегать нельзя.

Для расчёта ядерных матричных элементов использовалась модель оболочек^{/5/}. Вычисления проведены для двух случаев – в промежуточ-

4

ной связи и в предельном случае j-j- связи для иллюстрации чувствительности результатов к параметрам используемой модели.

Результаты расчётов вероятности переходов из состояний сверхтонкой структуры при статистическом заселении и временной зависимости вероятности приведены на рис. 1 и в таблице 1. Под приближением [101] понимается приближение, когда оставлен только этот матричный элемент, причём сам он рассчитан в модели промежуточной связи.

Как следует из приведенных данных, вероятности переходов довольно критичны к параметрам модели. Однако при оптимальных значениях параметров модели промежуточной связи полученные значения жорошо согласуются с экспериментальным

$$W_{3KC\Pi} = 1000 \pm 100 \text{ cek.}^{-1} . \tag{10}$$

В этой связи важно провести сравнение теоретического и экспериментального значения величины В(M1;1/2⁻,3/2→3/2⁻,1/2) в ядре ¹¹В . Расчёт ^{/5/} дает для нее значение 3,66, эксперимент ^{/6/} 11,81±30%. Повидимому, для однозначного вывода желательно провести измерение с большей точностью.

Рассмотрим теперь величину W_+/W_- . В приближении [101] она вообще не зависит от матричных элементов. Однако поправочные матричные элементы здесь очень важны, т.к. в W_+ главный матричный элемент подавлен из-за малой величины константы взаимодействия $^{/4/}$, что и видно при сравнении столбцов 10 и 14 табл. 1.

При изучении асимметрии ядер отдачи, как следует из формулы (4), необходимо знание параметров λ_{\pm} , характеризующих поляризацию мезоатома (или остаточную поляризацию μ -мезона на К-орбите). Эти величины были рассчитаны в работе ^{/7/} в рамках каскадного механизма деполяризации μ -мезона, принимая во внимание сверхтонкое расщепление возбужденных уровней мезоатома. Однако, как следует

Рис. 1. Веродтность захвата W(t), рассчитанная по формуле (2) в модели промежуточной связи.

6

đ
H.
5
Цa

	/0-/	9e/	م-b	J-CB A3b			Промену	TOTER. CI	3 f 3 b		Прибл	ижение	/ioi/	
0 58 8832 3346 0,0066 2,3 3325 1246 0,0007 6,0 4 175 7926 3082 0,0221 25 2992 1137 0,0082 35 0 7 306 7289 2924 0,0420 57 2758 1070 0,0082 35 12 604 5308 0,0505 71 2683 1070 0,0263 89 12 604 6308 2743 0,09568 140 2398 987 0,0565 166 4 7 711 6038 2795 0,0734 107 2521 1012 0,0763 89 4 7 711 6038 2709 0,1178 172 2298 969 0,0748 201 8 7 711 6038 2709 0,1785 253 2092 942 0,0423 129 8 7 7116 6038 <td< th=""><th>6.184</th><th>40/.</th><th>₩+</th><th>Ň</th><th>Wemam</th><th>W+/W-</th><th>₩,</th><th>ЪМ</th><th>Wennam</th><th>M4/W</th><th>t M</th><th>Ä</th><th>Weman</th><th>W/1/M_</th></td<>	6.184	40/.	₩+	Ň	Wemam	W+/W-	₩,	ЪМ	Wennam	M4/W	t M	Ä	Weman	W/1/M_
4 I75 7926 3082 0,0221 25 2992 II37 0,0082 35 0 7 306 7289 2924 0,0420 57 2758 I070 0,0206 73 8 357 7084 2880 0,0420 57 2758 I070 0,0206 73 12 604 6308 2743 0,0956 I40 2398 987 0,0263 89 4 467 6642 2795 0,0734 I07 2521 I012 0,0423 129 8 7 711 6038 2709 0,1178 I72 2298 969 0,0423 129 12 978 5476 2665 0,1785 253 2092 942 0,1207 201		0	28	8832	3348	0,0066	2,3	3325	I248	0,0007	6,0	3219	1211	0,0018
0 7 306 7289 2924 0,0420 57 2758 1070 0,0206 73 8 357 7084 2880 0,0505 71 2683 1050 0,0263 89 12 604 6308 2743 0,0956 140 2398 987 0,0565 166 4 487 6642 2795 0,0734 107 2521 1012 0,0423 129 8 7 711 6038 2709 0,1178 172 2298 969 0,0423 129 12 978 5476 2665 0,1785 253 2092 942 0,1207 289		4	175	7926	3082	0,0221	5	2992	1137	0,0082	35	2860	I094	0,0123
8 357 7084 2880 0,0505 71 2683 I050 0,0263 89 12 604 6308 2743 0,0958 140 2398 987 0,0585 166 4 487 6642 2795 0,0734 I07 2521 1012 0,0423 129 8 7 711 6038 2709 0,1178 172 2298 969 0,0748 129 12 978 5476 2665 0,1785 253 2092 942 0,1207 289	0	2	306	7289	2924	0,0420	57	2758	I070	0,0206	73	2607	I023	0,0280
I2 604 6308 2743 0,0958 I40 2398 987 0,0585 I66 4 487 6642 2795 0,0734 I07 2521 I012 0,0423 129 8 7 711 6038 2709 0,1178 I72 2298 969 0,0748 201 12 978 5476 2665 0,1785 253 2092 942 0,1207 289		80	357	7084	2880	0,0505	12	2683	I050	0,0263	68	2525	I002	0,0351
4 487 6642 2795 0,0734 IO7 2521 IO12 0,0423 I29 8 7 711 6038 2709 0,1178 172 2298 969 0,0748 201 12 978 5476 2665 0,1785 253 2092 942 0,1207 289		21	604	6308	2743	0,0958	04I	2398	987	0,0585	166	2215	935	0,0751
8 7 711 6038 2709 0,1178 172 2298 969 0,0748 201 12 978 5476 2665 0,1785 253 2092 942 0,1207 289	4		487	6642	2795	0,0734	107	252I	IOI2	0,0423	6 2 1	2349	96 I	0,0550
I2 978 5476 2665 0,1785 253 2092 942 0,1207 289	80	2	711	6038	2709	0,1178	I72	2298	696	0,0748	201	2107	9 1 6	0,0955
	12		978	5476	2665	0,1785	253	2092	942	0,1207	289	I88I	886	0,I537

