

P2 - 4068

В.С.Барашенков, К.К.Гудима, В.Д.Тонеев

СЕЧЕНИЯ ВЗАИМОДЕЙСТВИЯ БЫСТРЫХ ЧАСТИЦ И АТОМНЫХ ЯДЕР

P2 - 4068

СЕЧЕНИЯ ВЗАИМОДЕЙСТВИЯ БЫСТРЫХ ЧАСТИЦ И АТОМНЫХ ЯДЕР

Направлено в Forschritte der Physik

1. Введение

Изучение сечений взаимодействий частиц и ягер с ядрами началось очень давно, фактически еще со времени известны:: опытов Розенфорда по рассеянию *а* -частиц. К настоящему времени є этой области накоплен обширный экспериментальный материал, однакс большая часть этого материала относится к взаимодействиям при энэргиях, не превышающих нескольких десятков Мэв. При более высоких энергиях число измерений несравненно меньше, а их точность во многих случаях значительно уступает точности низкоэнергетических измерений. Тем не менее имеющаяся сейчас экспериментальная информация позволяет составить достаточно ясное представление о поведении сечений вплоть до очень высоких энергий порядка десятков и сотен Гэв, а в некоторых случаях и при более высоких энергиях.

Понятно, что сведения о поведении сечений гри ускорительных энергиях T ≤ 30 Гэв являются значительно бол зе полными и более надежными, чем те, что получены в опытах с космическими лучами; однако и в последнем случае можно сделать ряд говольно определенных заключений.

Далее мы будем рассматривать лишь интегральные величины: сечение упругого рассеяния

$$\sigma_{ef} = \int \sigma_{ef} (\theta) d\Omega , \qquad (1)$$

сечение всех неупругих процессов

$$\sigma_{\rm in} = \sum_{\rm j} \sigma_{\rm in}^{\rm (j)} \tag{2}$$

и полное сечение

$$\sigma_{t} = \sigma_{el} + \sigma_{in} . \tag{3}$$

Как и в случає взаимодействия элементарных частиц (см. монографию^{18/}) сечениє $\sigma_{e\ell}$ включает сечения дифракционного и потенциального рассеяний σ_{d} и σ_{p} . их интерференцию σ_{dp} и сечение "рассеяния через нєупругий канал" σ_{i} :

$$\sigma_{\substack{\mathbf{p} \\ \mathbf{d} \\ \mathbf{d} \\ \mathbf{d} \\ \mathbf{p} \\ \mathbf{d} \\ \mathbf{d} \\ \mathbf{p} \\ \mathbf{d} \\ \mathbf{$$

При малых энергиях сечение σ_{ie}, как правило, соответствует образованию единой компаунд-системы, когда во взаимодействии существенную роль играют все ядерные нуклоны. В области высоких энергий, когда длина дебройлевской волны рассеивающейся частицы значительно меньше размеров ядра-мишени, а ее энергия значительно больше энер-

гии связи внутриядерных нуклонов, основной вклад в сечение σ_{ie} дает рассеяние частицы на одном нуклоне, или, более рэдко, ее последовательное рассеяние на нескольких нуклонах ядра. Так к ϵ к эти нуклоны находятся в поле ядерных сил, то рассеяние первичной частицы в этом случае несколько отличается от ее рассеяния на свободных нуклонах; такое рассеяние принято называть "квазиупругим рассеянием".

Следует иметь в виду, что этот термин относится к взаимодействию частиц и его не нужно путать с аналогичным термином, применяемым для характеристики рассеяния частицы на ядре, когда последнее остается в слабо возбужденном состоянии и рассеяние практинески не отличается от подлинно упругого рассеяния. Хотя, строго говоря, реакцию "квазиупругого рассеяния на ядре" следует относить к неу пругим процессам, тем не менее благодаря неточностям измерений в экспериментальном сечении $\sigma_{\mathfrak{e}\ell}$ всегда содержится более или менее существенный вклад этой реакции (во многих экспериментальных работах – например, в недавней работе группы Коккони — разрешение по экергии составляет несколько десятков Мэв, в то время как расстояния между уровнями в ядре не превышают нескольких Мэв).

Примером упругого процесса, при котором ядро остается невозбужденным, является дифракционное рассеяние.

Важно отметить, что ядро-мишень может остазаться в своем основном состоянии и при неупругом взаимодействии. Это имеет место, в частности, при взаимодействии, описываемом диаграммой рис. 1. Такие процессы сейчас называют "когерентными неупругими процессами". Этим подчеркивается то обстоятельство, что все внутриядерные нуклоны в этом случае являются совершенно эквивалентными и взаимодействуют с налетающей частицей в одной и той же фазе.

Частным случаем неупругого процесса является "упругое рассеяние с переворачиванием спина" с сечением σ_{a} . В тех случаях, когда се-

чения измеряют зя в опытах с неполяризованными пучками и мишенями, в которых с рагными вероятностями присутствуют все возможные проекции спинов, ссчение σ_s автоматически включается в экспериментальную величину сечения упругого рассеяния $\sigma_s \rho$.

В области энергий, больших нескольких сотен Мэв, сечение мало и быстро убывает при увеличении энергии первичной частицы, что является следст эмем общих теорем о независимости асимптотических сечений взаимод эйствий частиц и ядер от их спинов и изотопических спинов (ср. / 18/ глава XII).

Далее мы эграничимся областью кинетических энергий налетающих частиц Т > 50 Мэв. Выбор этой границы является, конечно, весьма условным и связан в основном с тем, что для области меньших энергий имеется несколько очень подробных обзоров и атласов экспериментальных сечений (см., например, /91,141,142,154,161/).

Мы не будем касаться взаимодействий элементарных частиц с дейтронами; э'и данные подробно обсуждаются в монографии, там же указаны рабсты, где можно найти подробный теоретический анализ таких взаимодей:твий.

Как правил», мы будем указывать те экспериментальные ошибки, которые приводятся авторами соответствующих оригинальных работ; если в работе не указана ошибка в значении одного из сечений – например, σ_{in} – в то время, как неточности других сечений известны неизвестная ошибка будет определяться как среднее квадратичное:

$$\delta \sigma_{\rm in} = \sqrt{\left(\delta \sigma_{\rm el}\right)^2 + \left(\delta \sigma_{\rm t}\right)^2} \tag{5}$$

Следует иметь в виду, что в экспериментальных работах очень часто приводятся лишь статистические ошибки и не указываются значительно большие систематические погрешности (нє всегда ясные и самим авторам). В частности, измерения ядерных сечений иногда связаны с использованием поправок на основе оптической и других моделей; вносимая этим погрешность, как правило, не учитываются.

Типичным методом измерения ядерных сечелий, с помощью которого получена большая часть известных в настоящее гремя данных, является так называемый "метод выбывания из пучка в условиях плохой и хорошей геометрии".

В этом методе коллимированный пучок первичных частиц после прохождения монитора попадает на мишень (см. эис. 2), затем частицы, рассеянные на углы $\geq \theta$ или выведенные из пэрвичного пучка на углы $\geq \theta$, благодаря неупругим процессам в мишени, регистрируются D. Наблюдаемое сечение взаимодействия при этом, эчевидно равно:

$$\sigma(\geq\theta) = \frac{1}{n} \ln \frac{N(\geq\theta)}{N_0}, \qquad (6)$$

где N / N_o - относительная доля частиц, зарегистрированных детектором, а n - число ядер, приходящихся на 1 см² геомєтрического сечения падающего пучка.

