

P2 - 4515

Р.П.Зайков

ЛАГРАНЖЕВ ФОРМАЛИЗМ ДЛЯ ПОЛЕЙ ПОЛУЦЕЛОГО СПИНА БЕЗ ДОПОЛНИТЕЛЬНЫХ УСЛОВИЙ

7935/, np.

Объединелани институт внерних васпедовалой БИЕ-ЛИСТЕЧА

1. В ведение

В последнее время привлекает к себе внимание теория бесконечнокомпонентных (б.к.) полей $^{(1,2)}$. Это теория одновременно описывает частицы с произвольным целым или полуцелым спином, однако она не лишена недостатков. Например, когда массовый спектр является не полностью вырожденным, нарушается условие локальности $^{(3,4,5)}$. Совместное описание частиц с разными спинами можно осуществить и посредством конечно-компонентных (к.к) полей. Из-за того, что эти поля преобразуются по неунитарным представлениям группы $SL(2,C)^{/6/}$, соответствующие динамические переменные, такие как оператор энергии, заряда и т.д. не имеют правильного спектра. То же самое относится и к бесконечно компонентным полям, которые преобразуются по неунитарным представлениям группы SL(2,C). В тех случаях, когда имеем дело с к.к. полями, путем наложения дополнительных условий (д.у) отбрасываются низшие спиновые состояния, что гарантирует правильный спектр динамических переменных.

Конечно-компонентные теории без наложения д.у. обсуждались в /4,5/, где было показано, что они являются локальными. В /7/ построен лагранжев формализм для тензорных полей без д.у.

В настоящей работе мы построили лагранжев формализм полей полуцелого спина как для к.к. полей, так и для б.к. полей (которые преобразуются по неунитарным представлениям группы SL(2,C)) без отбрасывания спинов. Из этого формализма следует, что динамические переменные имеют правильный спектр. Мы строим этот формализм таким образом, что одновременно рассматриваем, как к.к. поля, так и б.к.

Как и в работе ^{/7/}, здесь мы существенно используем операторы проектирования на состояния определенного спина ^s. При помощи этих операторов поле $\Psi(x)$ разлагается на поля определенного спина $\Psi_s(x)$. Эти поля $\Psi_s(x)$ преобразуются по неприводимым представлениям (m_s,s) группы Пуанкаре, где m_s -масса поля $\Psi_s(x)$. Массы m_s можно выбрать произвольным образом. В случае к.к. полей теория является локальной независимо от выбора массового спектра . В этом состоит ее отличие от бесконечно-компонентных теорий, где, согласно ^{/3/}, поля с массовыми спектрами являются нелокальными ^{/4},5/.

Свободный лагранжиан выбираем в виде суммы свободных лагранжианов для полей $\Psi_{s}(x)$ с подходящим выбранным знаком. При этом рассматриваются только такие лагранжианы, которые приводят к уравнениям первого порядка. Лагранжиан является нелокальным относительно поля $\Psi(x)$ из-за нелокальности операторы проектирования.

В §2 обсуждаются спинорные поля и проекционные операторы

В §З обсуждаются уравнения первого порядка для поля $\Psi_{s}(x)$, инвариантные относительно группы Пуанкаре. При этом массовый спектр можно закладывать произвольным образом.

В §4 строится Лагранжев формализм. При этом оператор энергий имеет правильный спектр. Получены коммутационные соотношения для полей. Они согласуются с результатами работ ^{/4,5/}. Для к.к. полей формализм оказывается каноническим. Получены уравнения движения в гейзенберговской форме.

И, наконец, в §5 обсуждаются взаимодействия поля $\Psi(\mathbf{x})$ с тензорными полями с прямой связью. Обсуждаются возможные тензорные величины, которые получаются из поля $\Psi(\mathbf{x})$. Дан общий вид функции распространения поля $\Psi(\mathbf{x})$. Для взаимодействующих к.к. полей $\Psi(\mathbf{x})$ проверена локальная коммутативность с точностью до членов второго порядка по константе взаимодействия.

