4410

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

AS MASSING MARKING

12.22

Дубна.

P2 - 4410

Экя. чит. вала

аборатория теоретической онзики

1969

М.И.Широков

О КОРПУСКУЛЯРНОЙ ИНТЕРПРЕТАЦИИ МОДЕЛИ ВАН КАМПЕНА

P2 - 4410

1

М.И.Широков

О КОРПУСКУЛЯРНОЙ ИНТЕРПРЕТАЦИИ МОДЕЛИ ВАН КАМПЕНА

Направлено в Nuclear Physics

Введение

Модель Ван Кампена близка к квантовой электродинамике одной заряженной частицы. Частица модели находится в осцилляторной яме и взаимодействует с квантованным электромагнитным полем, причем только дипольно ^{/1/}. Ее можно называть электроном, если подразумевать нерелятивистский бесспиновый электрон. "Математический", "голый" вакуум Ω₀ и физический Ω в этой модели не совпадают.

4 6 L. 19 19 19 19

Все задачи модели можно решить точно, в частности, следующую: возбужденный электрон переходит на основной уровень, испуская фотон. Найти вероятность высбечивания как функцию времени.

Обычно для описания возбужденного электрона и испущенного фотона используются собственные функции свободного гамильтониана H₀ ("голые состояния"). В первом разделе этой работы обсуждается неудовлетворительность такой постановки задачи с физической точки эрения. Обосновывается необходимость следующего подхода к полевым теориям в случае Ω ≠ Ω₀.

Первой задачей теории взаимодействующих полей является представление операторов полей A(x) через такие операторы рождения – уничтожения, вакуум которых совпадает с физическим вакуумом (определяемым как собственный вектор полного гамильтониана ^Н с наиниз-

шей энергией). Эти операторы должны описывать физические частицы в любой момент времени, а не только при t → + ∞ , как in и out – операторы.

Для обсуждаемой модели операторы такого рода были получены в работе /2/. Физический смысл новой корпускулярной интерпретации обсуждается в первом разделе. Полученные в работе /2/ новые операторы рождения-уничтожения не являются единственными операторами. чей вакуум совпадает с физическим. Основной задачей настоящей работы является обсуждение физических требований, позволивших бы выбрать единственным образом операторы рождения-уничтожения, которые следует сопоставлять с наблюдаемыми частицами. Оказывается, что эта заданной модели может быть охарактеризована как один из подходача дов к известной проблеме определения вектора состояния "нестабильной частицы" и ее характеристик: энергии и времени жизни. Сначала рассматривается определение энергии нестабильного состояния, основанное на рассмотрении энергетического спектра продуктов распада. Другое определение основывается на рассмотрении развития процесса распада во времени. В заключение предлагается новый подход к определению физической нестабильной частицы.

Вышеупомянутая задача о временном законе распада (второй раздел) представляет самостоятельный интерес. Известные аналогичные примеры точных решений в теории поля относятся к модели Ли и ее модификациям. Как и в этих примерах, результат настоящего расчета подтверждает качественное поведение, ожидаемое на основании обычных общих допущений ^{/3/}. Закон распада в основном является экспоненциальным, неэкспоненциальные добавки существенны только при очень больших временах.

1. Корпускулярная интерпретация взаимодей-

ствующего поля

Модель описывается таким гамильтонианом

$$H = \frac{1}{2m} \left[\overline{p} - e \overline{A} \right]^2 + V \left(\overline{q} \right) + H_{ph} ; \quad V \left(\overline{q} \right) = \frac{m \kappa_1}{2} \overline{q}^2$$
(1)

$$H_{ph} = \frac{1}{8\pi} \int d^3 x \left[\vec{E}^2(\vec{x}) + (rot \vec{A}(\vec{x}))^2 \right]$$
(2)

Дипольное приближение выражается в том, что оператор поля \overline{A} в квадратной скобке в (1) берется не в точке нахождения электрона \overline{q} , а в точке начала координат x = 0, в центре осцилляторного потенциала. Как обычно, h=1, c=1. Используется поперечная (кулоновская) калибровка div $\overline{A}(\overline{x}) = 0$, (см., например, $\binom{6}{1}$).

Можно описать эту модель обычным для полевой теории выражением с использованием <u>нерелятивистского</u> оператора поля электронов $\psi(\bar{x})$:

$$\begin{aligned} & \mathcal{H} = \int d^{3} x \ \psi^{*}(\overline{x}) \left[-\nabla^{2}/2m + V(\overline{x}) \right] \psi(\overline{x}) + \mathcal{H}_{ph} - \\ & -\frac{e}{m} \int d^{3} x \ \psi^{*}(\overline{x}) \ (-i \ \overline{\nabla} \) \ \psi(\overline{x}) \ \overline{A}(\overline{x}) \ + \frac{e^{2}}{2m} \int d^{3} x \ \psi^{*} \ \psi \ \overline{A}^{2} \end{aligned}$$
(3)

Число электронов сохраняется, и с помощью обычной процедуры можно перевести уравнение Шредингера $\Re \Phi(t) = i \frac{\partial}{\partial t} \Phi(t)$ в <u>одноэлектронное</u> конфигурационное пространство (для электромагнитного поля оставляем вторично-квантованное полевое описание); см., например, гл.6, \$ у Швебера⁴⁴. Тогда уравнение примет вид уравнения Шредингера с гамильтонианом (1). Подставляя в (1) разложение $\overline{A}(\overline{x})$ по электрическим и магнитным мультиполям⁵, обнаруживаем, что во взаимо-