Если угол θ мал, то детектор зарегистрирует практически все провзаимодействовавшие в мишени частицы. При увеличении угла сечение σ ($\geq \theta$) уменьшается, особенно быстро в случає заряженных частиц, для которых в области малых углов большой вклат дает кулоновское рассеяние. На кривой σ ($\geq \theta$), изображенной на рис. 3, этому соответствует отрезок АВ

Часть ВС на этсй кривой описывает сумму неупругого рассеяния и упругого однократного рассеяния. Так как в области высоких энергий упругое рассеяние является в основном дифракционным и его угловое распределение имеет гезкий пик вперед, то для больших значений θ кривая σ ($\geq \theta$) на рис. З становится почти прямой и σ ($\geq \theta$) $\stackrel{<}{=} \sigma_{\rm in}$. Этот случай принято называть "опытом с хорошей геометрией".

Полное ядерное сечение σ_t определяется либо экстраполяцией участка ВС в точку $\theta = 0$ (пунктир на рис. 3), либо для этого используется оптическая модель с параметрами, найденными путем подгонки теоретической и экспериментальной кривых σ ($\geq \theta$) на участке ВЕ. В обоих случаях изме жиные сечения содержат весьма заметные систематические ошибки.

Из всего сказанного следует, что к приводимым ниже экспериментальным неточностям сечений нужно относиться с должной осторожностью.

Точность ядерны: сечений в большинстве случаев оказывается значительно худшей, чем точность сечений взаимодействий элементарных частиц.

Экспериментальные сечения нуклон- и пион-ядерных взаимодействий собраны в таблицах I – V. Характер энергетической зависимости этих сечений иллюстрируется рис. 4-6.

В настоящее время имеется обширная экспериментальная информация о сечениях взаимодействий нуклонов и *п* -мезонов с фотоэмульсией. Подробные данные для наиболее интересной области энергий T > 1 Гэв собраны э монографии^{/18/}, некоторые данные для меньших энергий указаны в книге^{/138/}.

Из приведенных данных видно, что энергетический ход ядерных сечений в общих чертах повторяет поведение сечений элементарных N – N и π – N взаимодействий. Так, в случае нуклон-ядерных столкновений в сечениях появляются минимум при T = 200 + 300 Мэв, подъем в районе T = 1 Гэв и плавное стремление к постоянным значениям при больших энергиях. В сечениях пион-ядерных взаимодействий огчётливо проявляется пик, соответствующий пион-нуклонному резонансу при T = 200 Мэв, и ощущается влияние следующих π – N -резонансов, эотя точность измерений здесь довольно плохая.

Заметные отличия от хода элементарных сечени і наблюдаются лишь для тяжелых ядер в области энергий T ≤ 100 Мэв, : де начинают играть существенную роль внутриядерные процессы. Эти отличия проявляются лишь в упругом рассеянии, сечения неупругих взаимодействий σ_{in} попрежнему остаются сравнительно слабо зависящими от энергии.

В целом сечения взаимодействий с ядрами изм няются с энергией значительно более плавно, чем элементарные N-Nu *n*-N сечения.

Аналитически энергетическую зависимость сечений удобно аппроксимировать суммой постоянной σ_{0} и функций типа а, Т и b / [(T - T)² + c].

До недавнего времени можно было достаточно уверенно говорить о приблизительном или даже полном постоянстве сечэний взаимодействий во всей области энергий от нескольких десятков Гэв до Т $\approx 10^8$ Гэв. Этот вывод следовал из данных по пробегам космических частиц в фотоэмульсии, из анализа поглощения ядерно-активной ксмпоненты космических лучей в воздухе и из опытов по исследованию широких атмосферных ливней, образуемых космическими частицами сверхвысоких энергий (подробнее см. ^{/18/}). Вся совокупность известных экспериментальных данных указывала на то, что при изменении энергии Т на шесть-восемь порядков сечения ядерных взаимодействий изменяются вс всяком случае не

более чем в два газа. Сомпения в этом были порождены недавними опытами со спутии ом "Протон-1"^{/23/}. В этих опытах методом ионизационного калориметра было измерено сечение неупругих взаимодействий космических протогов с ядрами углерода в интервале энергий от нескольких Гэв до 500 Гэг. В нижней части этого интервала измеренные сечения совпали с тем, чтс было ранее получено на ускорителях; при больших энергиях вилоть до Т $\approx 10^3$ Гэв установлен медленный, но систематический рост сечения: приблизительно на 50% при изменении энергии на два порядка (см. рис. ⁷⁷). Однако более поздние эксперименты со спутником "Протон -2" показали, что хотя в области $1 = 10^2 \div 10^3$ Гэв сечение и возрастает, при дальнейшем увеличении энергии оно в пределах ощибок измерений остсется постоянным^{/92/}.

Нельзя вместэ с тем не отметить, что установленный в работах ^{23,92} рост ядэрного сечения в области энергий больших нескольких десятков Гэв, вызывает серьезные сомпения, так как весьма точные измерения в области 10-30 Гэв сечения эдементарных N - N и π - N взаимодействий, определяющих в конечном счёте и ядерное сечение, не обнаруживают никакой сенденции к их возрастанию. Поскольку телеметрические измерения на спутниках очень сложны, не исключено, что здесь замешены какие-то метолические ошибки, хотя оценки сечений взаимодействий космических прото юв с ядрами воздуха, выполненные той же группой физиков в опытах на горах ¹¹⁴⁷, также указывают на рост ядерного сечения: приблизительно на 30% в интерваде T = 10² + 10³ Гов.

Этот вопрос гребует еще дальнейшего разъяснения.

Сечения взаи модействий с логкими и средними ядрами очень слабо зависят от знака заряда налетамией частицы: в большинство случаев сечения протон- и чейтрон-ядерных взанмодействий, как и сечения взаимодействий π^+ - и π^- -мозонов, в предечах очибок в заорелий оказываются практически совчадающими. Это объясняется том очезадным фак-

том, что в легких и средних ядрах число протонов и нейтронов приблизительно одинаково. В случае углерода, где эти числа в точности равны друг другу, сечения взаимодействий протонов и нейтронов, и соответственно π^+ - и π^- -мезонов, вообще не различаются и их разделение в таблицах I - V указывает лишь на ризличие в методе измерений.

Для взаимодействий с тяжелыми ядрами, где имеется большой избыток нейтронов, должна проявляться более существенная изотопическая зависимость, однако имеющиеся сейчас экспериментальные данные еще недостаточны для того, чтобы можно было сделать какие-либо определенные заключения.

