4402

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

ABOPATOPHA TEOPETHUEKKOM

Cale States and

Дубна.

P2 - 4402

DIS. HNT. 2513

В.С.Барашенков, К.К.Гудима, В.Д.Тонеев

НЕУПРУГИЕ ВЗАИМОДЕЙСТВИЯ ВЫСОКОЭНЕРГЕТИЧЕСКИХ ПРОТОНОВ С АТОМНЫМИ ЯДРАМИ

1969

P2 - 4402

В.С.Барашенков, К.К.Гудима, В.Д.Тонеев

НЕУПРУГИЕ ВЗАИМОДЕЙСТВИЯ ВЫСОКОЭНЕРГЕТИЧЕСКИХ ПРОТОНОВ С АТОМНЫМИ ЯДРАМИ

Направлено в Acta Physica Polonica

Q.

1. В ведение

Настоящая работа является продолжением цикла работ ^{/1-5/}, посвященных тщательному анализу общепринятой модели неупругих взаимодействий частиц с ядрами в области ускорительных энергий. Мы рассмотрим внутриядерные каскады, инициируемые протонами.

В отличие от пион-ядерных взаимодействий, где достаточно подробные экспериментальные данные получены лишь для фотоэмульсии, взаимодействия протонов с ядрами изучены на опыте более обстоятельно; кроме эмульсионных данных, в этом случае имеются также сведения, относяшиеся к отдельным ядрам, особенно при энергиях T, меньших или порядка нескольких сотен Мэв x).

При расчете протон-ядерных взаимодействий были использованы те же предположения и значения параметров, что и для пион-ядерных взаимодействий ^{/5/}. Детали вычислений подробно описаны в работах ^{-/2-4/}.

Далее мы часто будем рассматривать фотоэмульсионные данные и соответственно с этим разделять частицы по степени производимой ими ионизации на "ливневые" s -частицы и "медленные" h -частицы; среди последних мы, в свою очередь, будем различать "каскадные" g -частицы, характеризующиеся серыми следами, и "испарительные" b -частицы, оставляющие черные треки.

х) Как и в предыдущих работах /1-5/, у нас везде Т -кинетическая энергия частицы в лабораторной системе координат.

2. Множественность рождающихся частиц

На рис. 1 приведены значения среднего числа s-, g - и h -следов, образованных протонами в фотоэмульсии. Распределения звезд по множественности рождающихся частиц показаны в таблицах 1-Ш.

Мы видим, что, подобно тому, как это имеет место в случае пионядерных взаимодействий ^{/5/}, теоретические значения n_g и n_b монотонно возрастают ^{x)} при увеличении энергии Т и не передают наблюдаемого на опыте "насыщения" при Т ≥ 5 Гэв. В области меньших энергий наблюдается хорошее количественное согласие с экспериментом.

Среднее расчетное число ливневых следов п блиэко к эксперименту во всей рассматриваемой области энергий. Однако хорошее количественное согласие начинает несколько нарушаться для T > 20-Гэв. Теория предсказывает эдесь более быстрый рост n_g(T), чем это наблюдается на опыте. Таблица I

> Распределение числа рождающихся быстрых протонов л р в фотоэмульсионных звездах, образованных протонами

n_p теория опыт /10/ теория опыт /1 0 3I ± 5(I5) 35 ± 3 60 ± 4(38) 57 ± 4 I 56 ± 6(49) 54 ± 4 34 ± 3(52) 40 ± 4 2 I0 ± I(3I) 9 ± 2 6 ± I (I0) 25 ± I 0 5 ± 7 0(4 5) I 7 ± 0 7 0 -		 T _p > \$	30 Мэв	Т _р > 100 Мэв			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	n _p	теория	/10/ опыт	теория	/10/ опыт		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 I 2 3 4	3I ± 5(I5) 56 ± 6(49) I0 ± I(3I) 2,5 ± I,0(4,5) 0,5 ± 0,3 (0,5)	35±3 54±4 9±2 I,7±0,7 -	60±4(38) 34±3(52) 6±I (IO) 0 0	57± 4 40± 4 25±I -		

с энергией 385 Мэв (в %%)

х) Перегиб в теоретической и экспериментальной зависимостях п_ь(Т)
 при Т ≅ 0,4+0,7 Гэв отражает соответствующий провал в сечении N-N взаимодействия; вследствие влияния принципа Паули эта область несколь ко сдвинута в сторону больших значений Т.