действии участвует только дипольная часть \overline{A}_d (\overline{x}) оператора $\overline{A}(\overline{x})$. Часть гамильтониана, содержащая операторы рождения-уничтожения фотонов высших мультиполей, является свободной и может быть отделена. Оставшийся гамильтониан содержит только операторы дипольных фотонов. Он представляется в виде суммы трех коммутирующих гамильтонианов, каждый из которых имеет такой вид /2/:

$$h = \frac{p_{1}^{2}}{2m} + \frac{4m\kappa_{1}^{2}}{2} q_{1}^{2} + \frac{1}{2} \int_{0}^{\infty} dk \quad k \left(q_{k}^{2} + p_{k}^{2}\right) - \frac{1}{m} \int_{0}^{\infty} dk \quad e(k) \quad p_{1} p_{k} + \frac{1}{2m} \left[\int_{0}^{\infty} dk \quad e(k) \quad p_{k}\right]^{2}$$
(4)

$$e(k) = 2e \sqrt{\frac{k}{3\pi}} f(k)$$
; $[q_1, p_1] = i$; $[q_k, p_k] = i \delta(k - k')$ (5)

Эрмитовские операторы q_к и р_к связаны с операторами рождения и уничтожения фотонов следующим образом:

$$a_{k}^{+} = (p_{k} + iq_{k}) / \sqrt{2}; \quad a_{k} = (p_{k} - iq_{k}) / \sqrt{2}.$$
 (6)

Вместо координаты и импульса электрона q_1 , P_1 тоже можно ввести аналогичные операторы a_1^+ , a_1 , переводящие основное состояние осциллятора в возбужденное с энергией κ_1 . Назовем их фононными операторами. Вакуумный вектор a_k и a_1 , как обычно, является собственным состоянием Ω_0 свободного гамильтониана h_0 (первая строчка в (4)), соответствующим наименьшему собственному значению.

Гамиьлтониан h может быть приведен к виду

$$h = \frac{1}{2} > \int_{0}^{\infty} d\omega \quad \omega(\hat{q}_{\omega}^{2} + \hat{p}_{\omega}^{2}) = \frac{1}{2} \int_{0}^{\infty} d\omega \quad \omega(\hat{a}_{\omega}^{+} + \hat{a}_{\omega}^{-} + \hat{a}_{\omega}^{+})$$
(7)

с помощью такого канонического (т.е. сохраняющего коммутационные соотношения) преобразования операторов:

$$q_{1} = Q_{1\omega} \hat{q}_{\omega} \qquad p_{1} = P_{1\omega} \hat{p}_{\omega}$$

$$q_{k} = Q_{k\omega} \hat{q}_{\omega} \qquad p_{k} = P_{k\omega} \hat{p}_{\omega} \qquad (8)$$

Подразумевается свертка-интеграл по ω . Q и Р должны быть действительными (чтобы q и р тоже были эрмитовыми). Условие каноничности имеет вид Q P^T = 1 . (7) имеет вид свободного гамильтониана. Если Ω -такой вектор, то $a_{\omega}^{*}\Omega = 0$ для всех ω , то собственными векторами (7) являются Ω (физический вакуум), $a_{\omega}^{+}\Omega$, $a_{\omega_{1}}^{+}a_{\omega_{2}}^{+}\Omega$ и т.д. Зная собственные векторы h , мы в принципе можем точно решить любую задачу модели.

Рассмотрим, например, такую задачу Коши. Начальное состояние Ψ_1 (момент t = 0) имеет вид $a_1^+ \Omega_0$ (электронный осциллятор однократно возбужден) или $a_k^+ \Omega$ (есть один "голый" фотон) и т.п. Амплитуда вероятности обнаружения системы к моменту t > 0 в некотором состоянии Ψ_1 того же вида, дается символическим выражением

b(t) =
$$\langle \Psi_f$$
, $e^{-iht}\Psi_i \rangle$.

(9)

Чтобы его вычислить, надо разложить Ψ_i и Ψ_i по собственным векторам h :

$$\Psi_{1} = \Phi_{0}^{1} \Omega_{\cdot} + \int_{0}^{\infty} d\omega \quad \Phi_{1}^{1} (\omega) \hat{a}_{\omega}^{+} \Omega_{+} + \frac{1}{\sqrt{2}} \iint d\omega_{1} d\omega_{2} \quad \Phi_{2}^{1} (\omega_{1}, \omega_{2}) \hat{a}_{\omega_{1}}^{+} \hat{a}_{\omega_{2}}^{+} \Omega_{+} \dots$$
(10)

Коэффициенты разложения в принципе можно найти, зная преобразование $a = \frac{1}{2} (P+Q) a + \frac{1}{2} (P-Q) a^+$, соответствующее (8). После этого

$$b(t) = \sum_{n=0}^{\infty} \int d\omega_1 \dots \int d\omega_n \Phi_n^t *(\omega_1 \dots \omega_n) e^{-i(\omega_1 + \dots + \omega_n)t} \Phi_n^t (\omega_1 \dots \omega_n)$$
(11)

Относительно математического существования разложения (10) для "голых" состояний заметим только, что (10) имеет место, если обрезание f(k) в (4) достаточно эффективно.

Изложенная постановка задачи содержит физические пороки. Пусть $\Psi_{i} = \Omega_{0}$ – вначале нет никаких квантов. Нет физических оснований для их появления в дальнейшем. Однако с помошью (11) можно установить, что в любой момент t > 0 есть ненулевая вероятность обнаружить в такой системе любое количество "голых" квантов: состояние Ω_{0} является нестабильным. Далее, если вначале было некоторое количество "голых" квантов, то есть вероятность того, что впоследствии в системе мы не обнаружим никаких квантов. Чтобы таких явлений в теории не было, надо,чтобы наблюдаемые фотоны и фононы^{х)} рождались и уничтожались с помощью операторов, чей вакуум совпадает со стабильным физическим вакуумом Ω . Такого рода операторы были найдены в работе ^{/2/}. Оказывается, что разложение операторов электромагнитного поля по ним имеет вполне естественный физический смысл.