Что касается зависимости ядерных сечений ог массового числа ядра-мишени A, то во всем рассматриваемом ингервале энергий сечение σ_{in} с хорошей точностью оказывается пропорциональным A 2/3, т.е. возрастает пропорционально увеличению геомєтрического сечения ядра (см. рис. 8). Еще более точную аппроксимацию экспериментальных данных дают эмпирические формулы типа формулы предложенной Виллиамсоном

$$\sigma_{\rm in}({\rm T},{\rm A}) = 44\,{\rm A}^{0.69} \left\{1+3.9\cdot\,10^{-2}\,{\rm A}^{-1/3} \left[\overline{\sigma}({\rm T})-33\right]-9\cdot10^{-4}\,{\rm A}^{-1/3} \left[\overline{\sigma}({\rm T})-33\right]^{2}\right\}\,{\rm MG}_{\rm I}$$

где σ -зависящая от энергии постоянная величина, близкая к полному сечению N − N или π- N взаимодействия (соотвэтственно в случае, когда с ядром сталкивается нуклон или π -мезон)^{X/}.

х/формула Виллиамсона применима для ядер, тяжелее лития.

Формулы типа (7) пригодны для того, чтобы по экспериментальным сечениям, известным для нескольких элементов при той же энергии T , определить сечения σ_{in} для других значений A .

Зависимость сечения упругих взаимодействий $\sigma_{\mathfrak{ol}}$ (а, следовательно, и полного сечения $\sigma_{\mathfrak{t}}$) от массового числа A оказывается заметно более сильной: известные экспериментальные значения $\sigma_{\mathfrak{ol}}$ аппроксимируются стэпенной функцией A^{0,84}. Это связано с эффектами взаимной экранировки внутриядерных нуклонов /88,102/...

3. Сечения ззаимодействий антинуклонов и К -мезонов

Экспериментальная информация о сечениях взаимодействий с ядрами антинуклонов, к - и к -мезонов собрана в таблицах VI-X. Как видно, данных здесь пока еще довольно мало, а их ошибки весьма велики; во многих случалх для ориентировки приходится пользоваться результатами расчётов по эптической модели, параметры которой подобраны таким образом, чтобы расчётные кривые проходили через известные экспериментальные тэчки.

Кроме данных, приведенных в таблицах, сейчас известно еще два измерения сечения упругого рассеяния К⁺-мезонов в фотоэмульсии (без учёта взаимодействий с водородом):

 $\sigma_{e\ell} = 518 \pm 78$.46 при T = 75 ± 25 Мэв и $\sigma_{e\ell} = 261 \pm 51$.46 при T = 130 ± 20 Мэв.

Как и в случае элементарных взаимодействий, сечения К -мезонов заметно меньше, а сечения взаимодействия антинуклонов заметно больше соответственно сечений пион- и нуклон-ядерных взаимодействий.

Возрастание ядорных сечений взаимодействий К-мезонов при Т = 0,6 и 1 Гэв отражают соответствующие максимумы в сечениях . К[±]-N взаимодействий.

При очень высоких энергиях можно ожидать, чтс сечения взаимодействия частиц и античастиц с ядрами станут одинановыми, как это следует из дисперсионных теорем о равенстве асимптотических сечений. Такая асимптотическая область сейчас еще далеко не достигнута.

Зависимость сечений от массового числа А может быть приближенно представлена теми же функциями, что и в случае нуклон- и пионядерных взаимодействий.

4. Взаимодействие ядер

Экспериментальные сечения взаимодействий дву:: ядер с энергией, большей нескольких десятков Мэв на нуклон, собрань в таблице XI. Эти данные крайне скудны, особенно в области высоких энергий, где их единственным источником являются опыты с космическими лучами. Так как идентификация налетающих ядер в этих опытах является весьма трудным делом, то обычно рассматриваются средние цанные для нескольких групп ядер:

легкие ядра с Z = 3 + 5 (Li, Be, B), среднее $Z \simeq 4,2$;

средние ядра с Z = 6 + 9 (C, N, O, F), среднее $2 \approx 7$;

тяжелые ядра с Z ≥ 10, среднее Z ≈ 15. В последней группе около 10% составляют ядра железа (Z = 26), а все ядра с Z > 30 дают вклад < 1%; в соответствии с этим группу тяжелых космических ядер иногда разделяют на две группы:

средние тяжелые ядра с Z = 10 + 19 (средне∋ Z = 12,8)

И

очень тяжелые ядра с Z ≥ 20 (среднее Z 🛎 23).

В таблице XI пять перечисленных групп обозначены соответственно как ядра Л, СР, Т, СТ, ОТ.

Следует оссбо остановиться на взаимодействиях быстрых дейтронов с ядрами. Так как дейтрон представляет собой очень рыхлую систему, в которой нуклоны обычно находятся на далеком по сравнению с радиусом ядерных сил расстоянии друг от друга, то весьма часто с ядроммишенью взаимодействует лишь один из этих нуклонов, а второй продолжает движение практически без изменения своего первоначального импульса. Такой канал неупругой реакции принято называть реакцией стриппинга (срыва). На практике эта реакция, как правило, не отделяется от другого канала нэупругого дейтрон-ядерного взаимодействия – дифракционного и кулонов жого расшепления дейтрона.

Таким обрасом, полное сечение неупругого дейтрон-ядерного взаимодействия

$$\sigma_{\rm in} = \sigma_{\rm st} + \sigma_{\rm s} , \qquad (8)$$

где σ - сечение поглощения.

Известные сейчас экспериментальные данные о сечениях взаимодействия дейтронов приведены в отдельной таблице XII.

В области энергий, больших нескольких сотен Мэв, где сечения неупругих взаимодействий ядер с ядрами в пределах ошибок измерений становятся практически постоянными, их можно аппроксимировать функцией

$$\sigma_{1n} = \pi \left(R_{1} + R_{2} - 2 \cdot \Delta R \right)^{2} , \qquad (9)$$

где R₁ и R₂ – средние радиусы сталкивающихся ядер , Δ R – минимальное перекрытие, необходимое для того, чтобы прсизошла реакция. По оценкам Брадта и Петерса^{/37,38/} для согласования с экспериментом следует положить

 $R_i \cong 1,45 A_i^{1/3} \cdot 10^{-13} cm$ $\mu \Delta R \cong 8,6 \cdot 10^{-14} cm.$

Эмпирическая формула (9) лучше всего применима для ядер-мишеней в области средних значений A и налетающи:: ядер между ⁴ Не и ⁴⁰ Са. Вне этой области формула дает несколько завышенные сечения по сравнению с более точным расчётом по оптичэской модели; так, для взаимодействия ⁴⁰ Са + ²⁰⁷ Рь это завышение составляет около 5-10%, а для взаимодействия ⁴ Не + ⁴ Не – уже около 20% / 10/.

5. Заключение

Из приведенных данных видно, что экспериментальная информация о сечениях взаимодействий с ядрами, которой мн сейчас располагаем, является значительно менее подробной и точной, чем аналогичная информация о сечениях взаимодействий элементарных частиц. Заключения, которые сейчас можно сделать на основе экспериментальных данных, во многих случаях имеют лишь грубо количественный характер. Особенно плохо известно поведение сечений упругих взаимодействий частиц с ядрами и сечения взаимодействий двух ядер.

В этой области требуется еще большая экспериментальная работа.

 N.Abbattista, M.Biasco, S.Mongelli, A.Ronano, P.Waloschek, E.Perez-Ferreiara. Nuovo Cim., <u>23</u>, 1 (1962).

