1160

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Дубна

P2 · 4168

Экз. чит зала

М.И.Черней, В.Д.Овсянников

ВЗАИМОДЕЙСТВИЕ ОДНОЧАСТИЧНОГО И ВРАЩАТЕЛЬНОГО ДВИЖЕНИЙ В ЯДРАХ

1968

AABODATOPMS TEOPETHUE(KOM OMIMIL

P2 - 4168

М.И.Черней, В.Д.Овсянников

ВЗАИМОДЕЙСТВИЕ

ОДНОЧАСТИЧНОГО И ВРАЩАТЕЛЬНОГО ДВИЖЕНИЙ В ЯДРАХ

Направлено в ЯФ

1. В ведение

В последние годы развит ряд очень подробных схем уровней среднего поля (см., например, /1,2,3/), получивших широкое распространение при анализе экспериментальных данных. Однако совершенно ясно, что многие из низколежащих состояний в нечетных деформированных ядрах не являются чистыми одночастичными. Наблюдается смешивание состояний различной природы, например, смешивание состояний с различными главными квантовыми числами, взаимодействие одночастичного движения с вращательным и колебательным /4,5/.

Внутреннее движение нуклонов в аксиально-симметричных ядрах характеризуется проекцией полного углового момента на ось симметрии ядра – К , которая не может быть точным квантовым числом из-за взаимодействия с вращением.

Когда вращательная энергия намного меньше, чем расстояние между одночастичными уровнями, то влиянием вращения на одночастичное движение можно пренебречь/6/.

Если расстояние между одночастичными уровнями с ΔK = 1 сравнимо с вращательной энергией, то описание взаимодействия одночастичного и вращательного движений в первом порядке теории возмушения становится неудовлетворительным /7/. В таких случаях диагонализуют взаи – модействие Кориолиса с учетом нескольких одночастичных уровней, энергии которых подбираются на основании сравнения результатов расчета с экспериментальными данными /7,8,9/. Однако такие расчеты требуют введения большого количества параметров для каждого конкретного ядра.

з

Представляет интерес диагонализация взаимодействия Кориолиса на базисе соответствующей одночастичной схемы, которая была бы пригодна для всех деформированных ядер. В настоящей работе взаимодействие Кориолиса диагонализуется на базе схемы с потенциалом Саксона-Вудса /3/.

Полученные решения используются для исследования К - запрешенных процессов, правил интенсивностей (правил Алага) и параметров развязывания.

2. Формулировка проблемы

Запишем гамильтониан одночастичного и вращательного движений, а также их взаимодействия для аксиально-симметричного ядра в виде /7/

$$H = H_{ap} + \frac{\hbar^2}{2J} [I(I+1) - I_0^2 - j_0^2] - \frac{\hbar^2}{2J} [I_+ j_- + I_- j_+^2],$$

где Н _{вр} описывает внутреннее движение нуклонов, J – момент инерции, рассматриваемый как параметр.

Операторы ^I <u>+</u> и ^j <u>+</u> определены следующим образом:

 $I_{+} = I_{x} \pm I_{y}$,

 $j_{+}=j_{x}+j_{y}$

де

÷ .

(1)

(2)

(3)

Симметризованные волновые функции гамильтониана (1) ищем в ви-

 $\Psi(IM; a_0K_0) = \sqrt{\frac{2I+1}{16\pi^2}} \sum_{\alpha K} C_{\alpha K}^{I} \{ D_{MK}^{I} \chi_{\alpha K} + (-1) D_{M-K}^{I} \chi_{\alpha-K} \},$

К₀ - приближенное квантовое число проекции полного углового момента, а₀ - набор остальных асимптотических чисел.

 a_0 , K_0 – квантовые числа, для которых коэффициент С $a_0 K_0$ является максимальным.