Подставим в разложение \overline{A}_{d} (\overline{x}) по "голым" дипольным операторам полученное в работе $^{/2/}$ выражение "голых" операторов через новые, названные там "физическими". То же самое проделаем для канонически сопряженного оператора $-\overline{E}_{d}$ (\overline{x}) / 4 π . Получим

$$\overline{A}_{d} (\overline{x}) = \sum_{m} \int_{0}^{\infty} d\nu \sqrt{\frac{4\pi}{\nu}} \overline{B}_{\nu m} (\overline{x}) p_{\nu m} ; m = x, y, z$$
(12)

x) Поскольку речь идет о модельной теории, то точнее было бы говорить о фотонах, находящихся во взаимодействии с фононами.

$$\vec{E}_{d}(\vec{x}) = \sum_{m} \int_{0}^{\infty} d\nu \sqrt{\frac{4\pi}{\nu}} \nu \vec{B}_{\nu_{m}}(\vec{x}) \vec{\tilde{q}}_{\nu_{m}} - \sum_{m} \vec{\tilde{q}}_{m} \vec{G}_{m}(\vec{x})$$
(13)

$$\vec{G}_{m}(\vec{x}) = \frac{1}{\sqrt{m_{0}\omega_{1}}} \int k^{2} dk \sqrt{\frac{4\pi}{k}} \xi(k) \vec{A}_{klm}^{e}(\vec{x}).$$
(15)

Новые функции разложения $\vec{B}_{\nu_m}(\vec{x})$ ортогональны, и выражаются через действительные части дипольных электрических функций /7/

$$\vec{A}_{kl2}^{e}(\vec{x}) = \vec{A}_{k10}^{e}(\vec{x}); \quad \vec{A}_{k1x}^{e} = \frac{1}{\sqrt{2}} \left[\vec{A}_{k1-1}^{e} + \vec{A}_{k1-1}^{e^*}\right]; \quad \vec{A}_{kly}^{e} = \frac{1}{\sqrt{2}} \left[\vec{A}_{k1-1}^{e} + \vec{A}_{k1-1}^{e^*}\right];$$

Функции $X_{k\nu}$, $\xi(k)$ и перенормированная собственная частота фонона ω_1 , определены в работе /2/.

Как видно, электромагнитное поле выражается не только через "физические" фотонные операторы $\tilde{\vec{p}}_{\nu m} = (\tilde{\vec{a}}_{\nu m} + \tilde{\vec{a}}^+)/\sqrt{2}$ $q_{\nu m} = i(\tilde{\vec{a}}_{\nu m} - \tilde{\vec{a}}^+)/\sqrt{2}$, но и через электронные операторы $\tilde{\vec{q}}_m$, m = x, y, z . Это представляется естественным, поскольку заряженный электрон должен давать свой вклад в полное электромагнитное поле.

Известны другие примеры подобных представлений для взаимодействующего электромагнитного поля. В случае, когда электрон свободный – V(q)=0, Ван Кампен получил

$$\vec{A}_{d}(\vec{x}) = \vec{A}_{d}(\vec{x}) + T \frac{\vec{P}}{m} \int \frac{\rho |\vec{q}|}{|\vec{x} - \vec{q}|} d^{3}q$$
(16)

(см. формулу (17) в работе ^{/1/}). Здесь $\vec{A}'(\vec{x})$ разлагается только по фотонным операторам, $\vec{p}'\rho(q)/m$ можно назвать оператором тока электрона (Т означает поперечную часть следующего за ним выражения). К сожалению, дипольное приближение трудно обосновать физически в случае свободного электрона ^{/8/}. Еще один пример дает мо-

. 9

дель "квантованное электромагнитное поле с внешним током" (см. раздел 2 в работе ^{/9/}). Естественно, что и момент электромагнитного поля и его импульс теперь тоже включают электронные операторы.

Заметим, что "голые" операторы а можно вообще изгнать из теории. Исходный гамильтониан (1) их не содержит, а в качестве исходного коммутационного соотношения можно принять

$$\left[A_{i}(\vec{x}), -E_{j}(\vec{y})/4\pi\right] = i\delta_{ij}\delta(\vec{x}-\vec{y}) - \frac{i}{4\pi}\frac{\partial}{\partial x_{i}}\frac{\partial}{\partial x_{j}}\frac{1}{|\vec{x}-\vec{y}|}$$
(17)

(см., например, $\stackrel{/6/}{}$. Напоминаем, что калибровка кулоновская). Разложение $\vec{A}(\vec{x})$ по "голым" операторам фотонов означает определенное конкретное представление оператора $\vec{A}(\vec{x})$, удовлетворяющее (17) (представление с голым вакуумом). Мы можем вместо него постулировать разложения (12), (13), которые тоже обеспечивают выполнение (17), но на базе физического вакуума.

Гамильтониан (4) через "физические операторы рождения-уничтожения" выражается следующим образом:

К выражению (18) можно придти, подставляя в (1) разложения (12), (13), а также соответствующие выражения \vec{p} и \vec{q} через новые фононные операторы.

К виду (7) выражение (18) можно привести с помощью канонического ортогонального преобразования

$$\tilde{\tilde{a}}_{1} = \int_{0}^{\infty} d\omega O_{1\omega} \hat{a}_{\omega}; \quad \tilde{\tilde{a}}_{\nu} = \int_{0}^{\infty} d\omega O_{\nu\omega} \hat{a}_{\omega}. \quad (20)$$

(21)

найденного в работе ^{/2/} (выражения для 0 и 0 _{и ω} можно извлечь из Приложения).

