

В.Г.Барышевский, В.Л.Любошиц, М.И.Подгорецкий

ISOPATOPHS BUICOKMX HEPINN

НЕОРТОГОНАЛЬНЫЕ КВАЗИСТАЦИОНАРНЫЕ СОСТОЯНИЯ

P2 - 4086

В.Г.Барышевский, В.Л.Любошиц, М.И.Подгорецкий

НЕОРТОГОНАЛЬНЫЕ КВАЗИСТАЦИОНАРНЫЕ СОСТОЯНИЯ

Направлено в ЖЭТФ

1. Как известно, волновые функции, описывающие различные стационарные состояния стабильных квантовомеханических систем, являются взаимноортогональными. Это утверждение, вообще говоря, несправедливо для квазистационарных нестабильных состояний. Так, при нарушении СР -инвариантности в распадах К -мезонов квазистационарные волновые функции частиц К, и К, которым соответствуют определенные значения массы и времени жизни, вообще говоря, не являются ортогональными (см. например./1/). Наличие такой неортогональности приводит к физически наблюдаемым следствиям, например, к зарядовой асимметрии леп-К 1/2/. Неортогональность состояний К_L и К_s тонных распадов связана с тем, что при несохранении СР-чётности они имеют общие каналы распада. Такая ситуация, когда два состояния квантовомеханической системы (две частицы) имеют общие каналы распада, конечно, не является специфической особенностью только К-мезонов. Всегда, когда она осуществляется, можно ожидать, что квазистационарные волновые функции этих состояний (частиц) будут неортогональными.

В атомной и ядерной физике существует целый ряд явлений, которые получают естественную физическую интерпретацию именно на языке нестабильных неортогональных состояний. К ним относятся биения в полном числе нестабильных систем и продуктов распада, возбуждение и распад атомных молекулярных уровней в условиях, которые приводят к возникновению полюса второго порядка в матрице рассеяния^{/3/}, интерференционные явления при образовании возбужденных состояний ⁸Ве и т.д.

Однако в настоящее время понятие неортогональности в полной мере используется только при анализе проблемы нарушения СР-инвариантности в распадах нейтральных К -мезонов. Что касается атомной и молекулярной физики, то здесь при рассмотрении указанных выше явлений применяется почти исключительно формальный аппарат матрицы рассеяния. Поэтому мы считаем полезным детально рассмотреть вопрос о неортогональности квазистационарных состояний в общем случае.

2. Предположим, что мы имеем нестабильную двухуровневую систему. Пусть $|\psi_1\rangle$, $|\psi_2\rangle$ – нормированные, вообще говоря, неортогональные квазистационарные волновые функции этой системы; им соответствуют комплексные энергии E $_{1,2} = \mathcal{E}_{1,2} - i \frac{\Gamma_{1,2}}{2}$, где $\Gamma_{1,2}$ – ширины рассматриваемых уровней. Приготовим в начальный момент времени t = 0 состояние, являющееся некоторой произвольной суперпозицией $|\psi_1\rangle$ и $|\psi_2\rangle$, т.е.

$$|\psi(0)\rangle = c_1 |\psi_1\rangle + c_2 |\psi_2\rangle.$$

(1)

(3)

Тогда волновая функция $|\psi(t)>$, описывающая поведение системы в более поздние моменты времени t, будет иметь вид

$$|\psi(t)\rangle = c_1 |\psi_1\rangle e^{-\frac{1}{h}E_1t} + c_2 |\psi_2\rangle e^{-\frac{1}{h}E_2t}$$
 (2)

Из (2) вытекает, что число рассматриваемых систем N изменяется со временем следующим образом:

1 th

1.1

$$I(t) \approx \langle \psi(t) | \psi(t) \rangle = |c_1|^2 e^{-\frac{1}{h}} + |c_2|^2 e^{-\frac{2}{h}} + \frac{1}{h} + 2 \operatorname{Re} \{\langle \psi_1 | \psi_2 \rangle c_2^* c_2^* e^{-\frac{1}{h}} + \frac{1}{h} (\mathcal{E}_1 - \mathcal{E}_2) + \frac{1}{h} e^{-\frac{1}{1} + \frac{1}{2h} t} \} = \frac{1}{h} \cdot \frac{1}{h}$$

Если состояния $|\psi_1\rangle$ и $|\psi_2\rangle$ неортогональны, т.е. $\langle \psi_1 | \psi_2 \rangle \neq 0$, то, согласно (3), величина N испытывает "биения", затухающие с течением времени.