- L.E. Agnew Jr., T. Elioff, W.B. Fowler, R.L. Lander, W.M. Powell, E. Segre, H.M. Steiner, H.S. White, C. Wiegand, T. Ypsilantis. Phys. Rev., 118, 1371 (1960).
- 3. G.Alexander, G.Yekutieli, Nuovo Cim., 19, 103 (1961).
- 4. W.Alles, N.N.Biswas, M.Ceccarelli, J.Crussard. Nuovo Cim., 6, 571 (1957).
- 5. R.Alphonce, A.Johansson, A.E.Taylor, G.Tibell, Phil. Mag., 46, 295 (1954).
- E.Amaldi, G.Baroni, G.Bellettini, C.Castagnoli, M.Ferro-Luzzi,
 A.Manfredini. Nuovo Cim., 14, 977 (1959).
- A. Angler, P.B.Jones, J.H. Mulvey. Proc.Roy. Soc., <u>254</u>, 425 (1960).
- M.V.K.Appa Rao, R.R.Daniel, K.A. Neelakantan. Proc.Ind. Acad. Sci., 43, 181 (1956).
- 9. A.Ashmore, G.Cocconi, A.N.Diddens, A.M.Wethirell, Phys.Rev. Lett., 5, 576 (1960).
- 10.A.Ashmore, G.Cocconi, A.N.Diddens, A.M.Wethirell. Sc 60-11, CERN, 1960.
- 11. A.Ashmore, R.G.Jarvis, D.S.Mather, S.K.Sen. Proc. Phys. Soc., A70, 745 (1957).
- 12. A. Ashmore, D.S. Mather, S.K. Sen. Proc. Phys. Soc., <u>A71</u>, 552 (1957).
- 13. J.H. Atkinson, W.N.Hess, V.Perez-Mendez, R.W. Wallace. Phys. Rev., 123, 1850 (1961).
- Х.П.Бабаян, Н.Л.Григоров, Г.А.Дулян, В.А.Собиняков, Ч.А.Третьякова, В.Я.Шестоперов. Изв. АН СССР, серия физ., <u>30</u>, 1617 (1966).
- Х.П.Бабаян, Н.Л.Іригоров, М.М.Дубровин, Л.Г.Мищенко, В.С.Мурзин, Л.И.Сарычева, В.А.Собиняков, И.Д. Рапоппорт, Труды Международ. конференции по кссмическим лучам, <u>1</u>, 176, Москва, 1959.

- M. Baldo Ceolin, M. Cresti, N. Dallaporta, M. Grilli, L. Guerriero, M. Merlin, G.A. Salandin, G. Zago, Nuovo Cim., 5, 402 (1957).
- 17. W.P.Ball, Ph.D.Thesis, UCRL- 1938 (1952).
- 18. В.С.Барашенков, Изд-во НАУКА, М., 1966. Сечения взаимодействия элементарных частиц.
- W.H. Barkas, R.W. Birge, W.W. Chupp, A.G. Ekspong, G. Goldhaber, S. Goldhaber, H.H. Heckman, D.H. Perkins, J. Sandweiss, E. Segre, F.M. Smith, D.H. Stork, L. van Rossun, E. Amaldi, G. Baroni, C. Castagnoli, C. Fronzinetti, A. Manfredini, Phys. Rev., 105, 1037 (1957).
- 20. D.Barr. UCRL- 3793 (1957).
- 21. P.H. Barrett Phys.Rev., <u>114</u>, 1374 (1959).
- 22. F.Bartholin, B.Tinland, A.Bernheim, B.Brami-Depaux, J.Bermond, V.Vilar Perez. Compt.Rend., <u>258</u>, 1219 (1964).
- Р.Н.Басилова, Н.Л.Григоров, Г.П.Кахидзе, О.М.Коврижных, В.Е.Нестеров, И.Д. Рапоппорт. И.А.Савенко, Г.А.Скуридин, Л.Ф.Титенков. Изв. АН СССР, серия физическая, <u>30</u>, 1610 (1966).
- 24. C.J.Batty, W.O.Lock, P.V.March. Proc.Phys.Scc., 73, 100 (1958).
- 25. Р.Б.Бегжанов. ЖЭТФ<u>34</u>, 725 (1958).
- G. Bellettini, G.Cocconi, A.N.Diddens, E.Lillet un, G.Matthiae, J.P.Scanlon, A.M.Wetherell, Nucl. Phys., <u>79</u>, 609 (1966).
- 27. B. Bhowmik, E. Evans, D. Falla, F. Hassan, A.A. Kamal, K.K. Nagpaul, D.J. Prowse, M. Rene, G. Alexander, R.H.W. Johnston, C.O Ceallaigh, D. Keffe, E.H.S. Burhop, D.H. Devis, R.C. Kumar, W.B. Lasich, M.A. Shaukat, F.R. Stannard, M. Bacchella, A. Bonnetti, C. Dilworth, G. Occhialini, L. Scarsi, M. Grilli, L. Guerriero, L. von Linden, M. Merlin, S. Salandin, Proc. of the Intern.Confer. on Mesons and Recently Discovered Particles, Padova-Venezia, 1957, sess.2, p.5.

- G.K.Bisheva, V.S.Borisov, L.L.Goldin, L.N.Kondratjev, Z.S. Sidorenko, S.T.Sukhorukov, G.K.Tumanov. Phys.Lett., <u>24B</u>, 533 (1967).
- M. Block, B. Brucker, C. Chang, T. Kikuchi, C. Meltzer, F. Anderson, A. Pevsner, H. Cohn, Harth E., J. Leither, G. Brautti, C. Franzinetti, R. Tosi, Nuovo Cim., 12, 642 (1959).
- 30. M.M.Block, Kengon, J. Keren, D. Koetke, P.K. Malhotra, P.Mazur, R. Walker, H. Winzeler. Proc. of the Williamsburh Confer. on Intermediate Energy Phys., <u>1</u>, 455 (1966).
- Г.Бозоки, Е. Ренивеш, Л.Яноши. Труды Международной конференции по космичестим лучам, <u>1</u>, 171, Москва., 1959.
- 32. В.И.Болотов, Автореферат ИФВЭ, 67/48, Серпухов, 1967.
- 33. N.Booth, B.Hedley, D.Walker, D.N.White. Proc.Phys.Soc., A70, 209 (1957).
- N.E. Both, G.W. Hutchinson, B. Ledley. Proc. Phys. Soc., <u>A71</u>, 293 (1958).
- 35. T.Bowen, M.DiCorato, W.H.Moore, G.Tagliaferri. Nuovo Cim., 9, 908 (1953).
- P.H. Bowen, J.P. Scanlon, G.H. Stafford, J.J. Thresher, P.E. Hodgson. Nucl. Phys., <u>22</u>, 640 (1961).
- 37. H.L. Bradt, 3. Peters. Phys. Rev., 77, 54 (1950).
- 38. H.L. Bradt, 3. Peters. Phys. Rev., <u>80</u>, 943 (1950).
- A. Bratenahl, S. Fernbach, R. Hildebrand, C.E. Leith, B. Moyer. Phys. Rev., 77, 597 (1950).
- G.B. Brautti, L. Chersovani, C. Franzinetti, M. Sedmak Furlan, R. Tosi - Torelli, Nuovo Cim., 19, 1270 (1961).
- 41. A.E.Brenner, R.W.Williams. Phys.Rev., <u>106</u>, 1020 (1957).
- F.A. Brisbout, C. Dahanayake, A. Engler, P.H. Fowler, P.B. Jones. Nuovo Cim., 3, 1400 (1956).