Рис.1. Зависимость среднего числа s-, h- и g -следов в фотоэмульсионных звездах от энергии первичного протона T. Сплошные кривые – результат расчета для среднего ядра фотоэмульсии ⁷⁰ Ga. Кривая A – теоретическая зависимость n_h(T) для звезд с n_h>1. Пунктиром нанесены кривые, аппроксимирующие наиболее достоверные экспериментальные данные. Значками O, Δ, m нанесены соответственно экспериментальные значения n_h, n_g и n_a, полученные при просмотре эмульсии методом вдоль сле-. дат, значки •, ▲, • относятся к значениям, полученным при просмотре эмульсии по площади /6-29/.

При энергии 27 Гэв расхождение составляет около 7%

он-ядерных Последнее обстоятельство осталось незамеченным при анализе столкновений /5/; оно, очевидно, обусловлено тем, что на опы--1111

Таблица II

Распределение числа черных следов _{пь} в

фотоэмульсионных звездах, содержащих протоны с энергией

Ţ большей 30,50 и 100 Мэв (в %%). Энергия пер-

вичных протонов $T = 385 M_{\Im B} x$)

	2	σ	Ś	4	Ю	N	Ĥ	0	n b	
	0	45±8	40±6	9 ± 08	7I±4	80 ± 5	86 £ 5	9] 86	Теория	Т _р >
	7 1 7	23 ± 2	5 2 † 12	6I [12	21 7 99.	77 ± 13	8I † I3	1	011NT/10/	30 Мэв
++	O	33±9	4759	57±7	63£ 5	67±5	77 ± 4	9 7 26	Теория	— Т _р > 50 Мэв
	0	0	I2±8	4025	4I ± 3	495 3	62 ± 6	82 ± 7	Теория	T _p > 100
	0	12±11	7 76I	24 ± 7	40 1 8	49 ± 8	68 ± 12	.1	OIINTIO) Мэв

ì

чей часть звезд с событий л _в >0 $(n_b \ge 0)$ • В скобках указаны соответствующие числом лучей . На опыте, как правило, пропускается эначительная Þ ١<u>٨</u> значения для всех