2. Спинорные представления группы SL(2, C) и операторы проектирования на состояния спина s

Мы ограничимся рассмотрением только полей полуцелого спина, удовлетворяющих уравнениям первого порядка. Кроме того потребуем, чтобы теория являлась инвариантной относительно пространственных отражений. В этом случае поле должно преобразовываться по прямой сумме неприводимых представлений группы SL(2,C) ^{/6/}, т.е. по неприводимому представлению полной группы Лоренца

где

И

 $\tau \bigoplus \tau',$ $\tau = [1/2, \ell_1]$

 $\tau' = [-1/2, \ell].$

(2.1)

Для обозначения неприводимых представлений группы SL(2, C) будем применять обозначения Гельфанда ^{/6/}.

Для конечномерных представлений SL(2,C) можно положить $l_1=n+3/2$ и $n \ge 0$. При n=0 представление (2.1) совпадает с обычными дираковскими спинорами.

Нам кажется удобнее реализовать эти представления в базисе однородной функции ^{/9/}. Посредством этого базиса нам удается построить единым образом как к.к. теорию, так б.к. теорию. В этом базисе пространство представлений D_r, $r = [l_0, l_1]$ реализуется на однородных функциях комплексного SL (2, C) спинора (z₁, z₂).

$$\phi(\lambda z_{1}, \lambda z_{2}) = \lambda^{\nu_{1}} \lambda^{-\nu_{2}} \phi(z_{1}, z_{2}), \qquad (2.2)$$

где степени однородности $\nu_1 = \ell_1 + \ell_0 - 1$ и $\nu_2 = \ell_1 - \ell_0 - 1$. В случае, когда имеем дело с конечномерными представлениями группы SL(2, C), мы рассматриваем подпространства E_r пространства D_r , которые состоят из однородных полиномов, степени однородности ν_1 , ν_2 . Двухкомпонентные паулиевские спиноры $\phi(x)$ и $\chi(x)$ в этом базисе представляются как

$$\phi(\mathbf{x}, \mathbf{z}) = \sum_{a=1}^{2} \phi^{a} (\mathbf{x}) \mathbf{z}_{a}$$
$$\chi(\mathbf{x}, \mathbf{z}) = \sum_{b,c=1}^{2} \chi_{b} c^{b} \mathbf{z}_{c}$$

где

$$\epsilon = \mathbf{i}\sigma_2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$$

Удобно представить спиноры ϕ и χ , которые преобразуются по представлениям τ и τ' как один би –спинор.

$$\Psi(\mathbf{x},\mathbf{z}) = \begin{pmatrix} \phi(\mathbf{x},\mathbf{z}) \\ \chi(\mathbf{x},\mathbf{z}) \end{pmatrix}$$
(2.4)

(2.3)

При преобразовании из группы SL(2, C) $\Psi(x, z)$ преобразуется как

$$[V(A)\Psi](x,z) = \Psi(x,zA), \qquad (2.5)$$

где V(A) – представление группы SL(2, C) , а A – комплексная матрица второго порядка с определителем 1 , связанная с преобразованиями Лоренца следующим образом:

$$\Lambda^{\mu} \sigma^{\nu} = A \sigma^{\mu} A^{*}.$$

Оператор пространственного отражения можно представить как /1/

$$V(I_{s}) = \begin{pmatrix} 0 & \theta & (I_{s}) \\ \theta & 0 \end{pmatrix}, \qquad (2.6)$$

где

$$\theta(\mathbf{I}_{s}) = \exp\{\mathbf{i} \frac{\pi}{2} (\overline{z} \epsilon^{-1} \frac{\partial}{\partial z} + \overline{z} \epsilon \frac{\partial}{\partial z})\}.$$

Поскольку эти представления являются неунитарными, для них не существует скалярное произведение ^{/9/}, но для представления r⊕r' существует инвариантная билинейная эрмитовая форма:

 $\{\Psi(x), \Psi(x)\} = \int \Psi^{*}(x, z_{p}z_{2}) G(z_{p}z_{2}, w_{p}w_{2}) \Psi(x, w_{p}w_{2}) d^{2}z_{1} d^{2}z_{2} d^{2}w_{1} d^{2}w_{2}$ (2.7)