При помощи (3) можно определить скорость распада:

$$\frac{\partial}{\partial t} \langle \psi(t) | \psi(t) \rangle = -\frac{\Gamma_1}{h} |c_1|^2 e^{-\frac{\Gamma_1 t}{h}} -\frac{\Gamma_2}{h} |c_2|^2 e^{-\frac{\Gamma_2 t}{h}} +$$

$$+ 2 \operatorname{Re} \{ c_1^* c_2 \langle \psi_1 | \psi_2 \rangle [\frac{1}{h} (\mathcal{E}_1 - \mathcal{E}_2) - \frac{\Gamma_1 + \Gamma_2}{2h}] e^{\frac{1}{h} (\mathcal{E}_1 - \mathcal{E}_2) t} e^{-\frac{\Gamma_1 + \Gamma_2}{2h} t}$$

$$C \text{ другой стороны,}$$

$$\frac{\partial}{\partial t} \langle \psi(t) | \psi(t) \rangle =$$
(5)

где A_{1m} и A_{2m} – амплитуды распада из состояний $|\psi_1 > u |\psi_2 >$ соответственно в некоторые конечные состояния |m >; \sum_{m} включает в себя также интегрирование по непрерывным переменным, например, по углам вылета продуктов распада.

 $= -\sum_{1m} |c_{1m}A_{1m}e^{-\frac{1}{h}E_{1}t} + c_{2}A_{2m}e^{-\frac{1}{h}E_{2}t}|^{2},$

Сравнение (4) и (5) приводит к следующим соотношениям:

$$\Gamma_{1(2)} = h \sum_{m} |A_{1(2)m}|^2 , \qquad (6)$$

$$\langle \psi_{1} | \psi_{2} \rangle = \frac{h \sum_{m} A_{1m}^{*} A_{2m}}{\frac{\Gamma_{1} + \Gamma_{2}}{2} - i (\mathcal{E}_{1} - \mathcal{E}_{2})}$$
 (7)

Применительно к анализу распадов К⁰-мезонов формулы (6) и (7) были получены ранее в работе^{/5/}.

Если мы имеем систему более чем с двумя квазистационарными уровнями, то аналогичное рассмотрение приводит к соотношениям типа

$$\Gamma_{i} = h \sum_{m} |A_{im}|^{2} , \qquad (8)$$

$$\langle \psi_{i} | \psi_{m} \rangle = \frac{h \sum_{m} A_{im}^{*} A_{km}}{\frac{\Gamma_{i} + \Gamma_{k}}{2} - i(\mathcal{E}_{i} - \mathcal{E}_{k})},$$
 (9)

где индексы і и k нумеруют рассматриваемые уровни.

Согласно (7) и (9) величина неортогональности состояний $|\psi_a>$ полностью определяется разностью соответствующих энергий и амплитудами возможных распадов. Если амплитуды А, а следовательно и ширины Γ , при постоянной разности энергий $\delta_1 - \delta_2$ стремятся к нулю, то величина $<\psi_1 | \psi_2 >$ также стремится к нулю и в пределе стабильных частиц состояния $|\psi_1 > u |\psi_2 >$ оказываются ортогональными. Однако состояния $|\psi_1 > u |\psi_2 >$ могут быть ортогональными и при наличии распадов. Так, если уровни 1 и 2 обладают различными, сохраняющимися в процессе распада квантовыми числами, то сумма $\sum A_{m1}^* A_{2m}$ дественно равна нулю. Например, если уровни 1 и 2 обладают разными угловыми моментами, интегрирование шаровых функций по углам, содержащееся в сумме $\sum_{m} A_{1m}^* A_{2m}^*$ обратит ее в нуль. Аналогично, если уровни обладают разными изотопическими спинами или четностями, соответ.. ствующая сумма также равна нулю. Впрочем, высказанное выше утверждение очевидно и без ссылок на указанные примеры, так как согласно квантовой механике волновые функции состояний, соответствующих различным сохраня ющимся квантовым числам, должны быть ортогональными.