Теоретические значения относятся к звездам

o

числом черных лу-

×

D

· · ·										
a	т = 8,2 Гэв		Т = 9 Гэв		Т = 14 Гэв		Т = 22,5 Гэв		т - 25 Гэв	
	теория	опыт /20/	теория	/29/ опыт	теория	/25/ опыт	теория	/20/, опыт	теория	опыт ^{/30/}
(1 2 4 4 9 6 7	6,3±1,8 18,8±3,1 24,2±3,5 26,7±3,7 17,8±3,0 4,7±1,5 0,5±0,5 0,5±0,5	$4,2\pm0,5$ $18,4\pm1,0$ $23,6\pm1,2$ $23,8\pm1,2$ $15,8\pm0,9$ $8,3\pm0,6$ $3,8\pm0,5$ $1,4\pm0,3$	2, $I \pm I$, 4 $I4, 4 \pm 3, 7$ $I9, 6 \pm 4, 3$ $I4, 4 \pm 3, 7$ $20, 6 \pm 4, 6$ $I2, 4 \pm 3, 5$ $I2, 4 \pm 3, 5$ $2, I \pm I, 4$	$2,8 \pm I,I$ $I3,3 \pm 2,3$ $I8,6 \pm 2,7$ $I9,0 \pm 2,8$ $20,2 \pm 2,9$ $I2,6 \pm 2,2$ $7,3 \pm I,7$ $2,8 \pm I,I$	$0,4 \pm 0,4 \\ 10,7 \pm 2,2 \\ 5,7 \pm 1,5 \\ 15,1 \pm 2,4 \\ 17,1 \pm 2,6 \\ 18,6 \pm 2,7 \\ 11,5 \pm 2,1 \\ 7,2 \pm 2,2 \\ \end{array}$	$0,8\pm0,4\\13,2\pm1,6\\10,3\pm1,5\\13,4\pm1,7\\13,4\pm1,7\\12,0\pm1,6\\11,4\pm1,5\\6,6\pm1,2$	0 8,3±2,2 3,5±1,4 6,5±1,9 11,8±2,7 7,8±2,1 9,5±2,4 10,1±2,4	0,7±0,3 8,5±1,0 8,6±1,0 13,8±1,2 11,0±1,1 10,6±1,1 8,6±1,0 8,1±1,0	0,4±0,4 9,4±1,8 2,8±0,9 4,3±1,1 8,3±1,7 9,7±1,9 14,0±2,2 11,2±1,9	$4,9 \pm 2,0$ $4,9 \pm 2,0$ $13,9 \pm 3,4$ $9,8 \pm 2,8$ $13,9 \pm 3,4$ $10,7 \pm 3,0$ $11,5 \pm 3,1$ $6,6 \pm 2,3$
• 8 9 10 11 12 13 14	0,5	0,5±0,2 0,2±0,1 - - -	I,0±I,0 I,0±I,0 0 	2,0±0,9 0,8±0,6 0,4±0,4 - -	$6,7 \pm 1,6$ 3,6 ± 1,2 0,8 ± 0,4 0,8 ± 0,4 0,4 ± 0,4 0,4 ± 0,4 0	7,2 \pm 1,2 4,3 \pm 1,0 1,5 \pm 0,6 3,1 \pm 0,8 0,8 \pm 0,4 0,4 \pm 0,3 0,8 \pm 0,4	II,3±2,5 7,8±2,0 5,9±1,8 2,4±1,2 2,3±1,1 I,8±1,0 I,1+0,6	$5,2\pm0,8$ $4,5\pm0,7$ $2,6\pm0,6$ $2,7\pm0,5$ $I,I\pm0,4$ $I,I\pm0,4$ 0.6 ± 0.2	6,9±1,5 9,4±1,8 6,3±1,5 7,3±1,5 4,5±1,1 2,4±0,9	4,9±2,0 4,9±2,0 3,3±1,6 5,8±2,2 2,5±1,4 1,6±1,1
19 19 16 17		-	-	- - -	0 0 0	0,4±0,3 - 0,2±0,2	D,6±0,6	0,7±0,3 -	I,0±0,6 0,7±0,5 0	-

Таблица III.

Распределение числа ливневых частиц в в фотоэмульсионных звездах, образованных протонами с энергией Т (в % %)

те до сих пор исследовались лишь мезоны с энергией, не превышающей 20 Гэв.

Отмеченные особенности поведения множественности ливневых частиц можно проследить и в их дифференциальных распределениях, представленных в таблице Ш . Эти распределения хорошо согласуются с опытом, однако при T > 20 Гэв теоретические величины оказываются систематически завышенными по сравнению с экспериментальными.

Различия в теоретических и экспериментальных характеристиках каскадных и испарительных частиц, рождающихся при T > 5 Гэв, проявляются особенно ярко, если рассмотреть корреляции этих частиц (см. рис. 2 и еще более наглядно на рис. 3).