Здесь

$$G(\mathbf{z}_{\mathbf{r}}\mathbf{z}_{2}; \mathbf{w}_{1}, \mathbf{w}_{2}) = \begin{pmatrix} 0 & g^{[\tau'\tau]} \\ 0 & g^{[\tau\tau']} \\ g^{[\tau\tau']} & 0 \end{pmatrix} (\overline{\tau} = \tau').$$

Для конечномерных представлений g можно представить в виде /10/

$$g^{[\ r,r]} = \frac{1}{\nu_{1} \nu_{2}! \kappa_{m} m^{2}} \frac{\sum_{k,m=0}^{\nu_{1} \nu_{2}} \frac{(-1)^{k+m}}{k! (\nu_{1}-k)! m! (\nu_{2}-m)!} \times \delta^{(k,m)} (z_{1}, \overline{z}_{1}) \delta^{(\nu_{1}-k, \nu_{2}-m)} (z_{2}, \overline{z}_{2}) \times (2.8)$$

$$\times \delta^{(\nu_{1}-k, \nu_{2}-m)} (w_{1}, \overline{w_{1}}) \delta^{(k,m)} (w_{2}, \overline{w}_{2}),$$

здесь

$$\delta^{(k,m)}(x,y) = \frac{d^k}{\partial x^k} \delta(x) \frac{d^m}{\partial y^m} \delta(y).$$

Для бесконечномерных представлений имеем, согласно /9/,

$$g^{\begin{bmatrix} \tau & \tau \end{bmatrix}} = (\frac{i}{2})^{2} (z_{1}w_{2} - z_{2}w_{1})^{-\ell_{1} - \frac{1}{2}} (z_{1}w_{2} - z_{2}w_{1})^{-\ell_{1} + \frac{1}{2}}.$$
(2.9)

Как легко можно проверить, форма (2.7) для дираковского спинора $\Psi(\mathbf{x},\mathbf{z})$ дает:

$$\{\Psi(x) \ \chi(x)\} = \phi^{a}(x) \ \chi_{a}(x) + \chi^{a}(x)\phi_{a}(x).$$

Для представлений (2.1) существуют операторы Γ^{μ} , обладающие следующими трансформационными свойствами /1,6/:

$$V(A) \Gamma^{\mu} V^{-1}(Z) = \Lambda | (A)^{\mu}_{\nu} \Gamma^{\nu},$$

$$V(I_{s}) \Gamma^{\mu} V^{-1}(I_{s}) = g^{\mu\mu} \Gamma^{\mu}.$$
(2.10)

В базисе однородных функций операторы Γ^{μ} можно представить как $^{/1/}$

$$\Gamma^{\mu} = \begin{pmatrix} 0 & g^{\mu\mu} z \sigma_{\mu} \epsilon \frac{\partial}{\partial \overline{z}} \\ z \epsilon^{-1} \sigma^{\mu} \frac{\partial}{\partial \overline{z}} & 0 \end{pmatrix} \qquad (2.11)$$

Посредством этих операторов можно построить инвариантное уравнение первого порядка /6/

$$(i \Gamma^{\mu} \partial_{\mu} - \kappa) \Psi(x; z) = 0.$$
(2.12)

В случае, когда n = 0 , уравнение (12.12) совпадает с уравнением Дирака.

Представления группы Пуанкаре, в которые неприводимые представления $\tau \oplus \tau'$ входят как представления ее подгруппы SL(2, C), являются вообще приводимыми. Они разлагаются на представления со спином s = 1/2,3/2... n + 1/2, когда τ конечномерное и s = 1/2,3/2,... когда τ – бесконечномерное представление. Разложение этого представления на неприводимые представления группы Пуанкаре можно выполнить при помощи проекционных операторов на состояния со спином s

$$\Psi_{s}(\mathbf{x};\mathbf{z}) = \{ \Pi_{s}(\frac{\partial}{\partial \mathbf{x}^{\mu}};\mathbf{z}) \Psi(\mathbf{x}) \} (s = 1/2, 3/2, \dots)$$
(2.13)

