4200

СООБШЕНИЯ

NAMENC

AAB&DAT@PMG TE@PETMUE(N.O.M.

Экз. чит. ЗАЛА

P2 4258

Дубна

С.М.Елисеев

ОБРАЗОВАНИЕ ЯДЕР С МАССОВЫМИ ЧИСЛАМИ А = 2-4 ПРИ СТОЛКНОВЕНИЯХ ЧАСТИЦ ВЫСОКИХ ЭНЕРГИЙ СО СЛОЖНЫМИ ЯДРАМИ

(Основные экспериментальные результаты и их интерпретация) 1969

и их интерпретация)

(Основные экспериментальные результаты

ОБРАЗОВАНИЕ ЯДЕР С МАССОВЫМИ ЧИСЛАМИ А = 2-4 ПРИ СТОЛКНОВЕНИЯХ ЧАСТИЦ ВЫСОКИХ ЭНЕРГИЙ Со СЛОЖНЫМИ ЯДРАМИ

С.М.Елисеев

P2 - 4258

Введение

Хорошо известно, что при столкновении частиц с ядрами имеется большая вероятность образования различных ядерных осколков (фрагментов)/1-3/. Значительную часть таких осколков составляют простые ядра с массовыми числами A = 2-4. Особо следует отметить образование дейтронов и a -частиц с кинетическими энергиями, в сотни раз превышающими их энергию связи^{/4-8/}. Данная работа посвящена систематическому анализу и обсуждению основных моделей и опытных результатов по генерации простых ядер при ускорительных энергиях.

Вначале будут рассмотрены характеристики всей совокупности этих ядер. В последнем параграфе систематизированы известные сейчас данные относительно высокоэнергетических (с Е_k > 100 Мэв) рождающихся d ,

t - и а -частиц.

Образование ядер с массовыми числами A=2-4 при взаимодействии частиц с ядрами представляет интерес для выяснения структуры сложных ядер. Что касается теоретической интерпретации рассматриваемого явления, то в данном случае задача облегчается (по сравнению, например, с образованием фрагментов в случае z>3) тем, что известны свойства частиц a, t, d, а также их волновые функции. Это, в частности, дает возможность выполнить ряд расчетов.

Сечения процесса

В табл. 1 и на рис. 1-4 приведены сечения образования d -, t и а -частиц^{/9-31/}. Ошибки измерений довольно велики и составляют до нескольких десятков процентов. Имеющаяся информация о сечениях не

является полной. Это особенно относится к зависимости сечений от вида первичной частицы. Подавляющаяся часть результатов получена при взаимодействии протонов с различными ядрами. Нет достаточных даиных об образовании d - , t - u a -частиц при взаимодействиях π -мезонов, нейтронов и странных частиц с ядрами. Однако есть основания считать, что вероятность образования осколков определяется в основном энергией возбуждения остаточного ядра, образующегося после прохождения каскадной стадии реакции.

На рис. 1-3 показаны функции возбуждения реакций образования тритонов и а -частиц при взаимодействии протонов с различными ядрами. Видно, что в случае легких ядер-мишеней сечения растут с увеличением энергии до 10 Гэв и далее стремятся к насыщению. Для тяжелых ядермишеней насыщение наступает при несколько более высоких энергиях. Аналогичные зависимости имеют место при рождении фрагментов с $z \ge 3^{/2/}$. Это, возможно, указывает на сходство механизмов рождения фрагментов и легких ядер.

Сечения рождения *а* -частиц и трития при энергии первичных протонов 600 Мэв растут с массовым числом ядер мишеней как A^{1/3} (рис.4). Такая же зависимость в пределах ошибок измерений была получена при более низких энергиях/32/.

В некоторых работах измерялись сечения рождения частиц с изотропным и анизотропным (в Ц-системе) угловым распределением. Соответствующие данные приведены в табл. 2. В пределах ошибок измерений $\sigma_{\rm H3}$ и $\sigma_{\rm ани3}$ одинаковы для р , d , t и ³ Не . Для *а* -частиц отношение $\sigma_{\rm H3}$ / $\sigma_{\rm ани3}$ изменяется с изменением A от 8 при A =108 (серебро) до 1 при A =232 (торий).

Важной особенностью столкновения частиц со сложными ядрами является множественная генерация d-, t- и a -частиц. Однако здесь имеется мало результатов. Довольно уверенно можно построить лишь зависимость от энергии средней множественности a -частиц m_a, образующихся при взаимодействии протонов в эмульсии (рис. 5). m_a растет с первичной энергией по линейному закону.

Энергетические распределения вторичных частиц

Исследованию энергетических спектров d-, i- и a- частиц посвящен целый ряд работ /9,10,25,26,33⁻⁴⁸. Энергетические распределения имеют характерный для испарительной теории вид. Это видно, например, из рис. 6, на котором показаны спектры a -частиц, образующихся при взаимодействиии протонов в эмульсии. Форма распределения слабо зависит от первичной энергии. В случае налетающих антипротонов спектры несколько шире, что соответствует более высокой температуре остаточного ядра. Средняя энергия частиц, летящих вперед, больше средней энергии частиц, летящих назад /37/. Так, при T =660 Мэв для a -частиц, образующихся при взаимодействии протонов в эмульсии, имеем E_{KF} =16 Мэв, E_{KB} =13,7 Мэв /37/.