Операторы \vec{a}_1 и \vec{a}_{ν} не являются единственными операторами фонона и фотонов с вакуумом Ω . Подвергнем их преобразованию, при котором оператор уничтожения выражается только через операторы уничтожения, но не рождения:

$$\vec{a} = U, \vec{a}' + \int d\nu' U, \vec{a}$$

 $\overset{\approx}{a}_{\nu} = \underbrace{U}_{\nu 1} \overset{\approx}{a}'_{1} + \int d\nu \quad \underbrace{U}_{\nu \nu}, \overset{\approx}{a}'_{\nu},$

У новых операторов \tilde{a}' вакуум будет тот же. Преобразование U будет каноническим, если оно унитарно: $U^+ U = U U^+ = 1$.

На основании каких физических принципов можно сделать единственный выбор?

Выражение (18) само по себе задает модель, в которой вакуумы "голый" (вакуум первой строчки в (18) не путать с Ω_0 !) и физический совпадают, как и в модели Ли. Заметим, что однофононное состояние не может быть стабильным при любом определении: оно должно высвечиваться. Мы стоим перед проблемой, которая встречается в модели Ли с нестабильной V -частицей: как определить вектор состояния нестабильной физической частицы и ее характеристики – энергию и время жизни /10/. Воспользуемся двумя известными способами определения энергии нестабильного состояния.

Первое определение является в сущности экспериментальным: энергией возбужденного состояния атома называют энергию, соответствую-

шую максимуму в спектре испущенных фотонов. Найдем такую величину для однофононного состояния $\tilde{a}_1^+ \Omega$. Вычислим спектр испущенных фотонов при $t \rightarrow \infty$, если при t=0 имеем состояние $\tilde{a}_1^+ \Omega$. Амплитуда вероятности $b_{\nu}(t)$ обнаружить в момент t>0 состояние $\Psi_t = \tilde{a}_{\nu}^+ \Omega$ дается формулой (9). Из (20) следуют очень простые разложения $\tilde{a}_1^+ \Omega$ и $\tilde{a}_{\nu}^+ \Omega$ по собственным векторам ^h:

$$\tilde{a}_{1}^{+}\Omega = \int d\omega \ O_{1\omega} \ \hat{a}_{\omega}^{+}\Omega \ ; \quad \tilde{a}_{\nu}^{+}\Omega = \int d\omega \ O_{\nu\omega} \ \hat{a}_{\omega}^{+}\Omega^{\mu\nu} = \int d\omega \ O_{\mu\nu} \ \hat{a}_{\omega}^{+}\Omega^{\mu\nu} = \int \partial \partial_{\mu\nu} \ \hat{a}_{\omega}^{+}\Omega^{\mu\nu} = \int \partial_{\mu\nu} \ \hat{a}_{\omega}^{+}\Omega^{\mu\nu} =$$

Поэтому $b_{\nu}(t) = \int d\omega 0_{\nu\omega} 0_{i\omega} \exp(-i\omega t)$. Используя выражения для $0_{\nu\omega}$ и $0_{i\omega}$, а также соотношение (11.726) из /4/,

$$\lim_{t \to \infty} \frac{e^{iEt}}{E - i\epsilon} = 2\pi i\delta(E),$$

получим для искомого распределения по и

 $\lim_{\nu \to \infty} b^{*}_{\nu}(t) b_{\nu}(t) = \epsilon^{2}(\nu) \left\{ \left[\nu - \omega_{1} + \pi D(\nu) \right]^{2}_{+} \pi^{2} \epsilon^{4}(\nu) \right\}^{-1} = 0^{2}_{1\nu}$ $t \to \infty$ (23)

$$D(\nu) = \frac{1}{\pi} P \int_{0}^{\infty} \frac{\epsilon^{2}(x)}{x - \nu} dx.$$
 (24)

Оно совпадает с распределением 0²₁₀ по собственным частотам полного гамильтониана. Точка максимума этого выражения должна удовлетворять уравнению

$$\nu - \omega_{1} + \pi D(\nu) = \frac{\pi^{2} \epsilon'(\nu) \epsilon^{4}(\nu)}{\epsilon''(\nu - \omega_{1} + \pi D) - 2\epsilon (1 + \pi D')}$$
(25)

Можно показать, что $\epsilon^2(\nu) < \frac{2e^2}{3\pi} \omega_1 \ll \omega_1$, если параметр обрезания μ в $f(\nu)$ - порядка т или меньше (можно, например, принять $\int_{0}^{2} (\nu) = \mu^{2} / \nu^{2} + \mu^{2}$). Аналогичную оценку имеет и $D(\nu)$. В первом приближении поэтому $\nu_{max} = \omega_{1}$, а более точно (пренебрегая только правой частью (25), имеющей порядок ϵ^{4}),

$$\nu_{\rm max} = \omega_1 - \pi \, \mathrm{D} \, (\omega_1) \,. \tag{26}$$

Таким образом, энергия максимума не равна ω_1 , а сдвинута на $\approx \pi D(\omega_1)$. Отметим, что энергия фонона ω_1 , появившаяся при введении "физических" операторов, уже отличается от первоначальной /2/

Для рассмотрения другого определения энергии фонона надо сначала найти временной ход процесса высвечивания состояния $\frac{\pi}{a} + \Omega$.

Обсуждение поставленной проблемы определения физического нестабильного кванта будет закончено в Заключении.