Здесь { } означают эрмитовую форму (2.7) и

$$\Pi_{s}\left(\frac{\partial}{\partial x^{\mu}}; z, w\right) = \begin{pmatrix} 0 & K_{s}^{\left[\pi^{\prime}\right]}\left(\frac{\partial}{\partial x^{\mu}}; z, w\right) \\ K_{s}^{\left[\tau^{\prime}\tau^{\prime}\right]}\left(\frac{\partial}{\partial x^{\mu}}; z, w\right) & 0 \end{pmatrix}$$
(2.14)

Явный вид операторов K_s был получен в работе ^{/4/} для произвольного неприводимого представления группы SL (2,C). Его мы приводим в Приложении.

При преобразовании из группы Пуанкаре операторы поля $\Psi_{s}\left(\mathbf{x};\mathbf{z}
ight)$ преобразуются как

$$U(a, A) \Psi_{s}(x; z) U^{-1}(a, A) = \Psi_{s}(A x + a; z A).$$
 (2.15)

3. Уравнения для частицы определенного спина

Уравнение (2.12) можно заменить на систему уравнений

$$(i \Gamma^{\mu} \partial_{\mu} - \kappa_{s}) \Psi_{s} (x; z) = 0 (s = \frac{1}{2} + \cdots).$$
(3.1)

Здесь к_в -реальная константа, имеющая размерность обратной длины. Эти уравнения являются инвариантными относительно группы Пуанкаре. Массовый спектр, соответствующий системе (3.1), имеет вид:

$$m_s = \frac{\kappa_s}{s + \frac{1}{2}}$$
 (3.2)

Если к_в с возрастает быстрее, чем линейно, то, согласно (3.2), следует, что массы частиц растут вместе с ростом спина.

Решения уравнений (3.1) можно представить в виде разложений по операторам рождения и уничтожения

$$\Psi_{s}(x; z) = \frac{1}{\sqrt{(2\pi)^{3}}} \int \frac{d^{3}p}{p^{0}} \frac{m_{s}}{\sqrt{\kappa_{s}}} \sum_{\zeta=-s}^{s} (a_{s\zeta}(\vec{p})e^{-ipx} u_{s\zeta}(\vec{p}; z) + b_{s\zeta}^{*}(p)e^{ipx} v_{s\zeta}(\vec{p}; z)). \quad (3.3)$$

Здесь $p^0 = \omega_{\vec{p}}^{(s)}, \omega_{\vec{p}}^{(s)} = \sqrt{m_s^2 + \vec{p}^2}$, что соответствует тому, что уравнения (3.1) имеют ненулевые решения только тогда, когда $m_s^2 = p^2$ /6/, и $u_{s\zeta}(\vec{p};z) v_s \langle \vec{p};z \rangle$ являются нормированными решениями уравнения (3.1) с положительной и отрицательной энергией, которые одновременно являются собственными функциями оператора спина и его третьей проекимей с собственными значениями s и ζ (рассматриваем только решения уравнения (3.1) с $p^2 > 0$). Для этих спиноров используем нормировку /1/

Для операторов а _{в ζ} и b _{в ζ} принимаем обычные антикоммутационные соотношения

$$[a_{s\zeta}(\vec{p}), a_{s'\zeta'}(\vec{q})]_{+} = [b_{s\zeta}(\vec{p}), b_{s'\zeta'}(\vec{q})]_{+} = \omega_{\vec{p}}^{(s)} \delta_{ss}, \delta_{\zeta\zeta'} \delta(\vec{p} - \vec{q}).$$

$$(3.5)$$

Остальные равны 0. Имея в виду условие полноты операторов проектирования, получаем:

$$\Psi(x; z) = \sum_{s=1/2} \Psi_s(x; z).$$
 (3.6)

4. Лагранжев формализм свободного поля

Лагранжиан, из которого получаются уравнения (3.1) и для которого спектр энергии для обсуждаемых нами полей является положительно определенным, можно выбрать в виде:

$$\mathscr{L}(\mathbf{x}) = \sum_{s=1/2} (-1)^{s-1/2} (\mathbf{i} : \{\Psi_s(\mathbf{x}) \Gamma^{\mu} \partial_{\mu} \Psi_s(\mathbf{x})\} : -\kappa_s : \{\Psi_s(\mathbf{x}) \Psi_s(\mathbf{x})\} :), \quad (4.1)$$

где :: - знак нормального произведения.