В работах ^{/44,49/} было обнаружено, что в энергетическом распределении имеется длинный "квост" в сторону больших энергий. Теория испарения удовлетворительно описывает большую долю частиц за исключением частиц, соответствующих высокоэнергетической области спектра ^{/36,42,47,48/}. Рассчитанные параметры имеют значения: r = 2 Мэв для вторичных протонов, r = 4 Мэв для a -частиц, что соответствует энергии возбуждения (100-200) Мэв. Отсюда можно сделать вывод, что тяжелые фрагменты испаряются из ядра на ранних стадиях, когда температура ядра еще велика. Заметим, что в случае образования d - , t -и a - частиц значения параметров заключены в приемлемых пределах (ср. рождение тяжелых фрагментов^{/2/}).

В работах^{/9,19/} изучались энергетические спектры для изотропных и анизотропных процессов. В обоих случаях распределения имеют примерно одинаковый вид. Однако в прямых процессах максимум несколько смещен в сторону больших энергий.

Угловые распределения

Угловые распределения рождающихся d-, t- и a -частиц в л.с. несколько анизотропны. Имеет место незначительная коллимация вперед по отношению к пучку⁹,10,26,35-40/.Известные сейчас экспериментальные данные не позволяют сделать вывода о зависимости вида угловых распре-

делений от первичной энергии. В пределах ошибок измерений значения F/B не зависят от первичной энергии. В случае взаимодействия антипротонов в эмульсии распределение всех генерируемых а -частиц более анизотропно, чем при взаимодействии протонов (см. рис.7) /26/. С увеличением энергии вторичных частиц увеличивается величина F/B . В работе^{/38/} сравнивались расчётные и экспериментальные значения F/B для а -частиц различных энергий, образующихся при взаимодействии протонов с энергией 140 Мэв в эмульсии. Расчёт производился по модели Гольдбергера (обычный каскад и испарение а -частиц). Для низкоэнергетических а .-частиц было получено согласие теории с опытом. Однако при высоких энергиях а -частиц имеет место расхождение расчёта и эксперимента. Например, при E_a > 8 Мэв (F/B) опыт= 3,2<u>+0</u>,9, (F/B) расч= 1,4 (таким образом, как и в случае энергетических спектров, теория испарения описывает только часть результатов). Для согласования теории с опытом необходимо предположить, что 0,25 а -частиц (в среднем) на одну звезду образуются в процессах, отличных от испарения.

Аналогичные результаты получаются для более высоких энергий первичных частиц.

Об испарении частиц из сложных ядер

Для описания рождения d-, t- и а -частиц давно применяется статистическая модель (модель испарения). Согласно этой модели падающая на ядро медленная частица (с энергией менее нескольких десятков Мэв) захватывается ядром. Образуется возбужденное ядро, из которого и испаряются вторичные частицы^{/50/}. При более высоких энергиях модель испарения применяется к остаточному ядру, образующемуся после каскадной стадии реакции^{/51,52/}.

Ранние исследования образования а -частиц обнаружили, два интересных эффекта: появление подбарьерных частиц и "хвоста" в высокоэнергетической части спектра (см., например, ^{/53/}). Первое явление интерпретировалось как следствие редукции кулоновского барьера ядра из-за теплового расширения. Второй эффект объяснялся образованием а -частиц в процессе развития внутриядерного каскада. Как показал Бакер ^{/40/}, оба эти эффекта можно описать, если учесть движение остаточного ядра. В работе^{/39/}был произведен статистический анализ образования а -частиц при взаимодействии протонов с энергиями 1 Гэв и 2 Гэв и эмульсии. Данные по остаточным ядрам были взяты из работы Метрополиса^{/52/}, в расчётах учитывалось движение остаточного ядра.

Рассчитанные и опытные спектры совпадают в пределах ошибок измерений. Хотя в расчёте получено число низкоэнергетических a -частии несколько заниженное, отсюда не следует однозначного вывода о редукции кулоновского барьера высоковозбужденных ядер. Теория дает также заниженное число a -частиц больших энергий. Уменьшение значения параметра в от 1/10 до 1/20 незначительно удлиняет "хвост" энергетического распределения. Отсюда делается вывод, что a -частицы образуются также в ядерном каскаде^{/39/}. Угловые распределения a -частиц (см. таблЗ очень хорошо согласуются с теорией. Этот факт несколько удивителен, так как некоторая доля a -частиц образуется в результате развития внутриядерного каскада. Однако каскадные частицы имеют значение F/B такоб же, как и a -частицы (табл.3).

Из сказанного можно сделать вывод, что испарительная теория удовлетворительно описывает свойства большей части частиц. Частицы боль ших энергий, по-видимому, образуются в процессах, отличных от испарительного.

Образование быстрых ядерных осколков

Образование быстрых дейтронов в ядерных расщеплениях впервые на блюдалось в Дубне в 1958 г.^{/4/}. С тех пор это интересное явление подвер галось всестороннему исследованию^{/54-86/}. Были получены важные теоретические и экспериментальные результаты. Анализу этих результатов по священ данный параграф.

В табл. 4 представлены сечения образования частиц с z =2 при вза имодействии частиц высоких энергий в эмульсии. Видно, что сечения рож дения вторичных частиц уменьшаются с увеличением их энергии. В слу чае первичных ^π -мезонов наблюдается рост сечений с первичной энер гией. Для антипротонов сечения больше, чем для протонов, это обуслов лено вкладом частиц ниэких энергий (≈ 100 Мэв). В интервале энерги протонов (10-20) Гэв сечения постоянны в пределах ошибок измерени!

О возможных механизмах генерации быстрых частиц

c A=2'-4

Выход быстрых гелиевых частиц зависит от $N_{\rm H}$ по закону W = Aeгде A и B - постоянные, A \approx 0,09, B \approx (0,7-0,4).