Как видно, имеется вполне удовлетворительное согласие для $\bar{n_s}(n_h)$ ниже $T \approx 5$ Гэв. При бо́льших энергиях вид расчетных функций заметно отличается от измеренного на опыте. В частности, при T = 22,5 Гэв, на опыте не было обнаружено эвезд с числом $n_h > 40$, тогда как в расчетах их число составляет $\approx 7\%$. В области T > 20 Гэв расхождение между теорией и экспериментом на рис. 2 несколько маскируется тем обстоятельством, что расчетное значение $\bar{n_s}$ превышает экспериментальное, и уменьшение $\bar{n_s}(n_h)$ начинается при бо́льших значениях n_h , чем, например, для T = 14 Гэв.

Расхождение для зависимости $\bar{n}_g(n_g)$ весьма разительное; уже при энергии 6,2 Гэв трудно говорить даже о качественном согласии с опытом. Прямые измерения $\bar{n}_g(n_g)$ при меньших энергиях отсутствуют, однако можно ожидать, что характер корреляций при T = 3,2 Гэв будет примерно такой же, как и при T = 1,87 в случае пион-ядерных реакций, где соответствующие величины измерены ^{/45/}. Сравнение показывает, что при этих энергиях, действительно, среднее число g -следов падает с ростом

n s

Следует отметить, что при анализе характеристики $\bar{n}_{b}(n_{s})$ расхождение проявляется в еще большей степени, хотя его характер остается прежним. Однако сравнение теории с опытом целесообразнее проводить для функции $\bar{n}_{s}(n_{s})$, поскольку эта характеристика не зависит от неточностей расчета испарительной стадии взаимодействия.

Рис.2. Зависимость средней множественности ливневых частиц п_s от числа h -следов в эвезде, образованной протоном с энергией Т . Гистограммы - расчет для ядра ⁷⁰ Ga . Значками **O**, • , Δ и ▲ нанесены экспериментальные данные соответственно для энергий T = 22,5 /21/, 14 /26/, 6,2 /21/ и 0,85/14/Гэв. Вследствие бедности экспериментальных данных для T=0,95 Гэв вместо п_s указаны теоретические и экспериментальные значения (n_s + n_s) . Значения п_s в этом случае являются убывающей функцией п_h, и их эначения более чем в два раза ниже при-

веденных на рисунке значений (<u>n + n</u>).

Рис.3. Зависимость средней множественности g -следов от числа ливневых частиц в звезде, образованной протоном в фотоэмульсии. Кривые - расчет для ядра ⁷⁰ Ga , цифра около кривой указывает энергию первичного протона (в Гэв). Кружками и треугольниками нанесены экспериментальные данные соответственно для T = 6,2 и 22,5 Гэв /21/.

3. Угловые и энергетические характеристики

вторичных частиц

Известная нам сейчас информация об энергетических распределениях частиц в неупругих протон-ядерных столкновениях является весьма отрывочной.

На рис. 4 приведены энергетические спектры каскадных частиц. Расчетные эначения оказываются очень близкими к измеренным на опыте. Лишь при T = 22,5 Гэв заметно некоторое различие: теоретический спектр становится несколько мягче экспериментального (вычисленное эначение среднего импульса составляет 450 ± 10 Мэв/с, а экспериментальное - 476 ± 11 Мэв/с $^{/21/}$). Это особенно хорошо заметно для интегральных спектров на рис. 5.

Обращает на себя внимание, что существенное – при T = 22,5 Гэв более, чем в два раза – различие экспериментальных и теоретических значений \bar{n}_g – сопровождается лишь незначительным – около 5% при T = = 22,5 Гэв – различием в средних импульсах g -частиц. Еще менее различаются расчетные и экспериментальные значения угловых характеристик g-частиц. Согласие с опытом здесь имеет место во всем диапазоне ускорительных энергий (см. рис. 6).

Энергия ливневых частиц измерена всего лишь при двух значениях энергии первичного протона. Результаты этих работ вместе с теоретическими кривыми представлены на рис. 7.

Спектр *п* -мезонов, измеренный при T = 9 Гэв ^{/46/}, хорошо ложится на расчетную кривую. Результаты, полученные при T = 25 Гэв, заслуживают более детального обсуждения.