Коэффициенты разложения С_{ак} – вещественны и удовлетворяют условию нормировки

$$\sum_{\alpha K} \left(C_{\alpha K}^{1} \right)^{2} = 1.$$
 (4)

Внутреннее движение описывается волновыми функциями $\chi_{a\,\kappa}$ для деформированного потенциала Саксона-Вудса, которые имеют вид /3/

$$\chi_{a\kappa} = \sum_{n \ \ell j} a\kappa R_{n \ \ell j} (r) g_{j \ \ell 1/2; j}^{\kappa} , \qquad (5)$$

где ^а _n _{lj} - коэффициенты разложения по собственным функциям сферического потенциала Саксона-Вудса.

В отличие от первого порядка теории возмушения, в котором учитывается взаимодействие вращательных полос с $\Delta K = 1$, при диагонализации учитывается взаимодействие полос с $\Delta K = 1 - 1/2$.

Энергию состояния со спином І находим из следующего уравнения:

$$E_{\alpha_{0}K_{0}}(I) = \sum_{\alpha K} (C_{\alpha K}^{I})^{2} (E_{\alpha K} - \frac{h}{J}K^{2}) + \frac{h^{2}}{2J} I(I+1) [1+(-1)^{I+1/2} \frac{1+1/2}{I(I+1)} a(I)], \qquad (6)$$

где Е_{ак} - одночастичные энергии, а (1) - параметр смешивания, который определяется как

$$a(I) = (-1)^{1-1/2} \frac{1}{1+1/2} < \Psi (I M; a_0 K_0) | I_+ j_- + I_- j_+ | \Psi (IM; a_0 K_0) > .$$
(7)

Для состояния с $I = K_0 = 1/2$ параметр смешивания совпадает с обычным параметром развязывания /1/

$$a = -\langle -1/2 | j | 1/2 \rangle.$$
 (8)

Используя волновые функции (3), получим выражение для a (1) в виде:

Энергия состояния во вращательной полосе теперь зависит не только от спина и момента инерциь, но и от параметра a(I) и коэффициентов смешивания $C^{I}_{\alpha K}$. Когда расстояние между взаимодействующими уровнями порядка 1 Мэв, примеси других состояний очень малы, энергия состояний вращательной полосы определяется обычным образом:

$$E(I) = \frac{\frac{1}{h^2}}{2J} \left[I(I+1) + (-1) \right]^{I+1/2} (I+1/2) a \delta_{K_1 1/2}$$
(10)

Если взаимодействующие уровни близки по энергии, возможны отклонения от формулы (10). В большинстве случаев (когда a(1) слабо меняется внутри ротационной полосы и число сильновзаимодействуюших уровней невелико) эти отклонения можно свести к перенормировке момента инерции и параметра развязывания.

Для нахождения коэффициентов разложения C_{aK}^{I} и собственных значений гамильтониана (1) проводилась диагонализация на ЭВМ (при фиксированном значении момента инерции) матрицы порядка $P(I) = \sum_{K} n_{K}$ где n_{K} -число одночастичных состояний с одинаковым значением K и четностью.

3. Детали расчетов и обсуждение результатов

Для выяснения качественных эффектов взаимодействия одночастичного и вращательного движений численные расчеты были проведены со схемой одночастичных уровней ядер в области A = 165 и значением параметра деформации $\beta = 0.31$ ^{/3/}. Диагонализация проводилась отдельно для нейтронной и протонной систем. Значения параметра $\hbar^2/2J$ варьировались в численных расчетах. Для каждого конкретного ядра параметр ^{h²/2J} выбирался путем сравнения теоретических и экспериментальных значений энергий ротационных полос. Это эначение параметра сравнивалось с обычными значениями, получаемыми по формуле (10).

В расчетах энергий ротационных состояний на уровни с K = 1/2 не вводился дополнительный параметр развязывания (см. формулу (10)). Теоретические расчеты проводились с теми значениями параметров развязывания, которые получались в одночастичной схеме. Естественно, что теория не может рассчитывать на лучшее описание энергий ротационных состояний с K = 1/2 с одним значением параметра, чем описание при помощи двухпараметрической формулы (10).