Интерес представляет сравнение характеристик звезд с быстрыми частицами и без них (см. табл. 5). Распределения по N_H для звезд с быстрыми частицами смещены в сторону больших N_H. Эти распределения не зависят от энергии быстрых частиц. Последнее обстоятельство, возможно, свидетельствует об отсутствии связи между энергией быстрых частиц и температурой остаточного ядра. При энергиях = 10 Гэв распределения по N_H не зависят ни от вида первичной частицы, ни от ее энергии.

Вероятность испускания быстрых a -частиц растет с N_{e} и не зависит от N_{e} и N_{b} . Вероятность вылета дейтронов и тритонов растет с N_{e} , N_{B} и N_{e} . Увеличение сечения с ростом N_{e} не противоречит предположению, что образование быстрых частиц связано с внутриядерным каскадом.

Энергетические распределения частиц имеют вид

(где ь для первичных мезонов и нуклонов с энергией 10 Гэв равно 3,0±0,4) и одинаковы для различных интервалов N_н . Это свидетельствует о независимости энергии вылета частиц от температуры ядра. При энергии E < 50 Мэв/нукл. нет корреляции между углом вылета частицы и ее энергией. Однако частицы более высоких энергий коллимированы вперед.

В табл. 6 приведены половинные углы вылета d-, t- и а -частиц. Видно, что половинные углы в пределах ошибок измерений не зависят от вида первичной частицы и от ее энергии. С увеличением энергии вторичных частиц их угловое распределение становится более анизотропным. Угловые распределения быстрых частиц с z = 2 более анизотропны, чем распределения g -частиц.

8

В настоящее время не существует последовательной теори ядерных взаимодействий, поэтому для описания вылета высокоэнерго тических частиц из ядер применяют различные модельные пред ставления /4,46,61-67,71-79,81-86/. Как известно, обычной каскадно-ис парительной моделью удается описать основные характеристики взаим действия п -мезонов и нуклонов со сложными ядрами/51/. В работе/7 при сравнении протон-ядерных и пион-ядерных взаимодействий при энерг ≈10 Гэв был сделан вывод, что появление быстрых ядер гелия нель объяснить испарительным механизмом. В ряде работ рассматривались яде ные реакции с учетом кластерной структуры ядра /67,71,72/. Остроум и др./45,86/ произвели расчет каскада в ядрах эмульсии при энергии пе вичных протонов до 660 Мэв. В расчетах учитывалась возможность образ вания внутри ядер устойчивых подструктур из четырех нуклонов. Так к о таких образованиях наши сведения недостаточны, то фактически решала обратная задача: из сравнения теории с опытом определялось время пр бывания нуклонов в составе а -кластеров. Было получено, что около пол вины времени нуклоны в легких ядрах и на периферии тяжелых яд эмульсии пребывают в составе а -образований. Выбор энергетического ра пределения а -кластеров в интервале 0-20 Мэв не оказывает заметно влияния на свойства выбитых частиц. Совпадение расчетных и экспериме тальных данных авторы не считают доказательством абсолютной сп ведливости рассмотренной модели. Не исключается иной механизм, нап мер, подхват (р, а). В работах/79,85/ исследовалась а -частична кластеризация с помощью реакции (а, 2а) на тяжелых ядрах при эн гии 915 Мэв. Проводились измерения на совпадение только для тех а-ч. тиц, которые соответствовали упругому а -а рассеянию. Число та случаев согласуется с предположением о полной кластеризации нукло в граничной области ядра с плотностью $\rho < 0.05 \rho_0$ (ρ_0 - плотность яд ного вещества в центре ядра). В опытах/79,85/ регистрировались толь случаи квазиупругого рассеяния. В действительности первичная части может взаимодействовать с группировкой нуклонов и неупруго/82/

c A = 2 - 4

настоящее время не существует последовательной B теории ядерных взаимодействий, поэтому для описания вылета высокоэнергеиз ядер применяют различные модельные тических частиц пред-/4,46,61-67,71-79,81-86/. ставления каскадно-испарительной моделью удается описать основные характеристики взаимодействия п -мезонов и нуклонов со сложными ядрами /51/. В работе /77/ при сравнении протон-ядерных и пион-ядерных взаимодействий при энергии ≈10 Гэв был сделан вывод, что появление быстрых ядер гелия нельэя объяснить испарительным механизмом. В ряде работ рассматривались ядерные реакции с учетом кластерной структуры ядра /67,71,72/. Остроумов и др. /45,86/ произвели расчет каскада в ядрах эмульсии при энергии первичных протонов до 660 Мэв. В расчетах учитывалась возможность образования внутри ядер устойчивых подструктур из четырех нуклонов. Так как о таких образованиях наши сведения недостаточны, то фактически решалась обратная задача: из сравнения теории с опытом определялось время пребывания нуклонов в составе а -кластеров. Было получено, что около половины времени нуклоны в легких ядрах и на периферии тяжелых ядер эмульсии пребывают в составе а -образований, Выбор энергетического распределения а -кластеров в интервале 0-20 Мэв не оказывает заметного влияния на свойства выбитых частиц. Совпадение расчетных и экспериментальных данных авторы 1841 не считают доказательством абсолютной справедливости рассмотренной модели. Не исключается иной механизм, например. подхват (p , q). В работах^{79,85/} исследовалась q -частичная кластеризация с помощью реакции (а, 2а) на тяжелых ядрах при энергии 915 Мэв. Проводились измерения на совпадение только для тех а-частиц, которые соответствовали упругому а -а рассеянию. Число таких случаев согласуется с предположением о полной кластеризации нуклонов в граничной области ядра с плотностью $\rho < 0.05 \rho_0$ (ρ_0 – плотность ядерного вещества в центре ядра). В опытах 79,85/ регистрировались только случаи квазиупругого рассеяния. В действительности первичная частица может взаимодействовать с группировкой нуклонов и неупруго /82/. По-

этому в тяжелых ядрах a -кластеры, по-видимому, образуются с большей вероятностью, чем это было обнаружено в работах/79,85/. Если учесть неупругие взаимодействия первичных частиц с a - подструктурами, то можно объяснить выход $\frac{3}{2}$ Не из легких ядер/83/. При этом вкладом реакций на более сложных подструктурах можно пренебречь/73/. Другие возможные механизмы рождения $\frac{3}{2}$ Не вносят малый вклад. Например, ни распадом возбужденного ядра, ни квазиупругим выбиванием группировок из трех, нуклонов невозможно определить большой выход $\frac{3}{2}$ не /83/.