Если же квантовые числа, которыми различаются уровни 1 и 2, не сохраняются в процессе распада, то величина $\langle \psi_1 | \psi_2 \rangle$ может быть отлична от нуля, а волновые функции $| \psi_1 \rangle$ и $| \psi_2 \rangle$ неортогональны. В общем случае величина $\langle \psi_1 | \psi_2 \rangle$ комплексна, ее модуль заключен между нулем и единицей. Согласно/6/, отличие от нуля величины $\langle \psi_1 | \psi_2 \rangle$ соответствует не полностью различным или "квазитождественным" состояниям, интерферирующим при любом способе регистрации.

3. Ортогональные квазистационарные состояния могут перейти в неортогональные при включении соответствующего взаимодействия. Пусть $|\phi_1 > u|\phi_2 > -$ волновые функции рассматриваемых квазистационарных ортогональных состояний (например, 2s- и 2 р -состояния атома водорода), $\epsilon_{1,2}$, $\gamma_{1,2}$ - их энергии и ширины. Включим смешивающее взаимодействие (например, внешнее электрическое поле). Новые волновые функции удовлетворяют уравнению Шредингера

$$\hat{H} | \psi_{1(2)} \rangle = E_{1(2)} | \psi_{1(2)} \rangle, \qquad (10)$$

где H – эффективный, вообще говоря, неэрмитовый гамильтониан, E₁ и E₂ – комплексные энергии. Рассмотрим это уравнение в представлении, в котором в качестве базиса используются волновые функции $|\phi_1 > u$ $|\phi_2 > 37.6$. запишем $|\psi_{1,2} > в$ виде:

$$\psi_{1\{2\}} >= c_{1\{2\}1} |\phi_1\rangle + c_{1\{2\}2} |\phi_2\rangle.$$
(11)

Тогда из условия нормировки | $\psi_{1,2}$ > следует, что

$$c_{1(2),1} \Big|^2 + \Big| c_{1(2),2} \Big|^2 = 1.$$
 (12)

Подставляя, далее, (11) в (10), можно записать следующую систему уравнений для определения коэффициентов

$$H_{11}^{C}_{1(2),1} + H_{12}^{C}_{1(2)2} = E_{1(2)}^{C}_{1(2)1},$$

 $H_{21} c_{1(2)1} + H_{22} c_{1(2)2} = E_{1(2)} c_{1(2)2}$

где $H_{ik} = \langle \phi_i | \hat{H} | \phi_k \rangle$ матричные элементы оператора \hat{H} . Используя стандартный способ решения такой системы, получаем следующие выражения для энергий $E_{1,2}$ и коэффициентов C:

$$H_{1,2} = \frac{H_{11} + H_{22}}{2} + \frac{1}{2} \sqrt{(H_{11} - H_{22})^2 + 4H_{12}} H_{21} , \qquad (14)$$

$$c_{11} = (1 + |\frac{H_{21}}{a}|^2)^{-1/2}$$
, $c_{12} = \frac{H_{21}}{a} c_{11}$, (15)

(13)

(17)

$$c_{21} = -\frac{H_{12}}{a}c_{22}$$
, $c_{22} = (1 + |\frac{H_{12}}{a}|^2)^{-1/2}$, (16)

где

$$a = E_{1} - H_{22} = \frac{H_{11} - H_{22}}{2} + \frac{1}{2} \sqrt{(H_{11} - H_{12})^{2} + 4H_{12}H_{21}}$$

Зная коэффициенты с нетрудно выразить величину неортогональности функций $|\psi_1 \rangle |\psi_2 \rangle$ через матричные элементы H_{11} . При этом $\langle \psi_1 | \psi_2 \rangle = c_{11}^*, c_{21} + c_{12}^*, c_{22}^*, или$

$$<\psi_1 |\psi_2> = (1+|\frac{H_{12}}{\alpha}|^2)^{-1/2}(1+|\frac{H_{21}}{\alpha}|^2)^{-1/2}(\frac{H_{12}}{\alpha^*} - \frac{H_{12}}{\alpha}).$$
 (18)

Подчеркнем, что поскольку состояния $|\phi_1 > u | \phi_2 >$ (а, следовательно, и недиагональные матричные элементы H_{12} , H_{21}) определены с точностью до фаз, мы можем всегда выбрать эти фазы так, чтобы мера неортогональности $\langle \psi_1 | \psi_2 \rangle$ была действительным (положительным) числом.