2. Закон высвечивания возбужденного электрона

Пусть при. t = 0 имеем состояние $\tilde{a}_{1}^{+} \Omega$. Вычислим амплитуду вероятности $b_{1}(t)$ того, что в момент t > 0 электрон останется в том же возбужденном состоянии $\tilde{a}_{1}^{+} \Omega$. Используя (22) и полученное в работе /2/ выражение для $O_{1\omega}$, имеем

$$b_1(t) = \langle \tilde{a}_1^+ \Omega \rangle$$
, e^{-iht} $\tilde{a}_1^+ \Omega \rangle = \int_0^\infty d\omega e^{-i\omega t} O_{1\omega}^2 =$

$$= \int_{0}^{\infty} dx \frac{e^{-1xt}}{[x - \omega_{1} + \pi D(x)]^{2} + \pi^{2} \epsilon^{4}(x)}$$
 (27)

D(x) связано с $\epsilon^2(x)$ формулой (24), т.е. является преобразованием Гильберта /11/ функции, равной $\epsilon^2(x)$ при x > 0 и равной нулю при x < 0 . Согласно теореме 95 из /11/, трансформанты Гильберта являются предельными значениями (при lm z → + 0) вещественной и мнимой частей функции

$$\Phi(z) = \frac{1}{\pi} \int_{0}^{\infty} \frac{\hat{\epsilon}(\omega)}{\omega - z} d\omega.$$
 (28)

Этот интеграл типа Коши аналитичен всюду, кроме отрезка $(0, \infty)$ вещественной оси (он называется также интегралом Шварца для полуплоскости /12/, п. 44). С помощью формулы $(a \pm i\epsilon)^{-1} = P 1/a \pm i\pi \delta(a)$, получаем x)

$$\lim_{y \to +0} \Phi(z) = D(x) + i\epsilon^{2}(x) \equiv \Phi_{+}(x)$$
(29)

$$\lim_{y \to -0} \Phi(z) = D(x) - i \epsilon^{2}(x) = \Phi(x),$$

Такую величину, как $\epsilon^2(x)$, обычно обозначают через $\Gamma(x)$.

С помощью этого выхода в комплексную плоскость мы сможем вычислить основной вклад в (27), а также поправку к нему (с любой точностью).

Соотношения (29) позволяют представить (27) как интеграл от

$$\frac{1}{2\pi i} \frac{e^{-izt}}{z - \omega_1 + \pi \Phi(z)} \equiv \psi(z) e^{-izt}$$
(30)

по контуру, проходящему по верхней границе разреза от $+\infty$ до $O(C_+)$ и далее по нижней границе от O до $+\infty(C_-)$:

x)у Титчмарша/11/ действительная часть $\Phi(z)$ связывается с прообразом, а не с образом преобразования Гильберта. Поэтому некоторые наши формулы отличаются от формул Титчмарша знаком.

$$b_{1}(t) = \int_{C_{+}} \psi(z) e^{-izt} dz + \int_{C_{-}} \psi(z) e^{-izt} dz =$$

$$= \frac{1}{2\pi i} \left[\int_{\infty}^{0} \frac{dx e^{-ixt}}{x - \omega_{1} + \pi \Phi_{+}(x)} + \int_{0}^{\infty} \frac{dx e^{-ixt}}{x - \omega_{1} + \pi \Phi_{-}(x)} \right].$$
(31)

Нашей первоначальной целью будет замена контуров С₊ и С₋ на другие, где exp(-izt) будет уже быстро затухающей функцией. Такие контуры должны проходить в нижней ^z - полуплоскости. Для С₋ это можно сделать путем вычисления интеграла от (30) по замкнутому контуру С₁, изображенному на рис. 1 сплощной линией. Этот интеграл

равен нулю, потому что $\psi(z)$ при комплексных z не имеет полюсов. Действительно, из (28) получаем, что

$$\operatorname{Im} \Phi(z) \equiv v(x,y) = \frac{iy}{\pi} \int_{0}^{\infty} \frac{\epsilon^{2}(\omega) d\omega}{(\omega - x)^{2} + y^{2}}.$$
 (32)

при y > 0 положительна, а при y < 0 отрицательна. Поэтому мнимая часть знаменателя $\psi(z)$, равная $y + \pi v(x, y)$, при $y \neq 0$ в нуль не обращается. Далее, интеграл от (30) по дуге C_1^R стремится к нулю при $R \to \infty$, потому что $\psi(z) \to 1/z$ на C_1^R (из (28) следует, что $\Phi(z) \to 0$ при $z \to \infty$). Окончательно получаем:

$$\int_{C_{+}} \psi(z) e^{-izt} dz = - \int_{C_{+}} \psi(z) e^{-izt} dz \qquad (33)$$

Контур C_+ - верхний край разреза, поэтому аналогичный контур C_2 должен проходить по риманову листу многозначной функции $\psi(z)$ (см. (29)), приклеенному к верхнему краю разреза (соответствует $\arg z < 0$). Аналитическое продолжение $\Phi(z)$ на этот (второй) лист имеет вид (ср. (3.11) в $^{/10}$:

$$\Phi_{\mathbf{z}}(\mathbf{z}) = \Phi(\mathbf{z}) + 2i \Gamma(\mathbf{z}), \qquad (34)$$

где $\Gamma(z) \equiv \epsilon^{2}(z)$ так же зависит от z, как $\epsilon^{2}(\omega)$ от ω^{-x} . Соответственно

х) Действительно, если Γ – аналитическая функция, то Φ_2 является аналитической функцией в нижней полуплоскости $\lim z < 0$, совпадаю-щей на прямой $(0, \infty)$ с $\Phi(z)$

$$\Phi_2(x-i0) = \Phi_1(x) + 2i\Gamma(x) = \Phi_+(x)$$

По принципу непрерывного продолжения (см. $^{/12/}$, п. 25) Φ_2 является поэтому аналитическим продолжением Φ .