В работе Блохинцева/81/ было показано, что образование энергичных осколков можно объяснить флюктуационным механизмом. Образование быстрых дейтронов происходит при квазиупругом взаимодействии первичной частицы с флюктуацией ядерного вещества. Сечение такого процесса равно $\sigma = \sigma_{\rm e}$ W₂ (R).

Здесь σ – сечение квазиупругого столкновения, W(R) – вероятность нахождения двух нуклонов в ядре на расстоянии, меньшем R.

Для тяжелых ядер имеем:

 $\sigma = (z_n / A) \sigma_A W_{d}(R) .$

Количественные результаты флюктуационного механизма удовлетворительно согласуются с экспериментальными данными/4/. Однако обычный флюктуационный механизм/81/ не описывает образование любых многонуклонных ассоциаций, например трехнуклонных/74/.

В модели Батлера и Пирсона/61,62/ образование дейтронов происходит в процессе развития внутриядерного каскада. Именно, предполагается, что каскадные нейтрон и протон, имеющие примерно одинаковые импульсы, объединяются в дейтрон. Этот дейтрон затем вылетает из ядра. Такому процессу соответствуют три диаграммы (см. рис. 8).

1. В начальном состоянии имеются нейтрон (\vec{k}_1) и протон (\vec{k}_2) . Нейтрон рассенвается на оптическом потенциале ядра V(r) и переходит в состояние \vec{k}_1 . Далее частицы (\vec{k}_1) и (\vec{k}_2) слипаются под действием нуклон-нуклонного потенциала V(r).

Образовавшийся дейтрон (к) вылетает из ядра.

2. Процесс протекает, как и в случае (1), но протон и нейтрон меняются ролями.

3. Нейтрон и протон взаимодействуют друг с другом с образованием дейтрона (,). Дейтрон рассеивается на оптическом ядерном потенциале и вылетает из ядра.

Если воспользоваться теорией возмущения, то можно вычислить число дейтронов, образующихся в одном ядерном' взаимодействии. С учётом релятивистских поправок получаем

$$\int_{a} (\vec{k}) = 3\pi (48)^{2} (\frac{k_{0}}{k})^{4} (\frac{\gamma}{\lambda} (\frac{h^{3} k^{2}}{4m^{2}c^{2}} + 1)^{3/2} I_{0} (R) [n_{p}(\frac{1}{2} \vec{k})]^{2}.$$

Здесь k₀ = mV / h², λ – длина волны нуклона с энергией 1 Гэв. Рассчитанные спектры дейтронов, рождающихся из Be, Al и Pt под действием протонов с энергией (10-30) Гэв, хорошо согласуются с опытом/62/. Однако для окончательного определения справедливости модели Батлера-Пирсона необходима проверка ее применимости к более тяжелым ядрам. Кроме рассмотренных гипотез об образовании быстрых осколков, существует еще ряд других. Мы их рассматривать не будем как несущественные.

Подводя итог, можно сделать некоторые выводы. Реакции с образованием d-, t- и a -частиц представляют значительный интерес для изучения внутренней структуры ядер. Дальнейшие экспериментальные исследования в этом направлении представляются весьма полезными. Особенно необходимо увеличение точности измерений. На пути теоретических исследований в настоящее время имеются большие трудности, так как нет теории ядерных взаимодействий. Всякое рассмотрение носит модельный характер. Необходима дальнейшая работа по анализу различных моделей и выбору таких моделей, которые описывают наибольшее число опытных данных.

Литература

11

1. Н.А.Перфилов, О.В.Ложкин, В.И.Остроумов. Ядерные реакции под действием частиц высоких энергий. Изд-во АН СССР, 1962.