4. Напомним, что уравнение Шредингера с эффективным неэрмитовым гамильтонианом можно получить, исходя из гайтлеровской теории затухания, имеющей дело с эрмитовым оператором взаимодействия W (см./7,8/). Представим оператор W в виде $W = V' + V_s$ где V' описывает распады, а V – некоторое эрмитовское взаимодействие, смешивающее состояния $|\phi_1 > u|\phi_2 >$ (например, взаимодействие системы с внешним электрическим или магнитным полем). Пусть теперь распадное взаимодействие не смешивает этих состояний. В этом важном случае мы можем считать, что матричные элементы эффективного гамильтониана имеют вид:

$$H_{11} = \epsilon_{1} + V_{11} - i - \frac{i}{2}, H_{22} = \epsilon_{2} + V_{22} - i - \frac{i}{2},$$

$$H_{12} = H_{21}^{*} = V_{12} = V_{21}^{*},$$
(19)

где ϵ_1 и ϵ_2 , γ_1 и γ_2 – энергии и ширины уровней <u>до перемешива-</u> <u>ния.</u> Как видно из (18), при $H_{12} = H_{21}^*$ величина $\langle \psi_2 | \psi_1 \rangle \approx \text{Im } a$. Легко видеть (см. формулу (17)), что $a \neq 0$ и, следовательно, $\langle \psi_2 | \psi_1 \rangle \neq 0$, если ширины уровней до смешивания не равны друг другу ($\gamma_1 \neq \gamma_2$).При этом, если $| \gamma_1 - \gamma_2 / \epsilon_1 - \epsilon_2 | \ll 1$, то независимо от величины смешивающего взаимодействия $| \langle \psi_2 | \psi_1 \rangle | \ll 1$. Величина неортогональ-

ности гораздо меньше единицы и тогда, когда смешивающее взаимодействие мало по сравнению с разностью энергий уровней $|\phi_1\rangle$ и $|\phi_2\rangle$, независимо от разности их ширин. В этом предельном случае

$$\langle \psi_{2} | \psi_{1} \rangle = i \frac{\operatorname{Re} H_{12}}{|H_{11} - H_{22}|^{2}} (\gamma_{1} - \gamma_{2}).$$
 (20)

Заметим, что при смешивании квазистационарных уровней внешним полем, когда, согласно (19), H₁₂ = H^{*}₂₁, ширины новых уровней можно представить в виде

$$f_i = -2 \operatorname{Im} E_i = -2 \operatorname{Im} \langle \psi_i | \hat{H} | \psi_i \rangle =$$

$$= |c_{i1}|^{2} \gamma_{1} + |c_{i2}|^{2} \gamma_{2} ,$$

где величины с₁₁ и с₁₂ определяются по формулам (15-16). При этом

(22)

(23)

(21)

 $\Gamma_1 + \Gamma_2 = \gamma_1 + \gamma_2 ,$

т.е. сумма новых ширин равна сумме старых.

Равенство (21) можно получить также с помощью формулы (6), если учесть линейную связь между новыми и старыми амплитудами A_{1m} и а ρ_m (i, $\ell = 1, 2$):

$$A_{im} = c_{i1} a_{im} + c_{i2} a_{2m}$$
.