Авторы работы ^{/33/}, анализируя интегральный спектр вторичных протонов, образованных в фотоэмульсии протонами с энергией 25 Гэв, отметили наличие "колена" в спектре N(>T) при T = 2 Гэв. Соответствующий спектр вторичных π -мезонов при этом не имеет никаких особенностей. Сравнение расчетов с данными этой работы на рис. 7 показывает, что при учете реальных экспериментальных условий (отбор событий с п >7) каскадная теория достаточно хорошо воспроизводит энергети-

Рис.4. Энергетические и импульсные спектры для g -следов в эвездах, образованных протонами с энергией Т в фотоэмульсии (в произвольных единицах, значения Т в Гэв). Гистограммы - расчет, для ядра ⁷⁰ Ga . Экспериментальные точки вэяты из работ

Рис.5. Интегральные спектры g -частиц N(>p) = Соответствующие дифференциальным распределениям W(p), изображенным на рис. 4 Кривые – расчет, экспериментальные точки взяты из работы

Рис.7. Интегральные энергетические спектры N(>T) вторичных частии, образованных при облучении ядерной эмульсии протонами с энергией Т (в произвольных единицах, энергия вторичных частиц – в Гэв). Сплошные кривые – расчет для ядра ⁷⁰ Ga . Пунктирные кривые – расчет для событий с n_h >7. Экспериментальные точки (кружки – для *п* –мезонов, треугольники – для протонов) вэяты из работ /30,33,46/. ческий спектр *п* -мезонов ^x . В то же время интегральный спектр протонов согласуется с опытом лишь при T > 2 Гэв, т.е. в области энергий, больших той, при которой в работе ^{/33/} было обнаружено "колено". С уменьшением энергии вторичных протонов расхождение увеличивается.

Следует отметить, что это расхождение не является чем-либо неожиданным Действительно, протоны с $T_p \leq 500$ Мэв составляют основную часть g -частиц, расчетный спектр которых, как мы видели выше, при высоких энергиях мягче экспериментального. Завышенное число ливневых протонов в интервале $0.5 \leq T_p \leq 2$ Гэв, по-видимому, является отражением того факта, что теоретические значения \overline{n}_s при T > 20 Гэв превышают экспериментальные; однако этот вопрос требует еще дальнейшего изучения.

Вместе с тем следует подчеркнуть, что различие экспериментальных и расчетных данных кажется эначительным лишь при сравнении интегральных спектров, дифференциальные распределения различаются уже не так заметно (ср. рис. 4 и 5.).

На рис. 8 приведены угловые распределения s -следов. Во всех случаях (в том числе и при T>20 Гэв) каскадная теория вполне хорошо согласуется с опытом.

4. Зависимость характеристик нуклон-ядерного взаимодействия от типа ядра-мишени

До сих пор мы ограничивались рассмотрением взаимодействий с фотоэмульсией; это было связано с тем, что лишь для фотоэмульсии имеется достаточно большое количество экспериментальных данных, позволяющее проследить изменение различных характеристик нуклон-ядерного взаимодействия в зависимости от величины энергии первичного протона.

Рассмотрим теперь, как зависят свойства неупругих нуклон-ядерных взаимодействий от типа ядра-мишени.

х) Незначительное расхождение при больших значениях T_{π} обусловлено тем, что в расчете присутствуют π -мезоны с энергней выше 4 Гэв, которые не были зарегистрированы на опыте.

paбor

В области энергий ниже порога мезонообразования наши результаты оказываются весьма близкими к соответствующим расчетным данным Бертини, который уже выполнил достаточно детальное сравнение расчетов с опытом ^{/34/}и установил хорошее согласие (см. также работы ^{/35,36/}), поэтому мы сейчас не будем касаться этой области энергий.