- 2. С.М.Елисеев. Препринт ОИЯИ, Р2-4160, Дубна, 1968.
- 3. В.Н.Мехедов. Препринт ОИЯИ, Р-2383, Дубна, 1965.
- 4. Л.С. Ажгирей, И.К.Взоров, В.П.Зрелов, М.Г.Мещеряков, Б.С.Неганов, А.Ф.Шабудин. ЖЭТФ, <u>33</u>, 1185 (1957).
- 5. O.Skjeggestad and S.O.Sorensen, Phys. Rev., 113, 1115 (1959).
- 6. M.Yasin. Nuovo Cim., <u>34</u>, 1145 (1964).
- 7. M.Yasin, Nuovo Cim., <u>28</u>, 935 (1963).
- 8. G.Cocconi. Proc. 1960 Ann. int. conf. on high energy phys. at Rochester.
- 9. H.Dubost, M.Lefort, J.Peter and X.Tarrago. Phys. Rev., <u>136</u>, B 1618 (1964).
- 10. H.Dubost, B.Gatty, M.Lefort, J.Peter et X.Tarrago, Journ. de Phys., 28, 257 (1967).
- 11. Masatake, Honda and Devendra Lal. Phys. Rev., 118, 1618 (1960).
- 12. A. Currie, F. Libby and L. Wolfgang, Phys. Rev., 101, 1557 (1956).
- 13. В.Н. Мехедов. Ядерная физика, 5, 34 (1967).
- 14. A.Currie, Phys. Rev., 114, 878 (1959).
- 15. E.L.Fireman and F.S.Rowland. Phys. Rev., <u>97</u>, 780 (1955).
- 16. В.В.Кузнецов, В.Н.Мехедов. ЖЭТФ, <u>35</u>, 587 (1958).
- 17. K.Goebel, H.Schultes and J.Zahringer, CERN Report 64-12 Geneve, 1965.
- 18. K.Goebel. CERN Report N 58-2, Geneva, 1958.
- 19. E.L.Fireman and J.Zahringer. Phys. Rev., <u>107</u>, 1695 (1957). 20.E.L.Fireman. Phys. Rev., 97, 1303 (1955).
- 21.M.Lefort, G.Simonoff, X.Tarrago et R.Bibron. Journ. de Phys., 20, 959 (1959).
- 22. M.Lefort, G.M.Simonoff et X.Tarrago, Nucl. Phys., <u>25</u>, 216 (1961).
- 23. O.A.Schaeffer and J.Zahringer. Phys. Rev., <u>113</u>, 674 (1959).
- 24. О.В.Ложкин, Н.А.Перфилов, А.А.Римский-Корсаков, Дж.Фремлин, ЖЭТФ, <u>38</u>, 1388 (1960).
- 25. S.Katkoff, Phys. Rev., <u>164</u>, 1367 (1967).
- 26. S.Katkoff, Phys. Rev., 157, 1126 (1967).
- 27. M.Lefort et X.Tarrago, Nucl. Phys., <u>46</u>, 161 (1963).

- 28. H.Gauvin, M.Lefort et X.Tarrago. Nucl. Phys., 39, 447 (1962).
- 29. Von R.H.Bieri and W.Rutsch. Helv.Phys.Acta, <u>35</u>, 553 (1962). 30. D.W.Barr. Thesis, Univ. of California (1957).
- 31. Paul A.Benioff. Phys. Rev., 119, 316 (1960).
- 32, M.Lefort, X.Tarrago. Lab. Joliot Curie, Faculte des Sciences de Paris (1960).
- 33. R. Da Silveira. Phys. Lett., 9, 252 (1964).
- 34. A.Schwarz child and C.Zupancic. Phys. Rev., 129, 854 (1963).
- 35, T.Saniewska, E.Skrzypczak and P.Zielinski, Nucl. Phys., <u>70</u>, 567 (1955).
- 36, W.O.Lock, P.V.March and R.McKeague. Proc. Roy. Soc., <u>231</u>, 368 (1955).
- 37. Е.Л.Григорьев, Л.П.Соловьева. ЖЭТФ, <u>31</u>, 932 (1956).
- 38. H.Muirhead and W.G.V.Rosser. Phil. Mag., <u>46</u>, 652 (1955).
- 39. Norbert T. Porile. Phys. Rev., <u>135</u>, B371 (1963).
- 40. Elizabeth W.Baker, Seymour Katcoff and Charles P.Baker. Phys. Rev., <u>117</u>, 1352 (1960).
- 41. П.А.Ваганов, В.И.Остроумов, ЖЭТФ, <u>33</u>, 1131 (1957).
- 42. R.McKeague. Proc. Roy.Soc., 236, 104 (1956).
- 43. Erich Vogt. Adv. Nucl. Phys., 1, 261 (1968).
- 44. M.Lefort, G.Simonoff, X.Tarrago. Nucl. Phys. <u>19</u>, 173 (1960).
- 45. В.И. Остроумов, Р.А.Филов. ЖЭТФ, <u>37</u>, 643 (1959).
- 46. В.И.Остроумов, Н.А.Перфилов, Р.А.Филов. ЖЭТФ, 36, 367 (1959).
- 47. E.Jeannet, J.Rossell et E.Vaucher. Helv.Phys. Acta, 30, 484 (1957).
- 48. Cl.Zangger et J.Rossel. Helv.Phys. Acta, 29, 507 (1956).
- 49. L.E.Bailey. Report UCRL, 3334 (1956).
- 50. K.J. Le Counteur Nuclear reactions, V.1, N-H, Publ. Comp. Amsterdam, 1959.
- 51. С.М.Елисеев. Диссертация, 1967.
- 52. N.Metropolis, R.Bivins, M.Storm, A.Turkevich, J.M.Miller, and G.Friedlander. Phys. Rev., <u>110</u>, 185 (1958).
- 53. I.Dostrovsky, Z.Frankel, and G.Friedla der. Phys. Rev., <u>116</u>, 683 (1959).