10

Простой анализ уравнений (10) показывает, что выражение (18) при H₁₂ = H^{*}₂₁ и выражение (7) с учётом линейной связи между новыми и старыми амплитудами (23) приводятся к одинаковому виду:

$$<\psi_{2} |\psi_{1}> = \frac{<\psi_{2} |H|\psi_{1}> - <\psi_{1} |H|\psi_{2}>^{*}}{E. -E^{*}} = \frac{c^{*}_{21} c_{11} \gamma_{1} + c^{*}_{22} c_{12} \gamma_{2}}{\gamma_{1} + \gamma_{2}/2 - i(\mathcal{E}_{1} - \mathcal{E}_{2})} .$$
(24)

Заметим, что если вызывающее распады взаимодействие производит, кроме того, и перемешивание состояний $|\phi_1\rangle$ и $|\phi_2\rangle$, то, вообще говоря, $H_{12} \neq H_{21}^*$ и неортогональность возникает при любых начальных ширинах. Формулы (21), (23) и (24) при этом несправедливы.

6. Рассмотрим теперь случай, когда в результате включения взаимодействия W энергии и ширины квазистационарных уровней оказываются совпадающими. Из (14) вытекает, что

$$\mathbf{F}_{1} = \mathbf{E}_{2} = \frac{\epsilon_{1} + \epsilon_{2}}{2} + \frac{\Delta_{1} + \Delta_{2}}{2} - \mathbf{i} \quad \frac{\gamma_{1} + \gamma_{2}}{4} = \frac{\mathbf{H}_{11} + \mathbf{H}_{22}}{2} , \quad (25)$$

если подкоренное выражение

$$(H_{11} - H_{22})^2 + 4 H_{12} H_{21} = 0.$$
 (26)

Используя обозначение $H_{11} - H_{22} = \delta + i \beta$, равенство (26) можно переписать в виде следующих двух условий:

$$\delta^{2} - \beta^{2} + 4 \operatorname{Re} \left(\operatorname{H}_{12} \operatorname{H}_{21} \right) = 0 , \qquad (27)$$

$$\delta \beta + 2 \operatorname{Im} \left(\operatorname{H}_{12} \operatorname{H}_{21} \right) = 0 .$$

Для эрмитовского смешивающего взаимодействия Im (H₁₂H₂₁)=0, а Re(H₁₂H₂₁)>0 и E₁ может оказаться равным E₂,если $\delta = 0$, а $\beta^2 = 4 |H_{12}|^2$. При этом величина $\alpha = i \frac{\gamma_2 - \gamma_1}{4}$ и выражение для неортогональности имеет вид

$$\langle \psi_1 | \psi_2 \rangle = i \frac{\gamma_2 - \gamma_1}{|\gamma_2 - \gamma_1|} \frac{H_{12}}{|H_{12}|}$$
 (28)

Мы видим, что в пределе $E_1 = E_2$ величина $|\langle \psi_1 | \psi_2 \rangle| = 1$. Легко проверить, что в случае неэрмитовского смешивающего взаимодействия ($H_{12} \neq H_{21}^*$) при $E_1 = E_2$ также $|\langle \psi_1 | \psi_2 \rangle| = 1$. Поскольку состояния $|\psi_1 \rangle$ и $|\psi_2 \rangle$ определены с точностью до фазы (см. раздел 3), мы можем считать, что

 $\lim_{\mathbf{F}_{1} \to \mathbf{F}_{2}} <\psi_{1} \mid \psi_{2} > = 1 \text{ , t.e. при } \mathbf{E}_{1} = \mathbf{E}_{2} - \mid \psi_{1} > \equiv \mid \psi_{2} > .$

Следовательно, в случае пересечения неортогональных уровней квазистационарные состояния становятся тождественными (см. в связи с этим работу^{/6/}).

Отметим здесь, что несмотря на "вырождение" ($E_1 = E_2$) волновые функции $|\psi_1 \rangle$ и $|\psi_2 \rangle$, входящие в (28), определены однозначно, если рассматривать указанные соотношения как предельный случай $E_1 \rightarrow E_2$.