- 43. F.A. Brisbout, C. Dahahayaka, E. Engler, Y. Fujimoto, D.H. Perkins. Phil.Mag., <u>1</u>, 605 (1965).
- 44. Ю.А.Будагов, П.Ф.Ермолов, Е.Ф.Кушниренко, В.И.Москалев. ЖЭТФ, 42, 1181 (1962).
- D.V. Bugg, R.S. Gilmore, K.M. Khight, D.C. Salter, G.H. Stafford,
 E.J.N. Wilson, J.D. Davies, J.D. Dowell, P.M. Hattersley, R.J. Homer, A.W.O'Dell, A.A. Carter, R.J. Tapper, K.F. Riley. Rutherford Laboratory Preprint RPP/H/31, 1968.
- 46. D.J. Cairns, T.C. Griffith, G.J. Lush, A.J. Metheringham, R.H. Thomas. Nucl. Phys., 60, 369 (1964).
- 47. J.C.Caris, E.A. Knapp, V.Perez-Mendez, VI.A.Perkins. Phys. Rev., <u>126</u>, 295 (1961).
- R.F.Carlson, J.M.Camerson, W.F.McGill, J.R.Richardson, J.W.Verba. Bull.Amer.Phys.Soc., <u>12</u>, 1190 (1967).
- 49. R.E. Carlson, R.M. Eisenberg, V. Meyer. Univ. of Minnesota, annual progress report (Nov. 1959), p.2.
- 50. S.G.Carpenter, R.Wilson. Phys.Rev., 114, 510 (1958).
- 51. J.M.Cassels, J.D.Lawson. Proc. Phys. Soc., <u>A67</u>, 125 (1954).
- 52. R. Cester, A. Debenedetti, C.M. Garelli, R. Quassiati, L. Tallone, M. Vigone. Nuovo Cim., 7, 371 (1958).
- 53. O.Chamberlain, G.Goldhaber, L.Jauneau, I.Kalogeropoulos, R.Silberger, E.Segre, Proc. on the Intern.Confer. on Mesons and Resently Discovered Particles, Padova- Venezia, 1957, sess. 6, p.11.
- O.Chamberlain, G.Goldhaber, Jauneau L., T.Kalogeropoulos,
 E.Segre, R.Silberberg. Phys.Rev., <u>113</u>, 1615 (1959).
- 55. O.Chamberlain, D.V.Keller, W.Segre, H.M.: Steiner, C.Wiegand, T.Ypsilantis. Phys.Rev., <u>102</u> 1637 (1956).
- 56. Ph.Chavonon, M.Crozon, Th.Leray, J.L.Na joux, Z.Marić. Nuovo Cim., <u>40A</u>, 935 (1965).

- 43. F.A. Brisbout, C. Dahahayaka, E. Engler, Y. Fujimoto, D.H. Perkins. Phil.Mag., <u>1</u>, 605 (1965).
- 44. Ю.А.Будагов, П.Ф.Ермолов, Е.Ф.Кушниренко, В.И.Москалев. ЖЭТФ, 42, 1181 (1962).
- 45. D.V. Bugg, R.S. Gilmore, K.M. Khight, D.C. Salter, G.H. Stafford, E.J.N. Wilson, J.D. Davies, J.D. Dowell, P.M. Fattersley, R.J. Homer, A.W.O'Dell, A.A. Carter, R.J. Tapper, K.F. Riley. Rutherford Laboratory Preprint RPP/H/31, 1968.
- 46. D.J. Cairns, T.C. Griffith, G.J. Lush, A.J. Metheringham, R.H. Thomas. Nucl. Phys., <u>60</u>, 369 (1964).
- 47. J.C. Caris, E.A. Knapp, V. Perez-Mendez, V.A. Perkins. Phys. Rev., <u>126</u>, 295 (1961).
- R.F.Carlson, J.M.Camerson, W.F.McGill, J.R.Richardson, J.W.Verba. Bull, Amer.Phys.Soc., <u>12</u>, 1190 (1967).
- 49. R.E.Carlson, R.M.Eisenberg, V.Meyer. Univ. of Minnesota, annual progress report (Nov. 1959), p.2.
- 50. S.G.Carpenter, R.Wilson. Phys.Rev., <u>114</u>, 510 (1958).
- 51. J.M.Cassels, J.D.Lawson. Proc.Phys.Soc., <u>A67</u>, 125 (1954).
- 52. R. Cester, A. Debenedetti, C.M. Garelli, R. Quassiati, L. Tallone, M. Vigone. Nuovo Cim., 7, 371 (1958).
- 53. O.Chamberlain, G.Goldhaber, L.Jauneau, T.Kalogeropoulos, R.Silberger, E.Segre, Proc. on the Intern.Confer. on Mesons and Resently Discovered Particles, Padova- Venezia, 1957, sess. 6, p.11.
- O.Chamberlain, G.Goldhaber, Jauneau L., T.Kalogeropoulos,
 E.Segre, R.Silberberg. Phys.Rev., <u>113</u>, 1615 (1959).
- 55. O.Chamberlain, D.V.Keller, W.Segre, H.M. Steiner, C.Wiegand, T.Ypsilantis. Phys.Rev., <u>102</u> 1637 (1956).
- 56. Ph.Chavonon, M.Crozon, Th.Leray, J.L.Narjoux, Z.Marić. Nuovo Cim., <u>40A</u>, 935 (1965).

- 57. C.Chedester, F.Isaacs, A.Sachs, J.Stenberger. Phys.Rev., 82, 958 (1951).
- 58. F.F.Chen, C.P.Leavitt, A.M.Shapiro. Phys.Rev., <u>99</u>, 857 (1955).
- ⁵⁹ A.Citron, W.Galbraith, T.F.Kucia, B.A.Leontic, R.H.Phillips, A.Rousset, P.F. Sharp. Phys.Rev., <u>114</u>, 1101 (1966).
- 60. G.Cocconi, G.Puppi, G.Quareni, A.Stanghellini, Nuovo Cim., 5, 172 (1957).
- L.J.Cook, E.M.McMillan, J.M.Peterson, D.C.Sewell. Phys.Rev., 75, 7 (1949).
- 62. T.Coor, D.A.H II, W.F.Hornyak, L.W. Smith, G. Snow. Phys. Rev., <u>98</u>, 1369 (1955).
- 63. B.Cork, G.R.Lambertson, O.Piccioni, W.A.Wentzel. Phys.Rev., 107, 248 (1957).
- 64. J.W. Cronin, R. Cool, A. Abashian. Phys. Rev., <u>107</u>, 1121 (1957).
- 65. V.Culler, R.W. Waniek. Phys. Rev., 95, 585 (1949).
- 66. V.Culler, P.W. Waniek, Phys. Rev., 99, 740 (1955).
- R.R. Daniel, J.H. Davies, J.H. Mulvey, D.H. Perkins. Phil. Mag., 43, 753 (1952).
- B.W. Davies, N.K. Craddock, R.C. Hanna, Z.J. Moroz, L.P. Robertson. Nucl. Phys., A97, 241 (1967).
- 69. D.F. Davis, N. Kwak, M.F. Kaplon, Phys. Rev., 117, 846 (1959).
- 70. H.G.De Carvalho, Phys.Rev., 96, 398 (1954).
- 71. J.De Juren. Phys.Rev., 80, 27 (1950).
- 72. J. De Juren, M. Knable. Phys. Rev., 77, 606 (1950).
- 73. J. De Juren, M.J.Moyer, Phys.Rev., 81, 919 (1951).
- 74. В.П.Джелепов, З.Г.Иванов, М.С. Козодаев, В.Т.Осипенков, Н.И.Петров, В.А.Русаков. ЖЭТФ, <u>31</u>,923 (1956).