- 54. Ж.С.Такибаев, Е.В.Шалагина, Н.С.Титова, Г.Р.Штерн. Ядерная физика, <u>5</u>, 703 (1967).
- 55. Ж.С.Такибаев, Е.В.Шалагина, Д.С.Аманкулова, Н.С.Титова, Г.Р.Штерн. Ядерная физика, <u>3</u>, 849 (1966).
- 56. Ж.С.Такибаев, Г.Тлеубергенова, Е.В.Шалагина. ДАН СССР, <u>156</u>, 785 (1964).
- 57. Ж.С.Такибаев, Г.А.Тлеубергенова, Т.П.Лазарева, П.В.Морозова, А.П.Казанская. Изв. АН Каз. ССР, <u>2</u>, 51 (1965).
- 58. Г.А.Тлеубергенова, Т.И.Лазарева, П.В.Морозова. Вестник АН Каз. ССР, <u>10</u>, 35 (1964).
- 59. Ж.С.Такибаев и др. Труды ИЯФ АН Каз. ССР, <u>6</u>, 133 (1963).
- 60. Ж.С.Такибаев, В.А.Кобзев, Г.Р.Цадикова, Е.В.Шалагина. Изв. АН СССР, серия. физ.,<u>26</u>, 592 (1962).
- 61. S.T.Butler, C.A.Pearson, Phys. Rev. Lett., 7, 69 (1961). 62. S.T.Butler, C.A.Pearson, Phys. Rev., <u>129</u>, 836 (1963).
- 63. R.J.Sutter, J.L.Friedes, H.Palevsky, G.W.Bennett, G.J. Igo, D.W.Simpson and G.C.Phillips, D.M.Corley, N.S.Wall, R.L.Stearn, Phys. Rev.Lett., 19, 1189 (1967).
- 64. H.Gauvin, M.Lefort, X.Tarrago. Journ. de Phys., <u>24</u>, 669 (1963).
- 65. V.T.Cocconi, T.Fazzini, G.Fidecaro, M.Legros, N.P.Lipman, A.W.Merrison. Phys. Rev. Lett., <u>5</u>, 19 (1960).
- 66. Л.П.Рапопорт и А.Г.Крыловский. Изв. АН СССР, сер.физ.,<u>28</u>, 388 (1964).
- 67. В.А.Кобзев, Ж.С.Такибаев, Е.В.Шалагина. Изв. АН Каз. ССР, сер. физ., 2, 3 (1965).
- 68. B.Tinland, F.Bartolin, A.Burdet, Journ. de Phys., <u>24</u>, 604 (1963). 69. B.D.Jones et al. Nuovo Cim., <u>19</u>, 1077 (1961).
- 70. D. Evans et al. Nuovo Cimento., 21, 740 (1961).
- 71. В.В.Балашов, А.Н.Бояркина, И.Роттер. Препринт ОИЯИ, Р-1357 (1967).
- 72. Р.М.Яковлева. Кандидатская диссертация. Радиевый ин-т им. В.Г.Хлопина АН СССР.
- 73. P.Beregi, N.S.Zelenskaya, V.N.Neudatschin, and Yu.F.Smirnov. Nucl. Phys., <u>66</u>, 513 (1965).

- 74. Ж.С.Такибаев, К.А.Токтаров. Ядерная физика, <u>6</u>, 1015 (1967).
- 75. P.D.Bharadwaj and P.L.Jain, Nuovo Cim., 55, 765 (1968).
- 76. A.A.Kamal, G.K.Rao, L.S.Rao, Y.V.Rao and B.K.Rukmini. Nuovo Cim., <u>43</u>, 91 (1966).
- 77. E.Balea, E.M.Friedlander, C.Potoceanu and M. Sahini. Nuovo Cim., <u>25</u>, 214 (1962).
- 78. G.W.Bennett, J.L.Friedes, H.Palevsky, R.J.Sutter, G.J.Igo, W.D.Simpson, G.C.Phillips, R.L.Stearns, D.M.Corley. Phys. Rev. Lett., <u>19</u>, 387 (1967).
- 79. G.Igo, L.F.Hansen, and T.J.Gooding. Phys. Rev., 131, 337 (1963).
- 80. Ж.С.Такибаев, Е.В.Шалагина, Г.Р.Цадикова. ДАН СССР, <u>141</u>, 1347 (1962).
- 81. Д.И.Блохинцев. ЖЭТФ, <u>33</u>, 1295 (1961).
- 82. Л.С.Ажгирей, И.К.Взоров, В.П.Зрелов, М.Г.Мешеряков, В.И.Петрухин. ЖЭТФ, <u>34</u>, 1397 (1958).
- 83. В.Н.Кузьмин, Р.М.Яковлев. Ядерная физика, <u>6</u>, 1158 (1967).
- 84. В.И.Остроумов, Н.А.Перфилов, Р.А.Филов. ЖЭТФ, <u>39</u>, 105 (1960).
- 85. T.J.Gooding, G.Igo. Phys. Rev. Lett., 7, 28 (1961).
- 86. Н.А.Перфилов, В.И.Остроумов. ДАН СССР, 103, 227 (1955).

Рукопись поступила в издательский отдел 7 января 1969 года.

Таблица I

Сечения образования ядер с А = 2-4 при взаимодействии частиц высоких энергий с различными мищенями

Ядро мишени	Энергия (Гэв) и первичная частица	Вторичная частица	с (мбн)	Литера- тура
I	2	3	4	5
Au	0,090 p	d	7I ± 4	9
	0,156		9I ± 4	IO
Ry	0,156		I24 ± I6	IO
C	0,230	ť	7.0 <u>+</u> I.0	II
,	0,30		7,0± 0,8	II
	0,40		8,6± I,0	II
	0,45		7,3± 0,5	12
	0,45	- -	7.4± I.0	13
	0,55		I0,I <u>+</u> I.5	13
	0,66		I0.6+ I.6	13
	0,73		7.6+ I.2	II
	2,05		17.0	 I4
	2,05		I4.0+ I.2	12
	5,07	-	18	 T4
	6,20		20	 I4
N	0,45 p	t	26 + + 4	12
	2,05		30	 T4
	2,05		25 + 4	12
•	2,20		- 28 + 4	 15
	6,20		35	T4
0	0,45 p 2,05 2,05	t	38 ± 5 36 30 ± 4	12 14 12