При больших энергиях наиболее полно неупругие нуклон-ядерные взаимодействия изучены при T = 660 Мэв. На рис. 9 с опытом сравнивается зависимость от массового числа ядра-мишени A двух характеристик: полного сечения неупругих взаимодействий $\sigma_{\rm in}$ и числа рождающихся "испарительных" нейтронов \bar{n} .

Принимая во внимание разброс экспериментальных значений σ_{in} . следует признать, что каскадная теория дает достаточно точные сечения σ_{in} .

Сравнивая с опытом число нейтронов \bar{n} , следует помнить, что часть экспериментальных данных, приведенных на рис. 9, получена в космических лучах с использованием толстых мишеней ^{/41/}, что приводит к завышенным значениям \bar{n} ; остальные экспериментальные точки на рис. 9 взяты из работы ^{/40/}, где под "испарительными" нейтронами понимали все нейтроны, летящие в угол, больший 30°. В действительности под такими углами летит также и значительная часть каскадных частиц; учет этого обстоятельства существенно улучшает согласие теории с опытом.

Угловые распределения быстрых нуклонов (Т_N > 60 Мэв), выбитых протонами из ядер углерода, алюминия и урана, изображены на рис. 10.

При общем хорошем согласии теории и эксперимента обращает на себя внимание подъем в области больших углов, который проявляется даже для тяжелых ядер.Этот подъем обусловлен, в основном; нуклонами отдачи, образованными в <u>неупругих</u> внутриядерных N-N столкновениях (см. пунктирную гистограмму для углерода).

Следует подчеркнуть, что согласие наблюдается не только в форме угловых распределений, но и в абсолютных значениях: для углерода, алюминия и урана в расчете на один первичный протон теория дает соот-

ветственно 2,14 ± 0,07; 2,16 ± 0,07 и 1,90 ± 0,06 куклонов с энергией T > > 60 Мэв, что в пределах статистических ошибок прекрасно согласуется с экспериментальными значениями 2,4 ± 0,3; 2,5 ± 0,3 и 1,75 ± 0,3 /42/.

В работе ^{/43/} для нескольких ядер были измерены энергетические спектры протонов под различными углами θ к направлению пучка первичных протонов. На рис. 11 эти результаты для случая ядер углерода и урана при $\theta = 18^{\circ}$, 24° и 30° сравниваются с теоретическими величинами. Как видно, и в этом случае согласие вполне удовлетворительное. Близкими оказываются и абсолютные значения. Так, для выхода протонов с энергией $T_p > 60$ Мэв из ядер ²³⁸ U под указанными выше углами теория дает соответственно 1,00±0,12; 0,95±0,10 и 0,64±0,07 барн/стерад., что очень близко к экспериментальным значениям 0,900±0,045; 0,716±0,036 и 0,592±0,030 барн/стерад. ^{/43/}. Для сравнения спектров частип, вылетающих под меньшими углами, необходимо учитывать уже дифракционное рассеяние протонов, которое регистрировалось в работе ^{/43/}. и влияние которого, как отмечают авторы этой работы, весьма существенно при $\theta < 18^{\circ}$.

5. Заключение

Из сопоставления данных, приведенных в предыдущих разделах, мы можем Заключить, что каскадно-испарительная модель хорошо передает все основные качественные и количественные черты неупругих нуклонядерных взаимодействий. Отклонения от общепринятой модели начинают проявляться в характеристиках низкоэнергетической компоненты рождающихся частиц при энергиях Т ≥ 5 Гэв. Характер этих .отклонений, в общем, тот же, что и в случае мезон-ядерных столкновений.

В области T > 20 Гэв намечается расхождение и для множественности ливневых частиц.

Качественно обнаруженные расхождения можно объяснить уменьшением плотности выбиваемых внутриядерных нуклонов по мере развития каскада. При этом находит свое объяснение и хорошее согласие расчетных и экспериментальных угловых распределений g -частиц; поскольку

Рис.11. Энергетические спектры вторичных протонов, вылетевших из ядер углерода и урана под углом θ (в произвольных единицах, энергиях T_p – в Гэв). Энергия первичных протонов T = 660 Мэв. Гистограммы – расчет по каскадной теории. Пунктирные кривые проведены через экспериментальные значения из работы $^{/43/}$.