$$\psi_{2}(z) = \frac{1}{2\pi i} \left[z - \omega_{1} + \pi \Phi(z) + 2i\pi \Gamma(z) \right]^{-1}.$$
(35)

e og tit e de lassente ander and

Часть контура С₂, проходящая по второму листу, показана на рис.1 пунктирной линией. Полюса $\psi_2(z)$ находятся в точках $z_0 = x_0 + iy_0$, где знаменатель h $(z) \equiv z - \omega_1 + \pi \Phi(z) + 2 i \pi \Gamma(z)$ обращается в нуль. Полагая $\Gamma(z) = \gamma(x,y) + i \delta(x,y)$, получаем такую систему уравнений для x_0 и y_0 :

$$x_{0} = \omega_{1} - \pi u (x_{0}, y_{0}) + 2\pi \delta (x_{0}, y_{0})$$

$$y_{0} = -\pi v (x_{0}, y_{0}) - 2\pi \gamma (x_{0}, y_{0}).$$
 (36)

Функции u, v, y, δ содержат малый множитель $e^2 = 1/137$. Поэтому y (36) есть корень, близкий к точке $x_0 = \omega$; y $_0 = -0$. Более точное значение для него получим, взяв в (36) значения u, v, y, δ в этой точке (точнее, их предельные значения при $x \to \omega$, $y \to -0$)

 $\mathbf{x}_{0} \stackrel{\approx}{=} \omega_{1} - \pi_{1} \mathbf{D} (\omega_{1})$

 $y_{0} = \pi \Gamma(\omega_{1}) - 2\pi \Gamma(\omega_{1}) = -\pi \Gamma(\omega_{1}), \qquad (37)$

Учтена действительность $\Gamma(z)$ на вещественной оси: $\delta(x, 0) = 0$. С помощью "принципа аргумента" (см. /12/, п. 23) можно показать, что при подходящем выборе C_2 других корней у h (z)⁻ нет. Выбор C_2 зависит от вида функции обрезания f(ω) в $\Gamma(\omega) = \epsilon^2(\omega)$, (см, (19). В частности, f²(ω) = $\mu^2 / \omega^2 + \mu^2$ имеет полюса на мнимой оси. В качестве C_2^1 надо взять прямую, наклоненную к действительной оси, под углом $\theta = -45^0$, например. Тогда можно доказать, что при движении z по контуру C₂ отображение w =h(z) сделает один оборот вокруг точки w = 0 (см. схематический рис. 2). Если у

Рис. 2.

f(z) (т.е. у $\Gamma(z)$)) нет полюсов внутри C_2 (это так и есть в случае $f^2 = \mu^2 / \omega^2 + \mu^2$ или $f^2 = \exp(-\omega/\mu)$, то это означает, что h(z) имеет только один нуль внутри C_2 . Главные пункты в этом доказательстве следующие: 1) мнимая часть w = h(z) все время положительна, когда z пробегает по C_+ ; 2) h(z) на C_2^R ведет себя как $z - \omega_1$, 3) мнимая часть h(z) на C_2^1 отрицательна.

Из вышеизложенного следует

$$\int_{C_{0}} \psi_{2}(z) e^{-izt} dz = \int_{C_{+}} + \int_{C_{2}} = 2\pi i \frac{1}{2\pi i} \frac{e^{-iz_{0}t}}{1 + \pi \Phi_{2}'(z_{0})}$$
(38)

(интеграл по С^R₂ опять равен нулю). Объединяя формулы (31),(33) и (38), получаем

$$b_{1}(t) = \frac{e^{-ix_{0}t - |y_{0}|t}}{1 + \pi \Phi'_{2}(z_{0})} + \begin{bmatrix} -\int_{C_{1}}^{t} \psi(z) e^{-izt} & dz - \int_{C_{2}}^{t} \psi_{2}(z) e^{-izt} \\ C_{1}^{1} & C_{2}^{1} \end{bmatrix}.$$
(39)

В двух последних интегралах сделаем замену $z = \rho e^{-i\phi}$, где θ - угол наклона C_1^i и C_2^i к действительной оси, $0 < \theta < \frac{\pi}{2}$. Тог-

$$< \left[\frac{1}{\rho e^{-i\theta} - \omega_1 + \pi \Phi(\rho e^{-i\theta})} - \frac{1}{\rho e^{-i\theta} - \omega_1 + \pi \Phi + 2i\pi\Gamma} \right]$$

Этот интеграл можно считать численно. Если
t $\gg 1/\omega_1$, то он приближенно равен

$$J = e^{-i\theta} \int_{0}^{\infty} \frac{d\rho}{\omega_{1}^{2}} e^{-i\rho \sin\theta} \left[\cos(i\rho\cos\theta) - i\sin(i\rho\cos\theta) \right] 2\pi i \Gamma(\rho e^{-i\theta}).$$

Действительно, ввиду наличия $\exp(-i\rho\sin\theta)$ вклад в интеграл при $i\sin\theta \gg 1/\omega_1$ вносят только малые $\rho \ll \omega_1$. Далее, можно показать, что функциями Φ и Γ тоже можно пренебречь в знаменателе по сравнению с ω_1 (они содержат малый множитель $e^2 = 1/137$). Знаменатель превращается в ω_1^2 просто. Наконец, при $\rho \ll \omega_1$

$$\Gamma(\rho e^{-i\theta}) = \epsilon^2 (\rho e^{-i\theta}) \stackrel{\simeq}{=} \frac{4e^2}{3\pi} \frac{1}{m\omega_1} \rho^3 e^{-3i\theta}$$

Получающийся интеграл можно найти в таблицах

$$J_{\pm}^{\pm} \frac{8e^2}{3} \frac{1}{m\omega_1^3} e^{-4t\theta} \frac{6}{t^4} e^{4t\theta}$$

Ответ не зависит от θ , но область справедливости этого приближенного вычисления конечно, зависит от θ (t sin $\theta \gg 1/\omega_1$).