- 75. В.П.Джелепов, В.И.Сатаров, Б.М.Головин. ЖЭТФ, 29 369 (1955).
- 76. В.П.Джеленов, В.И.Сатаров, Б.М.Головин. ДАН СССР, 104, 717 (1955).
- 77. Н.А. Добротин, С.А.Славатинский. Изв. АН СССР, сер.физ., <u>30</u>, 1566 (1966).
- 78. J. Duthie. Thesis University of Bristol, 1961,
- 79. J.M.C. Dutton, J.D. Jafar, H.B. Van der Raay, D.G. Ryan, J.A. Stiegelmair, R.K. Tandon, Phys.Lett., 16, 301 (1965).
- 80. B. Edwards, J. Losty, D.H. Perkins, K. Pinkau, J. Reynolds; Phil.Mag., <u>3</u>, 237 (1958).
- 81. A.G. Espong, B.E. Ronne. Nuovo Cim., 13, 27 (1959).
- 82. T. Ericson, J. Formanek, M.P. Locher. Preprint of CERN 67/1234/5-TH, 834 (1967).
- 83. P.H. Fowler, R.R. Hillier, C.J. Waddington. Phil. Nag., 2, 293 (1957).
- 84. E. Fowler, W.B. Fowler, R.P. Shutt, A.M. Thornd ke, W.L. Whittemore. Phys. Rev., <u>91</u>, 135 (1953).
- 85. R. Fox, C. Leith, K. McKenzie, L. Wouters. Phys. Rev., <u>80</u>, 23 (1950).
- 86. W.E. Frahn, G. Wiechers. Phys. Rev. Lett., 16, 81) (1966).
- 87.E.Gardner. Phys.Rev., 75, 379 (1949).
- 88. R.J. Glauber. In Lectures in Theor. Phys., W.F. Britten et al. Interscience Publishers, New York, 1959.
- 89.S.Goldhaber, G.Goldhaber, L.Powell, R.Silberger. Phys.Rev., <u>121</u>, 1525 (1961).
- 90.R.Goloskie, K.Strauch Nucl. Phys., 29, 474 (1962).
- 91.K.R.Greider: Ann.Rev. of Nucl.Sc., 15, 291 (1965).
- Р.Н.Басилова, Н.Л.Григоров, В.Е.Нестеров, И.Д. Р. поппорт, И.А.Савенко, Г.А.Скурдин. Изв. АН СССР, сер. физ., <u>31</u>, 1450(1967).

- 93. M.Grilli, L.Guerriero, M.Merlin, E.G.A. Salandin. Proc. of the Intern.Confer. on Mesons and Resently Discovered Particles, Padova-Venezia, 1957, sess. 3, p.15.
- M.Grilli, L.Guerriero, M.Merlin, Z.O'Friel, G.A.Salandin. Nuovo Cim., 10, 163 (1958).
- 95. M.Grilli, L.Guerriero, M.Merlin, G.A. Salandin. Nuovo Cim., <u>10</u>, 205 (1953).
- 96. J.R.Crover. Phys.Rev., 126, 1540 (1962).
- 97. M.J. Grozon. Thesis, Universite de Paris, 1964.
- 98. F.F.Hanny. Helv.Phys.Acta, 29, 281 (1956).
- 99, P.Hillman, R.H.Stahl, N.F.Ramsey. Phys.Rev., 96, 115 (1954).
- 100. А.Е.Игнатеньо, А.И.Мухин, Е.Б.Озеров, Б.М.Понтекорво. ДАН СССР, 103, 395 (19:55).
- 101.A.E. Ignatenko. Proc. CERN Symp., 2, 313 (1956).
- 102.G.J.Igo, J.L. Friedes, H. Palovsky, R. Sutter, G. Benett, W.D. Simpson, D.M. Corley, R.L. Stearns. Report of the Brookhaven National Laboratory; Phys.Rev.Lett., <u>18</u>, 1200 (1967).
- 103. J.D. Jafar, T. MacManon, H.B. Van Der Raay, D.H. Reading, K. Ruddick, D.G. Ryan, Nuovo Cim., <u>48</u>, 165 (1966).
- 104.A.Johanson, U.Svanberg, O.Sundberg, Arkiv for Phys., <u>19</u>, 527 (1961).

105. Ю.М.Казаринов, В.И.Сатаров, Ю.К.Симонов. ЯФ, <u>1</u>, 271 (1965). 106. D. Keefe, A. Kernan, A. Montwill. Nuovo Cim., <u>10</u>, 538 (1958).

107. L.T. Kerth, T.F. Kycia, L. van Rossum, Bull, Amer. Phys. Soc., 2, 222 (1957).

108. P. Kirkly, W.T.Link, Canad. Journ. of Phys., <u>44</u>, 1847 (1966). 109. A.J. Kirschbaum, Ph.D. Thesis, UCRL 1967.

- 110. М.С.Козодаев, М.М.Кулюкин, Р.С.Суляев, А.И. Филиппов, Ю.А. Шербаков. ЖЭТФ, <u>38</u>, 708 (1960).
- М.С.Козодаев, М.М.Кулюкин, Р.М.Суляев, А.І. Филиппов, Ю.А.Щербаков, ЖЭТФ, <u>39</u>, 929 (1960).
- 112. В.С.Козодаев, Р.М.Суляев, А.И.Филиппов, Ю.А.Шербаков. ЖЭТФ, <u>31</u>, 701 (1956).
- М.С.Козодаев, Р.М.Суляев, А.И.Филиппов, Ю.А. Щербаков. ЖЭТФ, 33, 1047 (1957).
- 114. R.L.Lander, O. Piccioni, Nguyen huu Xuong, P.Yager. Phys. Rev., 137B, 1228 (1965).
- 115. J.E. Lannutti, W.W. Chupp, G. Goldhaber, S. Goldhaber, E. Helmy, E.L. Iloff, A. Pevsner, D.M. Ritson, Phys. Rev., <u>101</u>, 1617 (1956).
- 116. J.E. Lannutti, S. Goldhaber, G. Goldhaber, W.W. Cupp, S. Giambuzzi, C. Matchi, C. Quareni, A. Wataghin, Proc. of the Intern. conf. on Mesons and Resently Discovered Particles, Padova-Venezia, 1957, sess. 3, p.1.
- 117. C.M. Lattes, S.Q.Orsini, L.G. Pacca, M.T. Dagruz, E. Okuno, Y. Fujimoto, K. Yokoi. TReport Intern. Confer. on Cosmic Rays, London, 1965.
- 118. М.Ф.Лихачев, В.С.Ставинский, Сюй Юйнь-чаг, Чжан Най-сэнь. ЖЭТФ, <u>41</u>, 38 (1961).
- 119. W.I. Linlor. UCRL-2303 (1953).
- 120. W.I. Linlor, B. Ragent. Phys. Rev., <u>92</u>, 835 (1953).
- 121. E. Lohrmann, M. Nikolic, M. Schneeberger, P. Waloschek, H. Wintzeler. Proc. of the Intern. Confer. on Mesons and Resently Discovered Particles, Padova-Venetia , 1957, sess. 2, p. 61.