Получен следующий общий результат:

а) учет взаимодействия Кориолиса для состояний с K > 1/2 приводит, как правило, к уменьшению параметра $\frac{\hbar^2}{2J}$ в среднем на 10% по сравнению со значением, получаемым по формуле (10);

б) для состояний с K =1/2 учет взаимодействия Кориолиса приводит к обратному эффекту перенормировки параметра момента инерции.

Конкретные примеры перенормировки параметров, обусловленной взаимодействием Кориолиса, даны в табл. 1.

Численные расчеты показали, что обычно полная величина примесей других состояний в данном одночастичном не превышает 5%. Полная величина примесей растет с увеличением спина состояний вращательной полосы и эначения момента инерции. Типичный пример такой зависимости показан на рис. 1.

С увеличением спина состояния все большее число различных одночастичных состояний дает вклад в волновую функцию. В принципе это может приводить к нарушению правил интенсивностей переходов, установленных для адиабатического случая. Обычно наиболее велики примеси состояний с $\Delta K = 1$ (см. табл. 2). Роль примесей состояний с $\Delta K \ge 2$ целиком зависит от деталей одночастичной схемы.

Численные расчеты показали, что взаимодействие Кориолиса слабо возмущает поведение одночастичных уровней. Однако поведение уровней внутри вращательной полосы может сильно возмущаться взаимодействи-

ем Кориолиса. Ниже покажем, когда точный учет взаимодействия Кориолиса дает существенные отклонения от решения в рамках теории возмушения.

В случае K > 1/2 по теории возмущения получим следующую зависимость энергий вращательной полосы от 1:

$$f(I) = \frac{E(I+1) - E(I)}{2(I+1)} = \frac{h^2}{2J} = const.$$
(11)

На рис. 2(а,б,в) показана экспериментальная зависимость f(1) для врашательной полосы 5/2 + [642] в 161 ру $^{/10/}$, которая ясно демонстрирует сильное отклонение от формулы (11) (см. рис. 2а). Включение в формулу (10) члена = $B[I(1+1)]^2$ также не дает согласия с экспериментом (см. рис. 2а). Бор и Мотельсон $^{/11/}$ предложили включить в формулу для вращательной энергии (10) дополнительный член (с константой A)

$$(-1)^{I+K} - \frac{(I+K)!}{(I-K)!} A_{K}$$

Такая формула с тремя параметрами удовлетворительно описывает эксперимент (см. рис. 26). На рис. 2в приведены результаты наших расчетов по формуле (6) с использованием одного параметра. Экспериментальное поведение f(1) лучше всего воспроизводится для больших значений спинов. Для малых значений спинов f(1) сильно зависит от величиt2

ны $\frac{n^2}{2J}$. Возможно, это связано с тем, что для малых значений I учет эффектов парных взаимодействий более важен, чем для больших значений спинов (см. например, /12/). В будущем будет проведено исследование этого вопроса.

Если состояние с K = 1/2 сильно взаимодействует с состоянием, имеющим K = 3/2, то величина $\sum_{\substack{c \neq a \\ c = 1 \\$ 1+1/2 нечетном полные примеси значительно меньше (3-9%). Такая сложная структура ротационных состояний приводит к сильному изменению параметра развязывания a(I). На рис. Зб показана зависимость a(I) от полного углового момента I . Отклонения от одночастичного значения параметра развязывания пропорциональны в среднем величине полной примеси и различны по знаку. На рис. Зв показаны энергии этой ротационной полосы, рассчитанные по формулам (6) и (10) соответственно. Параметры в формуле (10) были выбраны так, чтобы совпадали энергии трех нижайших уровней ротационной полосы. Видно, что энергии ротационных состояний I=5/2 и I=7/2 сильно отличаются (30-70%).

Другой случай, когда одночастичный параметр развязывания мал, показан на рис. 4. Хотя ротационная полоса, основанная на состоянии $1/2^{[400]}$, нормальная (в смысле последовательности спинов в полосе), параметр развязывания a (1) сильно зависит от ¹ (рис. 46). Для ротационного состояния 1=7/2 параметр развязывания меняет знак (как и для полосы, основанной на состоянии $1/2^+[660]$).