Варьируя этот лагранжиан и учитывая при этом полноту проекционных операторов, получаем

$$\sum_{s=1/2}^{\sum (-1)} (i \Gamma^{\mu} \partial_{\mu} - \kappa_{s}) \Psi_{s}(x) = 0.$$
 (4.2)

Применяя к уравнениям (4.2) операторы проектирования П_s, имея в виду, что П_s коммутирует с оператором $\Gamma^{\mu}\partial_{\mu}$, получаем уравнения (3.1). Используя теорему Нётера из лагранжиана (4.1) при учете уравнения (3.1), получаем тензор энергий-импульса и 4-вектор тока:

$$T^{\mu\nu}(x) = \sum_{s=1/2} (-1)^{s-1/2} i : \{\Psi_s(x)\Gamma^{\mu} \partial^{\mu}\Psi_s(x)\}:$$
(4.3)

и

$$J^{\mu}(x) = e \sum_{s=1/2}^{s-1/2} (-1)^{s-1/2} : \{ \Psi_{s}(x) \Gamma^{\mu} \Psi_{s}(x) \} :$$
(4.4)

Из (4.3) и (4.4) получаем операторы энергии-импульса и тока, которые сохраняются:

$$P^{\mu} = \int d^{3}x T^{0\mu}(x) = \sum_{s=1/2} \int_{p^{0}=\omega} \frac{d^{3}p}{p^{0}} p^{\mu} \sum_{\zeta=-s}^{s} (a_{s\zeta}^{*}(\vec{p}) a_{s\zeta}(\vec{p}) + b_{s\zeta}^{*}(\vec{p}) b_{s\zeta}(\vec{p})) (4.5)$$

И

$$Q = \int d^{3}x J^{0}(x) = e \sum_{\substack{s=1/2\\p^{0}=\omega(s)\\p}} \int \frac{d^{3}p}{p^{0}} \sum_{\zeta=-s}^{s} (b^{*}_{s\zeta}(\vec{p})b_{s\zeta}(\vec{p}) - a^{*}_{s\zeta}(\vec{p})a_{s\zeta}(\vec{p})). \quad (4.6)$$

При этом мы в (4.3) и (4.4) подставили разложение (3.3). При получении (4.5) и (4.6) мы воспользовались также условиями нормировки (3.4).

Выражение для оператора энергий (4.5) показывает, что его спектр является положительно определенным.

Из (4.3) следует, что величины:

$$\pi_{s}(x,z) = i(-1)^{s-1/2} \int \Psi_{s}^{*}(x;w) G(w,z) d^{2}w_{1} d^{2}w_{2}$$
(s = 1/2,...)
(4.7)

можно рассматривать как канонически сопряженные импульсы к полям $\Psi_s(\mathbf{x};\mathbf{z})$.

Из (3.6), используя антикоммутаторные соотношения (3.5), получаем

$$[\Psi(x; z), \Psi^{*}(y, w)]_{+} = i \Sigma (-1)^{s-1/2} R_{s}(-i \partial^{\mu}; z, w) \Delta(x, y, m_{s}^{2})$$
(4.8)

И

$$\left[\pi_{s}(x;z),\Psi(y;w)\right]_{+}=i(-1)^{s-1/2} R_{s} \tilde{\Gamma}^{0} \Delta(x-y;m_{s}).$$
(4.9)

Здесь $\Delta(x;m_s)$ - обычная функция Паули-Йордана для скалярного поля с массой m_s . Обозначение Γ^0 показывает, что оператор Γ^0 действует на переменные z, содержащиеся в R_s .