Мы получили качественно такой же результат, какой получается в аналогичных вычислениях в модели Ли /10,13/. На протяжении многих времен жизни главным в (39) является экспоненциальный член. Подробное обсуждение подобного поведения, а также связи решенной задачи с /3,14,15/ распадом реально приготовленного нестабильного состояния см. в

Для нас решенная задача важна тем, что она позволяет дать еще одно определение энергии однофононного состояния $\tilde{a}_{1}^{+} \Omega$: она принимается равной x_{0}^{*} -частоте осциллирующего множителя в экспоненциальном члене в $b_{1}(t)^{/10/}$. Опять $x_{0} \neq \omega_{1}$. Точное значение x_{0} несколько отличается от ν_{max} ср. (25) и (36). Это небольшое различие двух определений отмечалось и для модели Ли $^{/16/}$. По-видимому, следует предпочесть ν_{max} , т.к. частота x_{0} не является наблюдаемой.

Заключение

Мы установили, что энергия ω_1 , приписываемая "физическому" однофононному состоянию $a_1^{+}\Omega$, введенному в /2/, не равна ни энергии максимума спектра фотонов распада, ни частоте осциллирующего множителя в экспоненциальном члене. временного закона распада. Как найти такой вектор состояния фонона, чтобы его энергетический параметр ω_1 совпадал с энергией максимума спектра?

Согласно обычной процедуре перенормировок, можно просто приписать состоянию $a_1^{+}\Omega$ перенормированную энергию $\nu_{\max} = \omega_1 - \pi D(\omega_1)$, см. (26). Для этого вставляем в гамильтониан вместо $\omega_1 \tilde{a}_1^+ \tilde{a}_2^+$ выражение $(\nu_{\text{max}} - \delta \omega)^{\approx}_{a} + \tilde{a}_{1}$, где $\delta \omega = \nu_{\text{max}} - \omega_{1}$. Переносим - δω a+a, , в гамильтониан взаимодействия как дополнительный компенсирующий член "взаимодействия". Так и делает Леви в модели Ли, например, см. работу /10/, стр. 131. При таком подходе не надо нахопить новый вектор состояния, требуется только найти энергию и время жизни нестабильной частицы. Существует общий рецепт теоретического нахождения этих характеристик. Он опирается на исследование аналитических свойств фурье-образа функции распространения и сводится к нахождению параметров подходящего полюса на втором римановом листе Этот рецепт должен быть повергнут критике, если мы принимаем тезис о необходимости новой корпускулярной интерпретации теории. Следует ожидать, что поле $\phi_1(x)$, взаимодействующее с другим полем $\phi_2(x)$ при новой интерпретации, представляется не только через операторы рождения-уничтожения частиц сорта 1, но и частиц сорта 2. Примерами являются разложения (13), (16). Поэтому величина вида $<\Omega$ Т $\phi_{(x)}\phi_{(y)}|_{\Omega>}$ уже не может быть истолкована как функция распространения частиц одного сорта. Понятие функции распространения физической частицы не может быть введено до определения ее операторов рождения-уничтожения, и мы не можем опираться на это понятие как на исходное.

Можно предложить другой подход к проблеме нестабильной частицы, дающий одновременно и ее вектор состояния и ее характеристики. Мы его изложим на языке нашей модели (можно было воспользоваться и моделью Ли). Введем вместо операторов \vec{a}_1 и \vec{a}_{ν} новые операторы \vec{a}_1' и \vec{a}_{ν}' , связанные с прежним унитарным преобразованием U, (см. (21). Выразим через них гамильтониан (18). Его вид изменится: h = $\frac{\omega_1'}{2}$ ($\vec{a}_1' + \vec{a}_1' + \vec{a}_1' \vec{a}_1' + \dots$. Подберем такое U, чтобы новый

фононный энергетический параметр ω_1' совпадал с энергией максимума спектра фотонов распада состояния $\tilde{a}_1^+ \Omega$ х). Ниоткуда не следует, что эта энергия должна равняться ν_{\max} , определяемой формулой (26). Конечно, автоматически изменится и вид гамильтониана взаимодействия (так что не надо будет искусственно вводить псевдовзаимодействие вида $\delta \omega \tilde{a}_1^+ \tilde{a}_1$). После такого преобразования время жизни следует теоретически определить как $1/y_0'$, где y_0' -соответствующий параметр экспоненциального члена в законе распада нового состояния $\tilde{a}'^+ \Omega$

Пользуясь случаем, благодарю Б.Н. Валуева и М.К. Волкова за обсуждения.

Приложение

Доказательство соотношений полноты ОО^т=1

В работе $^{/2/}$ было показано, как можно доказать соотношения ортогональности 0^T0 = 1 для оператора ортогонального преобразования (20). Чтобы показать, что 00^T=1 , надо доказать, что имеют место равенства

$$1 = \int_{0}^{\infty} d\omega \quad O_{1\omega}^{2} \equiv \int_{0}^{\infty} \frac{dx \quad \epsilon^{2}(x)}{\left[x - \omega_{1} + \pi D(x)\right]^{2} + \pi^{2} \epsilon^{4}(x)}$$
(\Pi.1)

 x) Можно показать, что средняя энергия ∫ d ω ω 0²_{1ω} состояния ³⁺_a Ω равна ω₁. И ω₁ тоже будет равняться средней энергии состояния ³ (¹ Ω). Поэтому задачу можно сформулировать так: надо добиться совпадения средней энергии с энергией максимума.

$$\mathbf{O} = \int_{0}^{\infty} \mathrm{d}\omega \ \mathbf{O}_{1\omega} \ \mathbf{O}_{\nu\mu} \equiv 0$$

$$= \int_{0}^{\infty} \frac{d\omega \epsilon(\omega)}{[\omega - \omega_{1} + \pi D(\omega)]^{2} + \pi^{2} \epsilon^{4}(\omega)} \{ [\omega - \omega_{1} + \pi D(\omega)] \delta(\omega - \nu) + P \frac{\epsilon(\nu)\epsilon(\omega)(\Pi, 2)}{\omega - \nu} \}$$

$$\delta(\nu - \nu') = \int_{0}^{\infty} d\nu \quad 0 : \quad 0$$

Правая часть (П.1) равняется b_1 (0), см. (27), и поэтому (П.1) есть также соотношение нормировки для состояния $\vec{a}_1^+ \Omega$. Интеграл (П.1) тоже можно представить как интеграл по сумме контуров C_+ и C_- , см. раздел 2, но от функции $\psi(z)$, см. (30). Дополним C_+ и C_- до замкнутого контура так, как показано на рис. 3 /17/. В разделе 2 было показано, что у $\psi(z)$ нет полюсов при комплексных z.