I	2		3			4	5
	2,2			33	±	4	15
	6,2	•		38	•		I 4
· Jug	0,3 P		t	19	±	6	16
	0,45			30	±	9	16
•	0,55			26	±	8	I 6
	0,6			15,	4 ±	4,0	17
	0,66	•		43	±	13	16
	2,05			36,	0		14
•	2,05			30	±	2	12
He	0,12 P		t	16	±	5	16
	0,12			8,0			I 4
	0,13			I5 .	±	2,6	13
	0,20			18	±	6	16
	0,30			25	±	7	16
	0,30			19	±	3,0	13
	0,45			24	t	7,0	16
	0,45		,	24	±	3,3	13
	0,45			23	t	3,0	12
	0,50		•	37	±	II	16
	0 ₉ 55			33	±	10	I 6
•	0,55			30	±	5	13
	0,60			44	±	13	I 6
	0,60			32	±	3	17
	0,66			46	±	I 4	16
	0,66			42 44	±	6	13 14
	2,05			57	±	4	ĪŹ
	2,20			75		-	17
	5,7			50			14
	25			7I			I7
		17					

										•
I	2	3	4	5			1	2 3	4	5
Si	0,60 p	t	د ± 18	17			Cu	0,6 p t	53 ± 3	17
V	0,60 p	-	52 ± 8	17	ti da la companya da			0,66	73 ± 22	16
Cr	0,60 p		49 ± 8	17	Į,			2,2	I32 ± 8	17
Un	0,60 p		60 ± 9	17				25	144 ± 20	17
Fe	0,050 p		4,2	18			Zn	U,66 p	67 ± 20	16
	0,075		4.3 ± 0,8	I8 [.]			Sr	0,66 p	88 ± 26	16
	0,100	•	4,8 ± 0,9	18			Ag	`0,6 p	86 ± 10	17
	0,130		7.2	19		. •		0,66	76 ± 23	16
	0,135	· · ·	6.4 ± 1.2	18			Pe	0,12	I7 ± 5	16
	0,15		6,I <u>+</u> I,I	· 18	-			0,30	73 ± 22	16
	0,177	•	6,6 ± 1,2	18)		0 ₉ 45	91 <u>±</u> 27	16
	0,450		28 ± 5	12				0,45	71 ± 8	12
	0,450		34 ± 8	13				0,55	87 <u>±</u> 26	16
	0,60		+8 ± 5	17	le la)		0,60	157 ± 47	16
	I,0		65	19				0,60	I27 ± I0	17
	2,05		53 ± 8	12	1			0,66	186 ± 56	16
	2,05		64	I 4				2,05	510 ± 72	12
	2,2		66 ± 10	17				2,05	019	14
	2,2		62 ± 7	20				2,2	405 ± 8	17
	3,0		88	19				6,2	480	14
	6,2		130	19	1	X	Bi	0,3 p	73 ± 22	16
÷	6,2		110	I 4				0,55	75 ± 22	16
	25		104 ± 10	17				0,6	98 ± 15	17
Ni	0,45 p		22 ± 3	12				0,66	I67 ± 50	16
	0,6		4I ± I5	17			Th	0,135 p t	19,5 ± 0,05	21
	2,05		75 ± 12	12			С	0,15 p He ³	6 ± 1,6	22
	2,05		90	14			Ae	0,15 p	IO ± 1,5	22
	2,2		135 ± 9	17				0,6	27	17
		•						2,2	72	17

				• • • • • •		`				
I	2	3	4	5	-	I	2	3	4	5
Si	0,6 p	He	34	17			25,0		750	I7
	2,2		56	17		Ni	0,6 p	L	· 3 96	17
Fe	0.15 p	•	I3 ± 2	22			2,2		470	17
	0 ,16 p		II	23		Cu	0,6		575	24
-	0,43		45	23	(2,2		•620	24
	0,60		34	17			25,0		785 ·	17
	2,2		63	17		Ay	0,1 6 p		231 ± 27	IO
	3,0		240	23			0,6		350	17
· ·	25	•	133	17		Ag, Br	I,0 p		340 ± 60	25
Co	0,6	ح	36	17			2,0		960 ± 130	. 25
Ji	0,6		42	17	1	•	3,0		II60 ± I30	25
	2,2		58	17		· .	3,0		960	26
Gu	0,6		52	17		_	2,9 P		2750	26
	2,2		80	17		Au	0 ,1 6 p	•	I09 <u>+</u> I5	9
	25		129	17		Pl	0,6		340	17
Ag	0,6		21	17	1	Bi	0,1 6 p		82 ± 10	9
Au	0,15		19 <u>+</u> 2	22	2		0,24 p		IIO	27
	0,16		7 <u>t</u> 2	9	ļ	·	0,42		220	27
Pl	0,6		21	17			0,55		320	27
Bi	0,6		22	17			0,6	•	350	17
Th	0,15	· ·	20 ± 2	22	· · · · · · · · · · · · · · · · · · ·	Th	0,065 L	Å	20	28
AL	0,6		268	17			0,085		35	28
	2,2		410	17			0,150		75	28
Si	0,6		302	17			0,16 p	d	8I <u>±</u> IO	9
, 6	2,2		330	17	•	*********		**************		
Fe	0,16		120	23						
	0 ₉ 43		450	23						
	0,6		336	24						
	2,2		410	25						
	3,0		130	23					•	
	n an an Anna an Anna Anna Anna Anna Ann	20						21		