из, на величины λ_+ сильно влияет распределение по орбитальному моменту уровня посадки и -мезона. Поэтому наиболее надежным было бы использование экспериментальных значений λ_+ . Величины λ _± связаны с остаточной поляризацией μ -мезона на К -орбите (P₊) в состояниях F_± следующим образом:

 $\lambda_{+} = \frac{J_{1} + 1}{2J_{+} + 1} P_{+} = \frac{5}{8} P_{+},$

「「「「「「「「「」」」」

 $\lambda_{-} = -\frac{J_{1}}{2J_{+}+1}P_{-} = -\frac{3}{4}P_{-},$

(11)

Используя экспериментальные значения Р _ , приведенные в /2/, получим эксп.

$$\lambda_{+} = 0,04 \pm 0,004,$$

эксп.

$$\lambda_{-} = 0,006 \pm 0,007.$$
(12)

Экспериментальные ошибки λ_+ вносят значительную неопределенность в расчётные значения C(t). В табл. 2 даны значения C(t=0) и C(t=7 мксек), рассчитанные при $p^{0} = 5/8$, R = 3,1·10⁵ сек⁻¹ и λ_{+} =0,04, λ =0,006. Как видно, и в начальный момент времени (t=0) и после завершения конверсии на К -орбите (практически при t =7 мксек) коэффициент асимметрии весьма слабо зависит от констант мюон-нуклонного взаимодействия и параметров ядерной модели. Так что на рис.2 мы приведем кривые C(t), рассчитанные лишь при некоторых значе-

х/ В даны Р_± / Ро, где Ро – поляризация µ -мезона на К-ор-бите бесспинового ядра ¹²С. Величина Ро = За = 0,168, где а -коэффициент асимметрии электронов от распада и -мезонов.

= 3,1.10⁵cex⁻¹ ¥ = 5/8, °d иdп 2 Козффициент корреляции $\mathcal{C}(t)$ Таблица

~

= 0**,**04

0,006. n ~

Приближени [101] 0.04846 0.05075 0.05225 169⁺0[•]0 0.04935 0.04552 0.050I0 7 мсек) Промежуточная 0,05902 0.06032 0<u>0565</u>I 0,0577I 0,05497 0.05973 0.06160 СВЯЗЬ íl C(t -СВЯЗЬ 0.05396 0.05552 0.05999 0.05674 0.05808 0.05882 0.06076 I 7 Приближение [101] 0.0I8I8 0.02100 0.02279 0.01639 0.02026 0.0I945 0.01726 Промежуточная 0.02288 0.01973 0.02049 0.02125 0.02345 0.02226 0.02478 СВЯЗЬ C(t=0)0.02403 0.02189 0.02323 0.02473 0.02635 0.01968 0.02082 CBR3b 1 ī (⁴⁷/₉) 12 8 ¢ 0 ap/ 19/4 0 4 1-21 5 10