К сожалению, пока нет надежных экспериментальных данных об этих состояниях в редкоземельных ядрах. Обработка таких ротационных полос в рамках теории возмущения (формула 10) может приводить к значениям моментов инерции и параметров развязывания, совершенно отличным от предсказываемых одночастичными моделями. Более того, эти параметры могут сильно зависеть от того, какие уровни вращательной полосы были использованы в расчетах.

К - запрещенные процессы и правила интенсивностей переходов

Экспериментально обнаруженные β -распады с $\Delta K \ge 2$ /13,14,15/, Е λ - переходы с $\Delta K > \lambda$ /16/ и отклонения от правил интенсивностей переходов (правил Алага), свидетельствуют о том, что К не является точным квантовым числом. Рассмотрим некоторые примеры таких процессов, используя волновые функции, полученные в результате диагонализации взаимодействия Кориолиса.

а) β -переходы с $\Delta K \ge 2$ и $\Delta I = 0;1$. Используя волновые функции (3) для оператора гамов-теллеровского β -перехода из состояния I_1 , a_{10} , K_{10} в состояние I_1 , a_{10} , K_{10} (a_{10} , K_{10} и a_{10} , K_{10} -приближенные квантовые числа начального и конечного состояний перехода), получим выражение:

$$\left| \langle \Psi (I_{f} M_{f}; a_{f0} K_{f0}) | \vec{s} | \Psi (I_{f} M_{f}; a_{f0} K_{f0}) \rangle \right|^{2} =$$

$$= \left| \sum_{\substack{\alpha K \\ \alpha K'}} C_{\alpha K}^{I_{f}} C_{\alpha' K}^{I_{f}} \langle I_{f} | KK' - K | I_{f} K' \rangle \langle \alpha' K' | \vec{s} | \alpha K \rangle \right|^{2},$$
(12)

где $\langle a'K' | \vec{S} | aK \rangle$ - одночастичный матричный элемент β - перехода, выражение для которого дано в работе /17/. Матричный элемент $|\langle \vec{S} \rangle|^2$ подчиняется следующим правилам отбора по K:

$$0 \le |K_{t0} - K_{t0}| \le \frac{\Gamma_{t} + \Gamma_{t}}{2} .$$
 (13)

Рассмотрим уменьшение скорости К – запрешенного β – распада относительно скорости разрешенного незадержанного (аu) β – распада. Такие К – запрещенные β – переходы экспериментально наблюдаются при распаде ¹⁵⁹ H₀(7/2⁻⁷7/2[523]) на ротационную полосу ¹⁵⁹ Dy (базисные состояние $3/2^-$ [521]) /13/. Аналогичные К – запрешенные β – переходы наблюдены при распаде ¹⁶¹ Ho \rightarrow ¹⁶¹ Dy /14/. В обоих случаях наблюдается au β – переходы $7/2^-7/2[523] + 5/2^-5/2[523]$ с $log tt = 4, 4 \pm 0, 3$ и 5,0 для распада ¹⁵⁹ Ho и ¹⁶¹ Ho соответственно. К – запрешенные β – переходы идут на состояния $5/2^-$, $7/2^-$ и $9/2^-$ ротационной полосы $1^{-3/2}[521]$. Разность log tt для β – переходов на эти состояния и ав β – перехода составляет $< 2,7 \pm 0,3; < 2,7 \pm 0,3;$ $2,6 \pm 0,3$ при распаде ¹⁵⁹ Ho + ¹⁵⁹ Dy (эффекты парных корреляций учтены в этих оценках). Теоретические расчеты для этих случаев дают значения 2; 2,3 и 3,3 соответственно при значении параметра $\frac{1}{5}^{2/2} J = 11$ кэв (это значение параметра оценено на основании сравнения экспериментальных и расчетных значений энергий ротационной полосы, основанной на состоянии 3/2 [521].