7. Предположим теперь, что в результате некоторого процесса было создано состояние $|\psi(0)\rangle$, соответствующее $|\phi_1\rangle$. Рассмотрим, как оно изменяется с течением времени. Для этого разложим $|\phi_1\rangle$ по квазистационарным состояниям $|\psi_1\rangle$ и $|\psi_2\rangle$. Из (11) следует, что это разложение имеет вид:

12

$$|\psi(0)\rangle = |\phi_1\rangle = \frac{c_{22}}{D}|\psi_1\rangle - \frac{c_{12}}{D}|\psi_2\rangle,$$
 (29)

где

$$D = c_{11} c_{22} - c_{12} c_{21}^{21}$$

Развитие во времени | ф > описывается выражением

$$\psi(t) = \frac{c_{22}}{D} |\psi_1\rangle e^{-\frac{i}{h} E_1 t} - \frac{c_{12}}{D} |\psi_2\rangle e^{-\frac{i}{h} E_2 t} .$$
(30)

Вероятность по истечении времени t обнаружить систему в начальном состоянии | $\phi_1 >$

$$P(t) = |\langle \phi_1 | \psi(t) \rangle|^2 .$$
(31)

Рассмотрим выражение (31) в случае, когда Е₁→Е₂. При Е₁=Е₃ коэффициенты в разложении (29) являются сингулярными. Аккуратный переход к пределу после соответствующих довольно громоздких алгебраических преобразований приводит к равенству

$$P(t) = |1 - i \frac{(H_{11} - H_{22})}{2h} t|^{2} e^{-\frac{\gamma_{1} + \gamma_{2}}{2h} t}, \qquad (32)$$

или

$$P(t) = \left\{1 + \frac{\beta t}{2} + \frac{\delta^2 + \beta^2}{4 h^2} t^2\right\}^{-\frac{\gamma_1 + \gamma_2}{2h}t}$$
(33)

Если, например, перемешивающее взаимодействие эрмитово, то, как уже указывалось, $\delta = 0$ и закон распада имеет вид

P(t) =
$$(1 + \frac{\gamma_2 - \gamma_1}{4 \text{ h}} t)^2 e^{-\frac{\gamma_1 + \gamma_2}{2 \text{ h}} t}$$
.

Пусть, далее, $\gamma_1 = 0$, $\gamma_2 = \gamma$. Тогда

$$P(t) = (1 + \frac{\gamma}{4h}t)^2 e^{-\frac{\gamma}{2h}t}$$
 (35)

Обратим внимание на то, что, согласно (27), смешивающее взаимодействие должно быть при этом строго определенным, а именно:

$$|H_{12}| = |H_{21}| = \frac{\gamma}{4}$$
 (36)

(34)

Если в начальный момент времени t = 0 было создано состояние, соответствующее $|\phi_2\rangle$, то вероятность Р'(t) по истечении времени t обнаружить систему в начальном состоянии $|\phi_2\rangle$ в условиях равенства $E_1 = E_2$ будет иметь вид (ср. /3/):

$$P'(t) = (1 - \frac{\gamma}{4h}t)^2 e^{-\frac{\gamma}{2h}t}.$$
 (37)

Законы распада $|\phi_1\rangle$ и $|\phi_2\rangle$ имеют неэкспоненциальный характер и полностью определяются величиной $|H_{12}|$. Выражение (36), описывающее распад состояния, бывшего до включения перемешивающего взаимодействия стабильным, совпадает с законом распада полюса второго порядка, введенного в работе $^{/9/x/}$.

x'Случай, когда $\gamma_1 = 0, \gamma_1 = y \neq 0$, соответствует модели Ли. Неэкспоненциальный распад в рамках этой модели был рассмотрен ранее в работе/10/. В нашем рассмотрении данный тип неэкспоненциальности распада $|\phi_1>$ является просто предельным частным случаем общего закона распада $|\phi_1>$, который при $E_1 \neq E_2$ имеет вид затухающих биений.

Из приведенного выше анализа следует, что при наличии вырождения двух неортогональных квазистационарных уровней закон распада, вообще говоря, имеет вид

 $|1+\xi t|^2 e^{-\Gamma t}, \qquad (38)$

где величина ξ зависит от способа возбуждения. При $\xi \neq 0$ матрица резонансного рассеяния на рассмотренной выше системе уровней будет иметь полюс второго порядка в точке $E_0 = E_1 = E_2$ (см. также/10/,/3/). Нетрудно понять, что пересечению N -неортогональных уровней (N > 2) отвечает появление полюса кратности N. Закон распада при этом имеет вид $|Q^{(N-1)}(t)|^2 e^{-\Gamma t}$, где $Q^{(N-1)}(t)$ – полином (N-1) – ой степени. Заметим, что результаты этого раздела могут быть получены непосредственно путем решения временного уравнения Шредингера i h $\frac{\partial}{\partial t} |\psi\rangle = \hat{H} |\psi\rangle$ и полностью согласуются с теорией систем дифференциальных уравнении, для которых соответствующее характеристическое уравнение имеет кратные корни (см./11/). При таком походе введение неортогональных квазистационарных состояний не является обязательным.