угловые распределения рассеянных нуклонов при энергиях, меньших нескольких сотен Мэв (именно такова энергия g -частиц), практически изотропны, то увеличение или уменьшение числа N-N столкновений не сказывается на углах вылета g -частиц.

Все эти вопросы требуют еще, конечно, тщательного теоретического и экспериментального исследования. В частности, интересную возможность в этом направлении открывает изучение зависимости среднего числа

g -Следов от числа ливневых частиц в звезде; эта характеристика, повидимому, наиболее чувствительна к отмеченному выше изменению механизма взаимодействия, а ее расчет не связан с предположением о том, каким образом остаточное ядро снимает свое возбуждение.

Литература

- 1. В.С. Барашенков, К.К. Гудима, В.Д. Тонеев. Препринт ОИЯИ Р2-4302, Дубна, 1969.
- 2. В.С. Барашенков, К.К. Гудима, В.Д. Тонеев. Acta Phys. Polonica (в печати); препринт ОИЯИ Р2-4065, 1968.
- 3. В.С. Барашенков, К.К. Гудима, В.Д. Тонеев. Acta Phys. Polonica (в печати),
- 4. В.С. Барашенков, К.К. Гудима, В.Д. Тонеев. Препринт ОИЯИ P2-4066, 1968.

5.В.С. Барашенков, К.К. Гудима, В.Д. Тонеев. Препринт ОИЯИ Р2-4313,1969.

6. P.E.Hodgson, Phil . Mag., 45, 190 (1954).

7. В.И. Остроумов. ЖЭТФ, <u>32</u>, 3 (1957).

- 8. A.M.Perry. Phys. Rev., 82, 307 (1951).
- 9. J.Friedman (цитируется по N.Metropolis et al. Phys. Rev., <u>110</u>, 185 (1958)).
- 10. G.Bernardini, E.T.Booth, S.J.Lindenbaum, Phys. Rev., <u>85</u>, 826 (1952).
- 11. A.D.Sprague, Phys. Rev., 94, 994 (1954).
- 12. Е.Л. Григорьев, Л.П. Соловьева. ЖЭТФ, <u>31</u>, 932 (1956).
- 13. W.O.Lock, P.V.March. Proc. Roy. Soc., A230, 222 (1955).

- 14. W.O.Lock, P.Vó.March, R.McKeague, Proc. Roy. Soc., <u>A230</u>, 368 (1955).
- 15. M.Widgoff, C.P.Leavitt, A.M.Shapiro, L.W.Smith, C.E.Swartz. Phys. Rev., 92, 851 (1953).
- 16. W.R.Johnson, Phys. Rev., 99, 1049 (1955).
- 17. P.L.Jain, H.C.Glahe, J.D.Rinaldo, P.D.Bharadwaj. Nucl. Phys., <u>67</u>, 641 (1965).
- 18. P.E.Cavanaugh, D.M.Masicin, M.Schein, Phys. Rev., 100, 1263 (1955).
- 19. B.Y.Rajopadhye. Phil. Mag., 5, 537 (1960).
- 20.H.Winzeler, B.Klaiber, W.Koch, M.Nicolić, M.Schneeberger. Nuovo Cim., <u>17</u>, 8 (1960).
- 21. H.Winzeler, Nucl. Phys., 69, 661 (1965).
- ²², P.L.Jain, H.C.Glane, Phys. Rev., <u>116</u>, 458 (1959).
- 23. Н.П. Богачев, С.А. Бунятов, Т. Вишки, Ю.П. Мереков, В.М. Сидоров, В.А. Ярба. ЖЭТФ <u>38</u>, 432 (1960).
- 34.V.S.Barashenkov, V.A.Beliakov, V.V.Glagolev, N.Dalkhazhav, Yao Tsyng Se, L.F.Kirillova, R.M.Lebedev, V.M.Maltsev, P.K.Markov, M.G.Shafranova, K.D.Tolstov, E.N.Tsuganov, Wang, Shou Feng, Nucl. Phys., <u>14</u>, 522 (1959/60).
- 25.E.Balea, E.M.Friedlander, C.Potoceanu, M.Sahini. Nuovo Cim., 25, 214 (1962).
- C.Brieman, M.Csejthey-Barth, J.P.Lagnaux, J.Sacton. Nuovo Cim., 20, 1017 (1961).
- 27. H.Meyer, M.W.Teucher, E.Lohrmann. Nuovo Cim., <u>28</u>, 1399 (1963).
- 28. W.Enge. Z. Physik 185, 456 (1965).
- 29. A.Barbaro-Galtieri, A.Manfredini, B.Quassiati, C.Castagnoli, A.Gainotli, I.Ortalli., Nuovo Cim., <u>21</u>, 469 (1961).
- Н.П. Богачев, Ван Шу-фень, И.М. Граменицкий, Л.Ф. Кириллова,
 Р.М. Лебедев, В.Б. Любимов, П.К. Марков, Ю.П. Мереков, М.И. Подгорецкий, В.М. Сидоров, К.Д. Толстов, М.Г. Шафранова. АЭ, <u>4</u>, 281 (1958).