Используя результаты /4/, имеем:

$$R_{s} = \sum_{\zeta = -s}^{s} u_{s\zeta} (p; z) u_{s\zeta}^{*} (p; w) = \begin{pmatrix} K_{s}^{[\tau', \tau]} (p; z w) & K_{s}^{[\tau, \tau]} (p; z, w) \\ K_{s}^{[\tau', \tau']} (p; z, w) & K_{s}^{[\tau, \tau']} (p; z, w) \end{pmatrix}$$
(4.10)

Здесь

$$\tilde{K}_{s} = K_{s} (p^{2} = m_{s}^{2}).$$

Явный вид операторов К дан в Приложении.

Из-за того, что для к.к. полей в оператор R_s входят производные только конечного порядка, антикоммутационные соотношения являются локальными. Это не так для б.к. полей /4.5'. Подставляя в (4.8) и (4.9) $x^0 = y^0$, в правой части получаем пространственную дельта-функцию и ее производные, коэффициенты перед которыми являются ограниченными. Для к.к. полей встречаются производные только конечного порядка. Согласно /9/, в этом случае формализм являются каноническим.

Из (3.6) и (4.5) следует, что поле Ψ(x;z) удовлетворяет гейзенберговским уравнения движения

$$i[P^{\mu}, \Psi(x; z)] = i \frac{\partial \Psi(x, z)}{\partial x_{\mu}}$$
 (4.11)

Они показывают, что оператор энергии-импульса действительно является генератором пространственно-временных сдвигов.

5. Взаимодействующие поля

Здесь мы обсудим некоторые воэможные взаимодействия к.к. полей полуцелого спина с тензорными полями, для которых сохраняется условие локальной коммутативности. При этом мы ограничиваемся только взаимодействиями прямой связи. Подобное рассмотрение делалось в работе /10/.

Будем рассматривать лагранжианы взаимодействия, инвариантные относительно группы SL(2,C)

$$\mathcal{L}_{int}(\mathbf{x}) = f \{ \Psi(\mathbf{x}) 0^{\mu_1 \cdots \mu_2} \Psi(\mathbf{x}) \} \Phi_{\mu_1 \cdots \mu_2}(\mathbf{x}).$$
 (5.1)

Здесь f -константа взаимодействия, а 0^{µ1 ··· µ2} - симметрический тензор, построенный из операторов Г^µ . Максимальный ранг к тензора 0^{µ1 ··· µk} , при котором его компоненты являются независимым, определяется представлениями группы SL(2,C) . Например, для дираковского представления k = 1 . Можно показать, что максимальное значение k для представления [1/2, n +3/2]⊕[-1/2, n +3/2] равно 2n + 1 . Для этого

нужно использовать явный вид операторов Γ^{μ} и базисные векторы пространства Е $_{\kappa}$ /1/.

Уравнения, которые получаются из лагранжиана (4.1) при включении взаимодействия (5.2), имеют вид:

$$\sum_{s=1/2}^{n+1/2} (i\Gamma^{\mu}\partial_{\mu} -\kappa_{s})\Psi_{s}(x;z) = -f 0^{\mu} \Psi(x;z)\Phi_{\mu_{1}\cdots\mu_{\ell}}(x)$$
(5.2)

Уравнения для тензорного поля обсуждались в работе /7/.

Используя проекционные операторы П_в, из уравнения (5.2) получаем:

$$(i\Gamma {}^{\mu}\partial_{\mu} - \kappa_{s})\Psi_{s}(x;z) = -(-1) {}^{s-1/2}f \{\Pi_{s} 0 {}^{\mu}I^{\dots\mu} \ell \Psi(x) \Phi_{\mu}I^{\dots\mu} \ell \ell(x)\}$$

$$(s=1/2...n+1/2).$$

Если

$$\{\Pi_{s}(\partial ; z, w) 0^{\mu_{1} \cdots \mu_{\ell}} \Psi(x; z, w) \Phi_{\mu_{1} \cdots \mu_{\ell}}(x)\} \neq 0$$
(5.3)

для s = 1/2,..., n + 1/2, тогда уравнение ни для одной $\Psi_s(x;z)$ не является свободным и, кроме того, согласно (5.3), они зацепляются.