8. Рассмотренная выше теория распада нестабильных систем носит общий характер и может быть применена в различных физических ситуациях. Мы уже указывали, что для того, чтобы неортогональность квазистационарных состояний была большой, необходимо, чтобы разность ширин уровней была сравнима с разностью их энергий. Рассмотрим, например, распад возбужденных состояний атома водорода $2S_{1/2}$ и $2P_{1/2}$ при их перемешивании внешним электрическим полем в случае, когда лэмбовский сдвиг компенсируется соответствующим магнитным полем /12/(электрическое и магнитное поля должны быть перпендикулярны друг другу).

В этом случае состояниям $|\phi_1\rangle$ и $|\phi_2\rangle$ соответствуют состояния $2S_{1/2}$ и $2P_{1/2}$ в отсутствие электрического поля. При перемешивании уровней возникают неортогональные состояния $|\psi_1\rangle$ и $|\psi_2\rangle$ с энергиями E_1 и E_2 . Это приводит к тому, что число возбужденных атомов изменяется в течение времени неэкспоненциально (см. формулу (3)). При $E_1 \rightarrow E_2$ $<\psi$, $|\psi_2\rangle \rightarrow 1$ и закон распада системы описывается формулами (35), (37). Матрица резонансного рассеяния фотонов в этом случае имеет в точке $E_0 = E_1 = E_2$ полюс второго порядка $\approx \frac{1}{(E-E_1)^2}$.

В качестве второго примера отметим. что возбужленные состояния $Be_1^{\mathfrak{s}^*}$ и $Be_2^{\mathfrak{s}^*}$, которые рассматривались в работе/4/, также являются неортогональными. Действительно, оба состояния бериллия обладают одинаковыми спинами и четностями (2⁺) и распадаются на две *а*-частицы. Используя экспериментальные данные для ширин Γ_1 и Γ_2 и разности уровней $Q = \mathfrak{E}_1 - \mathfrak{E}_2$, приведенные в работе/4/. мы с помощью формулы (7) получим

$$\langle {}_{1}^{8}{}_{Be} | {}_{2}^{8}{}_{Be} \rangle | = \sqrt{\frac{\Gamma_{1} \Gamma_{2}}{(\frac{1+\Gamma_{1}}{2})^{2} + Q^{2}}} \approx 0.3$$

Именно неортогональность ${}^{8}{}^{*}_{1}$ Ве и ${}^{8}{}^{*}_{2}$ Ве приводит к тому, что спектр распада ${}^{8}{}^{*}$ Ве $\rightarrow 2 \alpha$ не описывается суммой двух формул Брейта-Вигнера, а содержит интерференционный член, что и было замечено эксперимен-тальнох/.

9. Заметим в заключение, что в самом общем случае сечение образования двух нестабильных неортогональных состояний $|\psi_1 > u |\psi_2 >$ равно

$$\sigma = \left| f_{1} \right|^{2} + \left| f_{2} \right|^{2} + 2 \operatorname{Re} \left(\langle \psi_{2} | \psi_{1} \rangle f_{2}^{*} f_{1} \right), \tag{39}$$

х/Состояния ${}^{*}_{1}$ Ве и ${}^{*}_{2}$ Ве представляют собой суперпозиции состояний с изотопическими спинами T = 0, 1, которые, согласно (15-16), можно записать в виде ${}^{*}_{2}$ Ве = a | $\psi_{T=0} > + b/a$ | $\psi_{T=1} > ,$ ${}^{*}_{2}$ Ве = -b*/a | $\psi_{T=0} > + a$ | $\psi_{T=1} > ,$

где а – действительное число, а а – в данном случае обязательно комплексная величина. Это, по-видимому, ускользнуло от авторов работы/4/. При действительных значениях коэффициентов приведенные выше суперпозиции были бы, очевидно, ортогональными. где f_1 – амплитуда образования состояния $|\psi_1\rangle$, f_2 – амплитуда образования состояния $|\psi_2\rangle$. Формула (39), по сути дела, дает представление сечения процесса в неортогональном базисе. Она может быть получена например, следующим способом.