ниях констант взаимодействия и в рамках модели оболочек с промежуточной связью. Кривые рис. 2 иллюстрируют влияние, оказываемое на коэффициент C(t) изменением параметров λ _, p^0 и g_p . Параметр λ_{+} положен равным 0,04; при фиксированном значении λ_{-}/λ_{+} , как видно из (6), $C(t) \sim \lambda_{+}$. Интервал изменения λ_{-}/λ_{+} выбран в соответствии со значениями (11) и с результатом работы /7/. Рис. 2 показывает, что асимметрия, помимо значений параметров, довольно сильно зависит от исходного заселения уровней сверхтонкой структуры р 0 . Поэтому при детальном изучении асимметрии ядер отдачи желательно более точное определение этих величин на опыте. Значения величин D и E приведены в табл. З.

Вместе с тем следует обратить внимание на то, что асимметрия сохраняет знак почти при всех допустимых значениях определяющих ее параметров. Из формул (6) и (7) видно, что отрицательная асимметрия возможна лишь при $\lambda_{<}0$ в течение короткого промежутка времени $Rt \leq -\lambda_{\perp}/\lambda_{\perp}$. Согласно оценкам 77, последнее отношение вряд ли может превосходить 0,1. Отсюда при R =3·10⁵ сек⁻¹ имеем t <0,3 мксек. При этом максимальное отрицательное значение С(t) , достигаемое t =0, составляет всего около 1%. при

Заметим, что положительная определенность асимметрии, которая пропорциональна спиральности нейтрино, следует в предположении испускания левого нейтрино в реакции и -захвата.

Проведенный анализ перехода показал, что рассмотренный переход может дать дополнительную информацию в случае измерения величин ₩_/₩_ или С(t) . Однако малость обеих величин потребует более тщательного их измерения.

В заключение авторы выражают благодарность Ю. Салганику за помощь в численных расчётах, а также Л. Гренаксу за сообщение предварительных результатов измерений.

Литература

- 1. J.P. Deutsch, L. Grenacs, J. Lehmann, P. Lipnik, P.C. Macq. Phys.Lett., <u>28B</u>, 178 (1968).
- 2. L. Grenacs et al. Progress report on SC16 experiment, CERN, 1969.
- 3. А.П. Бухвостов, Н.П. Попов. Nucl. Phys., A147, 385 (1970).
- 4. В.В. Балашов, Р.А. Эрамжян. Atoimic Energy Rewiev 5, 3 (1967).
- 5. В.А. Вартанян, Т.А. Дмитриева, Г.-У. Егер, Г.Р. Киссенер, Р.А. Эрамжян. ЯФ <u>11</u>, 528 (1970).
- 6. R.D. Edge, G.A. Peterson. Phys. Rev., <u>128</u>, 2750 (1962).
- 7. А.П. Бухвостов. ЯФ 9, 107 (1969).

Рукопись поступила в издательский отдел 15 июля 1970 года,

1. $\mathbf{p}^{0} = 5/8$, $\mathbf{g}_{\mathbf{P}} / \mathbf{g}_{\mathbf{A}} \approx 7$ 2. $\mathbf{p}^{0} = 0.8$, $\mathbf{g}_{\mathbf{P}} / \mathbf{g}_{\mathbf{A}} = 7$ 3. $\mathbf{p}^{0} = 5/8$, $\mathbf{g}_{\mathbf{P}} / \mathbf{g}_{\mathbf{A}} = 7$ 4. $\mathbf{p}^{0} = 5/8$, $\mathbf{g}_{\mathbf{P}} / \mathbf{g}_{\mathbf{A}} = 7$ 5. $\mathbf{p}^{0} = 5/8$, $\mathbf{g}_{\mathbf{P}} / \mathbf{g}_{\mathbf{A}} = 7$ 5. $\mathbf{p}^{0} = 5/8$, $\mathbf{g}_{\mathbf{P}} / \mathbf{g}_{\mathbf{A}} = 0$ 5. $\mathbf{p}^{0} = 5/8$, $\mathbf{g}_{\mathbf{P}} / \mathbf{g}_{\mathbf{A}} = 0$ 5. $\mathbf{p}^{0} = 5/8$, $\mathbf{g}_{\mathbf{P}} / \mathbf{g}_{\mathbf{A}} = 0$ 5. $\mathbf{p}^{0} = 5/8$, $\mathbf{g}_{\mathbf{P}} / \mathbf{g}_{\mathbf{A}} = 0$

12

. 13

1 - промежуточная связь

2 - приближение [101]