В распаде ¹⁶¹ Но заселяется только состояние $7/2^{-3}/2[521]$ в ¹⁶¹ Dy , причем $\Delta(\log ft)$ эксп. =1,9. Теоретическая оценка этого распада при значении параметра $\frac{\hbar^2}{2}J$ =11 кэв дает $\Delta(\log ft)$ reop. =2,0. Отметим, что при небольших вариациях параметра $\frac{\hbar^2}{2}J$, $\Delta(\log ft)$ reop. меняется очень слабо в случае ¹⁵⁹ Но и ¹⁶¹ Но.

Пока не представляется возможности вычислять абсолютные значения logft K – запрещенных β – переходов без учета поляризационных эффектов /18,19/.

б) Ελ -переходы и изменение правил интенсивностей переходов. Используя волновые функции (3), получим выражение для приведенной вероятности Ελ - переходов:

 $B(E\lambda;I_{i}a_{i0} K_{i0} \rightarrow I_{f}a_{f0} K_{f0}) = B_{p}(E\lambda;I_{i}a_{i0} K_{i0} \rightarrow I_{f}a_{f0} K_{f0}).$

$$\cdot \left[1 + \frac{\sum_{\substack{k \neq k \ 10^{1}k' \neq k \ r^{0}}} C_{aK} C_{a'K'} \cdot I_{1}^{\lambda} KK' - K | I_{t} K' > \langle a'K' | r^{\lambda} Y_{\mu} | aK > 2}{\langle 14 \rangle} \right],$$

$$\cdot \left[1 + \frac{a \neq a_{10} \ ia \neq a_{t0}}{\langle 1_{1}^{\lambda} K_{10} K_{t0} - K_{10} | I_{t} K_{t0} > \langle a_{t0} K_{t0} | r^{\lambda} Y_{\lambda\mu} | a_{10} K_{10} > 1}\right],$$

$$\cdot \left[1 + \frac{a \neq a_{10} \ ia \neq a_{t0}}{\langle 1_{1}^{\lambda} K_{10} K_{t0} - K_{10} | I_{t} K_{t0} > \langle a_{t0} K_{t0} | r^{\lambda} Y_{\lambda\mu} | a_{10} K_{10} > 1}\right],$$

где $B_{\mu\rho}(E\lambda; I_{f} a_{10}K_{10} \rightarrow I_{f} a_{f0}K_{f0})$ - одночастичная приведенная вероятность $E\lambda$ - перехода (см. работу /20/).

Влияние вращения на E^{λ} - переходы обуславливается вторым членом в формуле (14), который может принимать как положительные, так и отрицательные значения и полностью зависит от деталей одночастичного поля ядра и величин относительных примесей C_{aK}^{1} . Вид формулы (14) аналогичен полученной в работе /21/, где рассматривалось влияние взаимодействия вращения и внутреннего движения на E^{1} - переходы в первом порядке теории вомущения.

Для примера рассмотрим E1 – переходы с $\Delta K = 1$ в ¹⁵⁷ Gd из состояния 5/2 + 5/2 + [642] на ротационные состояния

10

3/2⁻,5/2⁻3/2[521] . Численные эначения приведенных вероятностей по формуле (14) равны:

(15)

B(E1); $5/2 + 5/2 \rightarrow 3/2 - 3/2 = 0,26$ B (E1; $5/2 + 5/2 \rightarrow 3/2 - 3/2$) B(E1; $5/2 + 5/2 \rightarrow 5/2 - 3/2 = 12,5$ B (E1; $5/2 + 5/2 \rightarrow 5/2 - 3/2$).