122, E. Lohrmann, M.W.Teucher. Phys. Rev., <u>15</u>. 636 (1969).

- 123. E. Lohrmann, M.W. Teucher, M. Schein. Phys. Rev., <u>122</u>, 672 (1961).
- 124. M.J. Longo, UCRL-9497, 1961.
- 125. M.J. Longo, B.J. Moyer. Phys. Rev., 125, 701 (1962).
- 126. M.E. Low, G.V. Hutchinson, D.H. White. Nucl. Phys., 9, 600 (1958/60).
 - 127. J. Marshall, L. Marshall, A.V. Nedzel. Phys. Rev., <u>91</u>, 767 (1953).
 - 128. D.F. Measday, DJ.N. Palmieri. Nucl. Phys., 85, 129 (1966).
 - 129.V.Meyer, R.M Eisberg, R.F.Carison. Phys. Rev., <u>117</u>, 1334 (1960).
 - 130. G.P. Millburn, W. Birnbaum, W.E. Crandall, L. Schecter. Phys. Rev., 95, 1263 (1954).
 - 131. В.Н. Москалев, Б.В. Гавриловский, ДАН СССР, 110, 972 (1956).
 - 132. G.R. Mott, G.I. Gurnsey, B.K. Nelsson. Phys. Rev., <u>88</u>, 9 (1952).
 - 133. V.A. Nedzel. Fhys. Rev., 94, 175 (1954).
 - 134.J.H. Noon, M.F.Kaplon, Phys. Rev., 97, 769 (1954).
 - 135.J.N. Palmieri, R.Goloskie. Nucl. Phys., 59, 253 (1964).
 - 136. В.С.Пантуев, М.Н.Хачатурян. ЖЭТФ, 42, 909 (1962).
 - 137. R.N. Peacock, B. Hahn, E. Hugentobler, F. Steinriser. Nuovo Cim., 22, 1290 (1961).
 - 138. Н.А.Перфилов, О.В.Ложкин, В.И.Остроумов. "Ядерные реакции под действием частиц высоких энергий". Изд. АН СССР. М., 1962.
 - 139. D.H. Perkins, Proc. of the Intern. Conf. on Theor. Aspects of Very High Energy Phenomena, CERN, 1961, p.99.
 - 140. W.M. Preston, R. Wilson, J.C. Street. Phys. Rev., <u>118</u>, 579 (1959).
 - 141. Proc. of the Third Confer. on Reactions between Complex Nuclei, Univ. of California Press, Berkeley, and Los Angles, 1963.

- 142. Прямые процессы в ядерных реакциях. Материслы конференции по прямым взаимодействиям и механизмам ядерных реакций в Падуе, 1962. Атомиздат, М., 1965.
- 143. G. Quareni, G.T. Zorn. Nuovo Cim., <u>1</u>, 1282 (1955).
- 144. B. Ragent, W.I. Linlor. Phys. Rev., 91, 440 (1953).
- 145. V.Y. Rajopadhye, C.J. Waddington. Phil. Mag., 3, 19 (1958).
- 146, B. Rama, Proc. Ind. Acad. Sci., <u>39</u>, 162 (1954).
- 147. R.E. Richardson, W.P. Ball, C.E. Leith, Jr., B.J. Moyer, Phys. Rev., 86, 29 (1952).
- 148. L. Riddiford, A.W. Williams. Proc. Roy. Soc., A257, 316 (1960).
- 149, В.И.Рубцов, Ю.А.Смородин, Б.В.Толкачев. ЖЭТФ, <u>44</u>, 462 (1963).
- 150. W.D. Shephard, W.D. Walker. Phys. Rev., 126, 2''8 (1962).
- 151. M.M.Shapiro, B.Stiller, F.W.O'Dell, Bull, Amer. Phys. Soc., <u>1</u>, 319. (1956).
- 152. W.D. Shephard, W.D. Walker. Phys. Rev., <u>126</u>, 278 (1962).
- 153, M.S. Sinha, N.C. Das, Phys. Rev., 105, 1587 (1957).
- 154. J.R. Stehn, M.D. Goldberg, R. Wiener-Chasman, S.F. Mughabíhab, B.A. Magurno, V.M. May. Sigma Center of the Erookhaven National Laboratory, BNL 325, 1965.
- 155. D.H. Stork, Phys. Rev., 93, 868 (1954).
- 156. P.E. Tannenwald, Phys. Rev., 89, 508 (1952).
- 157. A.E. Taylor. Phys. Rev., 92, 1071 (1953).
- 158. E.A. Taylor, T.G. Pickvance, J.M. Cassels, T.C. Randle. Phil. Mag., 42, 328 (1951).
- 159. A.E. Taylor, T.G. Pickvance, J.M. Cassels, T.C. Randle. Phil. Mag., <u>42</u>, 751 (1951).
- 160, A.E. Taylor, E. Wood. Phil. Mag., 44, 95 (1952).
- 161. Д.И.Юз, Р.В.Шварц., Атлас нейтронных сечений, Атомиздат, 1959.

- 162. С.Н.Вернов, Г.Б.Христиансен, А.Т.Абросимов, Г.В.Куликов, Ю.А.Нечин, В.И.Соловьева, Б.А.Хронов, О.В.Веденеев, Ю.А.Фомин. Материалы 12-ой международной конференции по физике высоких энергий в Дубне, Атомиздат, 1965.
- 163. R.G.P. Voss, R. Wilson, Proc. Roy. Soc. A236, 41 (1956).
- 164. C.J. Waddington, Phil. Mag., 45, 1321 (1956).
- 165. M.Widgoff, A.Pevsner, D.Fournet, Davis, D.M.Ritson, R.Schluter, V.P.Henri. Phys. Rev., 107, 1430 (1957).
- 166. F. Wikner, Ph. D. Thesis, UCRL-3639 (1957).
- 167. Williamson, Preprint.
- 168. W.Williams, Phys. Rev., 98, 1993 (1955).
- 169. D.S. Willoughby. Phys. Rev., 101, 324 (1956).

Рукопись поступила в издательский отдел 16 сентября 1968 года.