- 31. Y.K.Lim. Nuovo Cim., 26, 1221 (1962).
- 32. G.C.Morrison, H.Muirhead, W.G.V.Rosser. Phi. Mag., 44, 1236(1953).
- 33. G.K.Rao, P.D.K.Rao, A.A.Kamal. Canad. J.Phys., 45, 3211 (1967).
- H.W. Bertini. Report ORNL-3383, Oak Ridge 1963; Phys. Rev.,
 131, 1801 (1963); Phys. Rev., 171, 1261 (1968).
- В.С. Барашенков, В.М. Мальцев, В.Д. Тонеев. Изв. АН СССР, <u>30</u>, 323 (1966).
- 36. В.Д. Тонеев. ОИЯИ Б1-2245 (1965); Б1-2740 (1966); Б1-2812 (1966).
- 37. В.С. Барашенков, К.К. Гудима, В.Д. Тонеев. Препринт ОИЯИ Р2-4183, 1968.
- 38. В.Н. Москалев, Б.В. Гевр иловский. ДАН СССР <u>110</u>, 972 (1956).
- 39. F.F.Chen, C.P.Lewitt, A.M .Shapiro. Phys. Rev., 99, 857 (955).
- Р.Г. Васильков, Б.Б. Говорков, В.И. Гольданский, В.А. Коньшин, О.С. Лупандин, Е.С. Матусевич, Б.А. Пименов, С.С. Прохоров, С.Г. Цыпин. ЯФ, <u>7</u>, 88 (1967).
- 41. M.Bercovitch, H.Carmichael, G.Hanna, E.Hincks. Phys. Rev., <u>11</u>9, 412 (1960).
- 42. В.А. Коньшин, Е.С. Матусевич, В.И. Регушевский. ЯФ, 4, 337 (1966).
- 43. Л.С. Ажгирей, И.К. Взоров, В.П. Зрелов, М.Г. Мещеряков, Б.С. Неганов, Р.М. Рындин, А.Ф. Шабудин. ЖЭТФ, <u>36</u>, 1631 (1959).
- 44, I.Z.Artykov, V.S.Barashenkov, S.M.Eliseev, Nucl. Phys., B6, 11(1968).
- 45. B.E.Ronne , O.Danielson, Arkiv för Fysik 22, 175 (1962).
- 46. Ю.Т. Лукин, Ж.С. Такибаев, Е.В. Шалагина. ЖЭТФ, 38, 1074 (1960).

Рукопись поступила в издательский отдел 4 апреля 1969 года.