Факторы запрета $F = \frac{B(E\lambda)}{B(E\lambda)}$ без учета взаимодействия Ко-

риолиса принимают значения

 $F_{p}(5/2^{+} \rightarrow 3/2^{-}) = 85,$ $F_{p}(5/2^{+} \rightarrow 5/2^{-}) = 2,$

т.е. сильно отличаются друг от друга (≈ в 40 раз). Это различие нельзя объяснить эффектами парных корреляций. Учет взаимодействия Кориолиса приводит к следующему отношению приведенных вероятностей:

$$B(E1; 5/2 + 5/2 \rightarrow 3/2 - 3/2): B(E1; 5/2 + 5/2 \rightarrow 5/2 - 3/2) = 0,047:1,$$
(16)

что хорошо согласуется с экспериментальным отношением 0,053:1 /22/. Отметим, что эти отношения в теории слабо меняются при небольших вариациях параметра ¹/²/²], но сильно зависят от деталей одночастичной схемы и значения параметра деформации, а, следовательно, могут сильно различаться даже для соседних ядер. Например, для того же перехода в ¹⁵⁹ Gd экспериментальные отношения (16) равны 0,139:1 /23/. Наконец, отметим, что взаимодействие Кориолиса слабо влияет на Eλ - переходы с ΔK = 0.

В рамках развиваемой схемы возможно оценивать вероятности ^К запрещенных ^γ - переходов.

5 Заключение

Предложена схема учета взаимодействия Кориолиса путем точной диагонализации его на базисе деформированного потенциала Саксона-Вудса. Полученные результаты могут быть использованы в дальнейшем для решения задач с включением парных корреляций, дальнодействующих остаточных взаимодействий и т.д. Очевидно, такой подход более выгоден там, где взаимодействие одночастичного и вращательного движений является сильным.

Авторы надеются, что такой подход позволит описать вращательные полосы с одним значением параметров и, следовательно, отказаться от использования многопараметрических феноменологических формул. Очевидно, для этого необходимо включение парных корреляций в рассматриваемую схему, что и будет проведено в дальнейшем.

Численные расчеты показали, что когда взаимодействие одночастичного и врашательного движений становится сильным, то обычные феноменологические формулы для энергий врашательной полосы могут приводить к неправильным результатам, в частности, для эначения параметра развязывания.

Проведенные оценки вероятностей К – запрещенных β – переходов и отклонение от правил интенсивностей E λ – переходов хорошо согласуются с экспериментальными данными.

В заключение авторы выражают благодарность Н.И. Пятову за постановку задачи, помощь и полезные обсуждения, В.Г. Соловьеву за интерес к работе, Ф.А. Гарееву за полезные обсуждения и помощь, В.А. Бондаренко за помощь при обработке экспериментальных данных и И.М. Павличенкову за интересные обсуждения.

Литература

1. S.G. Nilsson, Mat. Fys. Medd. Dan. Vid. Selsk., 29, No. 16 (1955).

2. П.Э. Немировский, В.А. Чепурнов, ЯФ, 3, 998 (1966).

13

- Ф.А. Гареев, С.П. Иванова, Б.Н. Калинкин. Преприят ОИЯИ, Р4-3451, Дубна, 1967; Ф.А. Гареев, С.П. Иванова, Б.Н. Калинкин, С.К.Слепнев, М.Г. Гинзбург. Преприят ОИЯИ, Р4-3607, Дубна, 1967.
- 4. C.W. Reich, M.E. Bunker. Proceed. Int. Nucl. Str., Dubna, USSR, July 4-11, 1968.
- Б. Г. Соловьев. Препринт ОИЯИ, Р4-3903, Дубна, 1968;
 V.G. Soloviev. Proceed. Int. Nucl. Str., Dubna, USSR, July 4-11, 1968.
- A. Bohr. Mat. Fys. Medd. Dan. Vid. Selsk., 26, No 14 (1952);
 A. Bohr and B.R. Mottelson. Mat. Fys. Medd. Dan. Vid. Selsk., 27, No 16 (1953).