Решение уравнения (5.3) можно представить как

$$\Psi_{s}(\mathbf{x};\mathbf{z}) = \Psi_{s}^{\text{out}}(\mathbf{x};\mathbf{z}) + \mathbf{f} \int \mathbf{d}^{4}\mathbf{x}' \Delta_{R}(\mathbf{x} - \mathbf{x}'; \mathbf{m}_{s}) \times \\ \times \{ \mathbf{R}_{s}(\partial_{\mathbf{x}'}; \mathbf{z}, \mathbf{w}) \mathbf{0}^{\mu_{1} \cdots \mu_{\ell}} \Psi(\mathbf{x}'; \mathbf{w}) \Phi_{\mu_{1}} \cdots \mu_{\ell} (\mathbf{x}') \}.$$
(5.4)

Здесь $\Delta_{_{\mathrm{R}}}(x;m_{_{\mathrm{s}}})$ - запаздывающая функция скалярного поля с мас-сой m_.

Используя представления (5.4), мы можем получить коммутационные соотношения для взаимодействующих полей Ψ_s в виде разложения по константе взаимодействия f

$$[\Psi_{s}(x;z), \Psi_{s}^{*}, (y;w)] = [\Psi_{s}^{out}(x;z), \Psi_{s}^{*}, (y;w)]_{+} = [\Psi_{s}^{out}(x;z), \Psi_{s}^{*}, (y;$$

$$+ f A (x, y; z, w) + ...$$

Принимая для Ψ_{g}^{out} - коммутационные соотношения для свободных полей, имеем:

(5.5)

$$A_{ss'}(x, y; z, w) = i \delta_{ss'}(-1) \qquad \int d^4 x' [\Delta_R (x - x', m_s) \times$$

$$\times \{ R_{s} (\partial_{x'}^{\mu}; z, w') 0 \overset{\mu_{1} \cdots \mu_{\ell}}{\longrightarrow} \Phi_{\mu_{1} \cdots \mu_{\ell}} (x') R_{s} (\partial_{x}^{\mu}; w', w) \} \Delta(x' - y; m_{s}) + \Delta_{R} (y - x'; m_{s}) \times (5.6)$$

 $\times \{\mathbf{R}_{s}(\partial_{x'}^{\mu}, \mathbf{w}, \mathbf{w'})\mathbf{0}^{\mu_{1}\cdots\mu_{\ell}} \quad \Phi_{\mu_{1}\cdots\mu_{\ell}}(\mathbf{x'})\mathbf{R}_{s}(\partial_{x'}^{\mu}; \mathbf{w'}, \mathbf{z'})\} \Delta (\mathbf{x} - \mathbf{x'}; \mathbf{m}_{s})\}.$

Оператор R_s для к.к. полей содержит пространственно-временные производные только конечного порядка и поэтому A_s является локальным.

Складывая (5.5) для s = 1/2, ..., n + 1/2, получаем коммутационные соотношения для поля $\Psi(x;z)$. Функцию распространения поля $\Psi(x;z)$ можно выразить через двухточечную функцию этого поля

$$S_{o}(x-y;z,w) = i < 0 | T(\Psi(x;z)\Psi^{*}(y;w)) | 0 > =$$

= $i \Theta(x^{0}-y^{0}) < 0 | \Psi(x;z)\Psi^{*}(y;w) | 0 > + \Theta(y^{0}-x^{0}) < 0 | \Psi^{*}(y;w)\Psi(x;z)) | 0 >. (5.7)$

Используя полученные в /4/ представления двухточечных функций, получаем:

$$S_{c}(x-y;z,w) = \sum_{s=1/2}^{\infty} \frac{(-1)^{s-1/2}}{(2\pi)^{4}} \int d^{4}p \qquad \frac{R_{s}(p^{\mu};z,w)e^{-ip(x-y)}}{p^{2} - m_{s}^{2} - i\epsilon}$$
(5.8)

При получении (5.8) и (5.7) мы отбросили все контактные члены, которые получаются при коммутации Θ-функции с операторами R .

Из (5.8) следует, что при n>0 теория является неперенормируемой.

Автор выражает глубокую благодарность Д.И. Блохинцеву, И.Т. Тодорову, Х.Я. Христову и Д.Ц. Стоянову за интерес к работе и ценные указания, а также К.В. Рериху за помошь при оформлении работы.