Таблица 2

Энер —	Mumout	р		6	d		t		le ³	Hey		
(Мэв)	мищень	Guz	Garris	Guz	Garinz	Guz	Garing	C _y	Garing	5 mg	Garing	[.]
156	Ag	800±100	700 <u>+</u> 100	64 <u>+</u> 6	60±10	15±3	18±2	5,5	7,5±I	206±25	25 <u>+</u> 2	
	Ta	390± 50		50 <u>+</u> 5		22±3				100 ± 10		
	Au	320± 50	800±100	41±4	50	17±3	22 <u>+</u> 2	3	4 ± I	75±6	37±5	
	Pe	320± 50		42 <u>+</u> 4		18±3				60 <u>+</u> 6		
	Bi	350 <u>+</u> 50		47 ± 5		24 <u>+</u> 3	25 <u>±</u> 3	3	3±I	45 <u>+</u> 7	37±7	
	Th	380 ±50		55 <u>±</u> 5		30 <u>1</u> 4			• .	37 ± 5	44±10	
90	Au	240± 30	650 <u>+</u> 70	26 <u>+</u> 4	45	10 <u>+</u> 2	17					

Сечения Gug иGarwy (в мбн) образования ядер с массовым числом А ≈ 2-4 при взаимодействии протонов с различными мишенями/9,10/

Таблица З

Xapak	Энергия терис- ика	I Гэв Опыт	0,96 Гэв Расчет	2 Гэв Опыт	I,84 Гэв Расчет
F/B	(Е < IO Мэв)	0,65 ± 0.10	0,48 ± 0,04	0.69 + 0.II	0.48 ± 0.04
F/B	(Е) 25 Мэв)	2,1 ± 0.5	3,09 ± 0,43	2,7 ± 0,6	2.53 ± 0.31
*******	na	I,08 ± 0.06	I,6I ± 0,07	I,62 ± 0,09	I.85 ± 0,08

Расчетные и экспериментальные характеристики « -частиц, роздающихся при взаимодействии протонов в эмульсии/39/

22

•

N

Таблица 4

	NE~		. (G (MEH)			Лит	epa-
1ервичная частица	т (Мэв) Т (Гав)	>100	>200	>300	>400	>500	71000 TY	
p	2,23	53 ± 14	8,4 ± 6,3					54 54
р	2,26	26,6±4,0	8,6 ± 2,2	3,3 ± I,2	0,8 ± 0,8		0.46+0.3	55
p	9,0	51,2 <u>+</u> 6,1	19,3 ± 3,5	6.5 ± I.8	4,3 ± 1,6		0,4010,2	55
p	19,5	51,4±7,2	18,6 ± 4,3	7,9 ± 2,6	$2,6 \pm 1,3$		0,210,2	56
91	7,5	15,75 <u>+</u> 1,89	3,76±0,8	-	0,98±0,48	0 92+0 23		56
গ	17,5	29,I ± 2,2	5,4 ± 0,62		1,20±1,25	0.5210.25		
			1	1				

Сечения образования быстрых ядер гелия при взаимодействии элементарных частиц высоких энергий в эмульсии

Таблица 5

	Первичная частица	Звезды	со следам	и ядер ге	лия	Звезд	ы без след	цов ядер ге	ЭЛИЯ	Литера-		
	(Гэв)	ns	ng	ne	n _H	ns	ng	۶. n ^g	ັກ _H	тура		
25	P 2,23	2,7 ± 0,4			I6,4±I,I	2,9±0,2			II,2±0,3	54		
-	P 2,26	0,8 ± 0,I			I4 ,0<u>+</u>0, 6	I,06±0,08			II,2 <u>+</u> 0,3	54		
	P 9,0	5,4 ± 0,2	6,2±0,2	12,6±0,2	18,4 <u>+</u> 0,5	4,5 <u>+</u> 0,2	3,2 <u>+</u> 0,I	7,2 <u>+</u> 0,2	10,5 <u>+</u> 0,3	◆ 55		
	P 19,5	8,4 <u>±</u> 0,2	6,7 <u>+</u> 0,2	I4,2 <u>+</u> 0,3	20,8 <u>÷</u> 0,4	7,I±0,2	4,3 <u>+</u> 0,I	8,5 <u>+</u> 0,2	12,8 <u>+</u> 0,2	55		
	51 7,5	4,3 <u>+</u> 0,3	5,5±0,3	9,9 <u>+</u> 0,4		3,3 <u>+</u> 0,2	4,6±0,3	7,0±0,3		57		
	ភ 17,5	7,7 <u>+</u> 0,3	7,2 <u>+</u> 0,3	12,6±0,1		6,3 <u>+</u> 0,3	5,3 <u>1</u> 0,3	8,4±0,3		57		

Средние числа вторичных частиц в звездах со следами ядер гелия и без следов ядер гелия

24

-

.

Половинные углы вылета ядер d.t и Не, образующихся при взаимодействии частиц в эмульсии

	Литерату-				
Первич- ная частица	вторич- ная частица	ТГЭВ	> 25	> 50	pa
TT	dut	7,5	55 ± I,5	37,5 ± 3,5	58
দ্র	t	7,5	54 ± 2,5	38,5 ± 4	58
সা	Z = 2	7,5	52 ± 2,75	37,5 ± 4,5	58
TI	2=2.	17,5	50 ± 2,5	34 ± 4	57
р	2 = 2	9,0	47,75±2,5	32,5 ± 4 .	59,60
р	9	9,0	58 ± I,2		61

Таблица

6

Рис. 3. Функции возбуждения реакций образования трития при взаимодей-ствии протонов в углероде (=), никеле (●), меди (▲) и сереб-ре (+)/9,10,16-32/.

Рис. 7. Угловые распределения а-частиц, рождающихся при взаимодействии протонов и антипротонов в эмульсии/26,40/

Рис. 8. Диаграммы, описывающие образование дейтронов согласно модели Батлера-Пирсона/61,62/,