Покажем, что нет их и на действительной отрицательной полуоси. На этой полуоси вешественная часть знаменателя $\psi(z)$ равна $x-\omega_1+\pi D(x)$. Это выражение всегда отрицательно, потому что, хотя функция D(x) > 0при' x < 0, но она всюду много меньше ω_1 . Действительно,

$$D(x) = \frac{1}{\pi 0} \int_{\omega}^{\infty} \frac{\Gamma(\omega) d\omega}{\omega + |x|} < \frac{4e^2}{3\pi} \omega_1 \left[\frac{1}{m \pi} \int_{0}^{\infty} d\omega f^2(\omega) \right] \ll \omega_1$$

При f² = $\mu^2/\omega^2 + \mu^2$, например, квадратная скобка $\leq 1/2$ при $\mu \leq m$. Поэтому

$$\int \psi(z) dz + \int \psi(z) dz = -\int \psi(z) dz .$$

$$C_{+} C_{-} C_{R} (\Pi.4)$$

В отличие от обычных случаев применения теоремы о вычетах, интеграл по C_R не равен нулю. Функция $\Phi(z)$, см. (28), стремится к нулю, как при комплексных $z \rightarrow \infty$ /11/, так и при действительных (в нашем случае, когда $\Gamma(x) \rightarrow 0$ при $x \rightarrow \infty$). Поэтому на C_R имеем

$$\psi(z) = \frac{1}{2 \pi i} \frac{1}{z - \omega_{+} + \pi \Phi(z)} \approx \frac{1}{2 \pi i} \frac{1}{-z} \left[1 + \frac{\omega_{1}}{z} + o(1/z) \right].$$

Интеграл от 1/z по C_R равен $-2\pi i$, и правая часть (П.4) и (П.1) действительно, равна 1.

Соотношение (П.2) можно преобразовать к виду

$$\frac{\nu - \omega_{1} + \pi D(\nu)}{\left[\nu - \omega_{1} + \pi D(\nu)\right]^{2} + \pi^{2} \epsilon^{4}(\nu)} = \frac{1}{\pi} P_{0} \int_{0}^{\infty} \frac{d\omega}{\omega - \nu} \frac{-\pi \epsilon^{2}(\omega)}{\left\{\left[\omega - \omega_{1} + \pi D(\omega)\right]^{2} + \pi^{2} \epsilon^{4}(\omega)\right\}}, \quad (\Pi.5)$$

Было показано, что $\phi(z) = [z - \omega_1 + \pi \Phi(z)]^{-1}$ аналитична в верхней полуплоскости (в частности). В таком случае мнимая и действительная части е предела при стремлении к вещественной оси сверху должны

быть связаны преобразованием Гильберта (см. /11/, теорема 93; требуемая ограниченность интеграла $\int_{0}^{\infty} |\phi(x + iy)|^2 dx$ следует из того, что $\phi(z) \rightarrow 1/z$ при $z \rightarrow \infty$). Как раз (П.5) и является записью этого преобразования.

Для доказательства (П.З) теперь достаточно расписать правую часть (П.З) и воспользоваться формулой (П.5) и формулой (В.З) из/2/.

Литература

- 1. N.G. van Kampen. Dan. Mat. Fys. Medd., 26, N.15 (1951).
- 2. И.А. Еганова, М.И. Широков. ЯФ<u>9</u>, 1097 (1969).
- М. Гольдбергер, К. Ватсон. Теория столкновений, гл. 8, "Мир", Москва (1967).
- С. Швебер. Введение в релятивистскую квантовую теорию поля. ИИЛ, Москва (1963).
- 5. А.И. Ахиезер, В.Б. Берестецкий. Квантовая электродинамика. Изд. II, §16. ГИФМЛ Москва (1959).
- 6. Л. Шифф. Квантовая механика. §48, ИИЛ, Москва (1957).
- 7. М. Роуз. Поля мультиполей. ИИЛ, Москва (1957).
- 8. И.А. Еганова, М.И. Широков. Препринт ОИЯИ Р2-3929, стр. 7, Дубна (1968).
- 9. М.И. Широков. ЯФ, <u>8</u>, 672 (1968).
- 10. M.Levy. Nuovo Cimento 13, 115 (1959).
- 11. Е. Титчмарш. Введение в теорию интегралов Фурье, гл. V ИИЛ, Москва (1948).
- М.А. Лаврентьев, Б.В. Шабат. Методы теории функций комплексного переменного, ГИФМЛ Москва (1958).
- 13. R.Alzetta, E.d'Ambrogio. Nucl. Phys., 82, 683 (1966).
- 14. M.Levy. Nuovo Cim., 14, 612 (1959).

- 15. L.Rosenfeld. Nucl. Phys., 70, 1 (1965).
- 16. H.Araki, Y.Munakata, M.Kawaguchi. Progr. Theor. Phys., <u>17</u>, 419 (1957).
- 17. G.Källen, V.Glaser. Nucl. Phys., 2, 706 (1956).

Рукопись поступила в издательский отдел 10 апреля 1969 года.