Приложение

Для построения операторов проектирования Π_s и операторов R_s , посредством которых выражаются коммутационные соотношения, нам необходим явный вид операторов K_s . Эти операторы были получены в работе ^{/4/}. Для рассматриваемых нами представлений они имеют вид:

$$K_{s}^{[\tau\tau]} (\underline{p}; z, w) = (z \epsilon w) L_{s}^{(1,0)} (\underline{p}; z, w)$$

$$K_{s}^{[\tau'\tau]} (\underline{p}; z, w) = (\overline{z \epsilon w}) L_{s}^{(1,0)} (\underline{p}; z, w)$$

$$K_{s}^{[\tau\tau']} (\underline{p}; z, w) = (z \underline{n} \overline{w}) L_{s}^{(0,1)} (\underline{p}; z, w)$$

$$K_{s}^{[\tau'\tau]} (p; z, w) = (w \underline{n} \overline{z}) L_{s}^{(0,1)} (\underline{p}; z, w),$$

$$(\Pi.1)$$

где

$$L_{s}^{(1,0)}(\underline{p}; z, w) = (z \ \underline{n} \overline{z}) \begin{pmatrix} \ell_{1} - 3/2 & \ell_{1} - 3/2 & (1,0) \\ (w \ \underline{n} \ \overline{w}) & P_{s-1/2} & (\cos \theta) \\ L_{s}^{(0,1)}(\underline{p}; z, w) = (z \ \underline{n} \ \overline{z}) & \ell_{1} - 3/2 & (w \ \underline{w} \ \overline{w}) & P_{s-1/2} & (\cos \theta) \\ (w \ \underline{n} \ \overline{w}) & P_{s-1/2} & (\cos \theta) \\ \end{pmatrix}$$

Здесь $P_k^{(\alpha,\beta)}$ (x) – полиномы Якоби, а p^{μ} 2 | z ϵw |²

$$n_{\approx} = \frac{p^{\mu}}{\sqrt{p^2}} \sigma_{\mu} \quad ; \qquad \cos\theta = 1 - \frac{2|z \ \epsilon w|}{(z \ \underline{n} \ \overline{z}) (w \ \underline{n} \ \overline{w})}$$

Переход в х -представление делается посредством замены

 $p^{\mu} = -i \frac{\partial}{\partial x_{\mu}}.$

Литература

1. D.Tz.Stoyanov and I.T.Todorov. Jorn. Math. Phys., 9, 2146 (1968).

И.Т. Тодоров. Статья в сборнике "Вопросы теории элементарных частиц", Дубна (1968).

2. G.Feldman and P.T.Mattews , Ann. Phys., <u>40</u>, 19 (1966). Дао Вонг Дык, Нгуен Ван Хьеу. Ядерная физика 6, 186, (1967).

3. I.T.Grodsky and R.F.Streater. Phys. Rev.Letters 20, 695 (1968).

- 4. I.T.Todorov and R.P., Zaikov. ICTP Trieste Internal report IC/68/50 (1968).
- 5. H.D.I. Abarbanel and Frisham. Stanford preprint SLAC-PUB-390 (1968).
- 6. И.М. Гельфанд, Р.А. Минлос и З.Я. Шапиро. "Представления группы вращений и группы Лоренца". Физматгиз, Москва (1958).

7. Р.П. Зайков. Сообщение ОИЯИ Р-4301, Дубна 1969.

8. Д.И. Блохинцев. ЖЭТФ, <u>17</u>, 545 (1947).

- 9. И.М. Гельфанд, М.И. Граев, Н.Я. Виленкин. Обобщение функций т.5. • Физматгиз, Москва (1962).
- 10. Х.Я. Христов и др. в сборнике "Вопросы теорий элементарных частиц", Дубна (1968).
- 11. G.Källen, University of Lund, Lund, preprint (1968).
- 12. W.Bierter and K.W.Bitar. Nuovo Cim., <u>60</u>, 22 (1968).

Рукопись поступила в издательский отдел 30 мая 1969 года.