7. A.K. Kerman, Mat. Fys. Medd. Dan. Vid. Selsk., 30, No 15 (1956).

- 8. C.W. Reich, M.E. Bunker. Phys. Lett., 25B, n6, 396 (1967).
- R.T. Brockmeier, S. Wahlborn, E.J. Seppi and F. Boehm. Nucl. Phys., <u>63</u>, 102 (1965).
- В.К. Бондарев, Л.Н. Гальперин, А.З. Ильясов, И.Х. Лемберг. Программа и тезисы Совещания по ядерной спектроскопии, Харьков, 1967.
- 11. О. Бор, Б. Моттельсон. Атомная энергия, <u>14</u>, 41 (1963).
- 12. Ю.Т. Гринь, А.И. Ларкин. ЯФ, <u>2</u>, 40 (1965).
- А.А. Абдуразаков, Ж.Т. Желев и др. Изв. АН СССР, серия физ., <u>32</u>, 764 (1968).
- 14. P.G. Hansen, O.B. Nielsen and G. Sidenius. Contributions, Int. Conf. Nucl. Str., Tokyo, sept. 1967.
- 15. L. Funke et. al., Cont. Int. Symp. Nucl. Str. Dubna, 1968.
- 16. K.E. Lobner and S.G. Malmskog. Nucl. Phys., 80, 505 (1966).
- Ф.А. Гареев, Б.Н. Калинкин, Н.И. Пятов, М.И. Черней, ЯФ, <u>8</u>, 305 (1968).
- 18. Z. Bochnacki and S. Ogaza. Nucl. Phys., A 102, 529 (1967).
- А.Б. Мигдал. Теория конечных ферми-систем и свойства атомных ядер. Изд. "Наука", 1965.
- Ф.А. Гареев, С.П. Иванова, М.И. Черней. Препринт ОИЯИ, Р4-3935, Дубна, 1968.
- 21. Ю.Т. Гринь, И.М. Павличенков. ЖЭТФ, <u>47</u>, 1847 (1964).

L. Funke, H. Graber, K. H. Kaun, R. Ross, H. Sodan, L.Werner and J. Frana. Nucl. Phys., <u>84</u>, 461 (1966).
 M. Bonitz and N.J.S. Hansen, Nucl. Phys., <u>A111</u>, 551 (1968).

Рукопись поступила в издательский отдел 26 ноября 1968 года.

Таблица 1.

Значения параметра ћ /2Ј и параметра развязывания, полученные из сравнения энергий ротационных полос

Ядро		Из форм	аулы (10)	Точное решение	
	$I^{\pi}K[NN_{z}\Lambda]$	t ² /2 J	'a	ħ²/2J	a (I)
165 _{Ho}	7/2-7/2 [523]	10,52	-	9,8	-
163 Dy	5/2 5/2 523]	10,71	-	.10,0	· -
169 _{Tm}	3/2+3/2 [411]	12,6	-	12,4	-
167 _{Er}	7/2+7/2[633]	8,8I	-	8,0	-
¹⁶⁹ чъ	1/ 2⁷1/2[521]	II,7I	0,789	15	2,3
165 _{Ho}	1/2+1/2[411]	12,23	-0,46I	13,0	-0,82

Вычисленное значение параметра развязывания по ф-ле (9).

Таблица 2

ι κ ^π [NN _z Λ]	I/2 [660]	3/2 [402]	5/2 [642]	7/2 [633]	[9/2 [624]	II/2 [6I5]
7/2 7/2 ⁺ [633]	0 , 0025	0,0092	0,086I	0,9960		
9/2	0 , 0044	0 , 0335	0 , 1745	0 , 9799	-0,090I	-
II/2	0,0225	0 , 0573	0,2211	0,964I	-0,1336	~ 0
13/2	0,0100	0 , 0724	0 , 2673	0 , 9455	-0,1707	0,0069
15/2	-0,1190	0,0426	0,2971	0 , 9240	-0,2046	0,0106

Амплитуды С^I_{aк} состояний, дающих вклад в волновую функцию $\Psi(M, a_0 K_0)$ для протонной вращательной полосы 7/2⁺ [633] при $\hbar^2/2J$ =8 кэв

16