Рассмотрим распределение энергий (строго говоря, эффективных масс) продуктов распада $|\psi_1>, |\psi_2> \rightarrow |m>$. Оно, очевидно, имеет следующий вид:

$$d\sigma_{m} = \frac{1}{2\pi} h \left| f_{1} \frac{A_{1m}}{\xi - \xi_{1} + i \frac{\Gamma_{1}}{2}} + f_{2} \frac{A_{2m}}{\xi - \xi_{2} + i \frac{\Gamma_{2}}{2}} \right|^{2} d\xi, \quad (40)$$

где A_{1m}, A_{2m} – амплитуды распадов $|\psi_1 \rangle \rightarrow |m \rangle |u| |\psi_2 \rangle \rightarrow |m \rangle$ соответственно, \mathcal{E}_1 и \mathcal{E}_2 – энергии и ширины состояний $|\psi_1 \rangle |u| |\psi_2 \rangle$.

При соответствующем суммировании по конечным состояниям m (например, при интегрировании по углам) интерференционный член в (40) в случае ортогональности $|\psi_1 \rangle$ и $|\psi_2 \rangle$ исчезает. Но если состояния $|\psi_1 \rangle$ и $|\psi_2 \rangle$ неортогональны, интерференционный член в выражении Σ d σ_m всегда отличен от нуля.

Полное сечение образования состояний $|\psi_1 > \mu |\psi_2 > -\sigma = \Sigma \int d\sigma_m$. После элементарного интегрирования получим

$$\sigma = |f_1|^2 h \frac{\sum_{m} |A_{1m}|^2}{\Gamma_1} + |f_2|^2 h \frac{\sum_{m} |A_{2m}|^2}{\Gamma_2} + \frac{\sum_{m} |A_{2m}|^2}{\Gamma_2} + 2 \operatorname{Re} \left(f_1 f_2^* \frac{h \sum_{m} A_{1m} A_{2m}^*}{\Gamma_1 + \Gamma_2 / 2 + i(\mathcal{E}_1 - \mathcal{E}_2)} \right).$$
(41)

С учётом соотношений (6) и (7) мы приходим к формуле (39). Авторы выражают глубокую благодарность Л.И.Лапидусу за участие в обсуждении работы и интересные замечания.

17

Литература

- 1. R. Sachs. Ann. Phys., 22, 239 (1963).
- 2. S. Bennet, D. Nygren, H. Saal, J. Steinberger, J. Sanderland. Phys. Rev. Lett., 19, 997 (1967).
- 3. K.E. Lassila, Vesa Ruuskahnen, Phys. Rev. Lett., <u>17</u>,490 (1966).
- 4. C. P. Brownc, W.D. Callender and J.R. Erskine. Phys. Lett., <u>23</u>, 371 (1968).
- 5, J.S. Bell, J. Steinberger, Proc. of the international conference on elementary particles. Oxford, 1965.
- 6, В.Л.Любошиц, М.И.Подгорецкий. ЖЭТФ, <u>55</u>, 904 (1968); Препринт ОИЯИ, P2-3763, Дубна, 1968.
- 7. В.Гайтлер. Квантовая теория излучения, \$16, ИЛ, 1956.
- 8. L. Mower, Phys. Rev., 142, 799 (1966).
- 9. M. Goldberger and K. Watson. Phys. Rev., 136, B1472 (1964).

10, J.S. Bell and G.J. Goebel. Phys. Rev., <u>138</u>, B1198 (1965).

11. Степанов. Курс дифференциальных уравнений, гл. VII, §2. 12. R.T. Robiscol. Phys. Rev., <u>138</u>, A22 (1965).

> Рукопись поступила в издательский отдел 2 октября 1968 года.