Рис. 1. Когерентный неупругий процесс с рождением *т* -мезонов. Внутриядерный нуклон N' в результате изаимодействия с налетающим нуклоном N получает лишь небольшую отдачу, которая передается ядру как целому. Пионы образуются налетающим нуклоном в верхней вершине. Так как передаваемый ядру импульс мал, пионы сильно коллимированы з области малых углов; это обстоятельство является характерной чертой неупругих когерентных процессов.

Рис. 2. Принципиальная схема опыта по измерению ядерных сечений методом выбывания из пучка. МТ – монитор, калибрующий первичный тучок частиц; М – мишень из исследуемых ядер; D – детектор, регистрирующий все частицы, вылетающие под углами, большими θ .

Рис. 3. Изменение "наблюдаемого сечения" (*о*) в зависимости от величины телесного угла.

.

сечения σ_t , σ_{in} , $\sigma_{e\ell}$ для протонов, зачерненные значки - соответпостроены с помощью оптической модели для параметров, наилуч-Рис. 4. Сечения взаимодействий нуклонов с углеродом ¹² С (в единицах шим образом согласующихся с известными экспериментальными 10⁻²⁴см²). Значками О, А, 🛛 нанесены экспериментальные ствующие экспериментальные сечения для нейтронов. Кривые данными.

Рис. 6. Сечения взаямодействий *п* -мезонов с ядрами¹² С (в единицах 10-24_{см}2). Значками О, Δ, ■ нанесены соответственно экспериментальные сечения σ_t , σ_{in} , $\sigma_{e\ell}$ Кривые - расчёт по оптической мсдели для значений параметров, наилучшим образом согласующи::ся с известными экспериментальными данными.

Рис. 7. Сечение неупругих взаимодействий космических протонов с углеродом по данным измерений на спутнике "Протон - 1" и по данным опытов на горах (нижняя оценка)/14,23/.

. Сплошные кривые – зависимость $\sigma_{i_n} = A^{2/8}$, $\sigma_{e_l} = A^{0/8}$ и $\sigma_i = \sigma_{e_1} (A) + \sigma_{i_n} (A)$. -ce-Рис. 8. Зависимость сечений от массового числа А. Значками О, Δ, П σ_t,σ_{in},σ_eℓ, значком Δ -+ ядро. Сечения взяты из $\approx \sigma_{e1} (A) + \sigma_{in} (A)$ чение неупругих взаимодействий л работ/26,62,64,102,108/ Сплонино отмечены нуклон-ядерные сечения пунктир - зависимость

Рис. 9. Энергетическая зависимость полного сечения взаимодействий К⁺-и К--мезонов с углеродом (в единицах 10-24 см²). Кривые - аппроксимация экспериментальных точек с помощью оптической модели.
Взаимодейст- вие		T			 6. [μδ]	литература	
I			2		3		4	
p + He ⁴	48,8	±	0,5 1	la B	 391		[68]	
	53	t	4		272,7	±7,3 ^	[46]	
	I36	±	5		117,	± 0.8	[135]	
	I49	±	5		II2,4	±0,8	[135]	
	630	±	15		150	t 13	[011]	
	970	±	10		116	± 17	[148]	
	I	±	0,003	Гэв	152	± 8	[102]	
n + He ⁴	47,5	±	12	Мэв	377	± 12	[99]	
	77, I	t	I		221,5	± 4,4	[128]	
	88	±	I4		199	± 6	[99]	
	88,2	t	I		195	±4,0	[128]	
	IIO,)	±	I		154,9	±3,0	[128]	
	I29,4	±	I		136,0	± 2,8	[128]	
	I47	t	6		II4 , 5	± 1,0	[135]	
	150 , 9	±	I		121,4	± 2,4	[128]	
6	I	t	0,003	Гэв	199	± II	[102]	
p + Li	18,4	±	0,05	Гэв	2 <i>5</i> 2	± 5	[26]	
p + L1 ⁷	408	±	10	Мэв	I94	± 8	[127]	
- 7	18,1	±	0,05	Гэв	250	± 5	[26]	
n + Li'	85	±	28	Мэв	314	± 6	[61]	
	280	t	45		I 6 4	± 7	[85]	
•	76 5	t	30		221,2	±4,7	[34]	
p + Be ^y	208	t	4	Мэв	247	± 4	[70]	
	315	t	8		229	± 8	[70]	
	408	t	10		242	± 6	[127]	
	650	t	5		272	± 7	[131]	
	860	t	50		\$ 316	± 16	[58]	
	2,2	t	0,13	Гэв	30I	± 5	[124,125]	
	I8 , 4	t	0,05		278	± 4	[26]	

	Таблица 1					
полное	сечение	взаимодействия	протонов	И	нейтронов	

I	2	5	4	
$n + Be^9$	85 ± 28 Mab	43I ± 8	[61]	
	95 ± 26	396 ± 4	[72]	
	156 ± 3	258 ± 14	[159]	
	270 ± 60	229 ± 3	[71]	
	280 ± 45	225 ± 4	[85]	
	380 ± 50	233 ± 4	[76]	
	4IO I 20	231 ± 4	[133]	
	500 ± 70	249 ± 3	[76]	
	590 ± 80	261 - 4	[75,76]	
	630	274 - 4	[76] [76]	
12	1,4 ± 0,2 ras	308 ± 13	[62]	
p + C	208 - 4 Мэв	296 ± 4	[70]	
	515 ± 8	292 - 0	[70]	
	408 ± 10	285 - 4	[127] [TZT]	
		240 - 10	[[]]	
	$\frac{100}{100} \pm 10$	$z = \frac{1}{2} = \frac{1}{2}$	נסכן	
	902 - 10	362 - 24	[126]	
	- 30	JOL 10 - L 14	[120]	
	967 ± 10	374 ± 34	[24]	
	I ± 0,003Гэв	370 ± 9	[102]	
	2 , 2 ± 13	367 ± 8 🛒	[I24,I25]	
	3	~ 390	[11]	
12	20,6± 0,05	335 ± 7	[26]	
n + C ¹¹	47,5 ¹ I2 M9B	984 ± 20	[99]	
	$48,80 \pm 1,80$	969 ± 9	[36]	
	50,60 ÷ 1,90	930 - 9	[36] (56]	
	52 - 1,5	892 ÷ 22	[160]	
	52,5 - 2,0	912 = 9	[26]	
	54,5 - 2,1	070 - 2	[20] [34]	
	50,0 = 2,2	ene t 8	[36]	
	50,0 = 2,5	789 ± 12	tro1	
	61.0 ± 0.5	674 ± 62	[100] [65,66]	
	61.I ± 2.4	782 ± 7	[36]	
	63 ± 1.6	784 ± 5	158,160	
	63.5 ± 2.5	775 ±7	[36]	
	66, I ± I.0	67I ± 42	65,66	
	66 I ± 2,7	740 ± 7	[36]	
	68,9 ±3,0	6 9 8 ± 9	[36]	
	71,2 ± 0,5	60I ± 4I	[65,66]	
	72,0 ± 3,2	666 ± 6	[36]	
	75,3 ± 3,5	654 ± 6	[36]	
	76,7 ± 0,5	6I4 ± 3I	[65,66]	
	78	590 ± 15	[119]	

I	2	3	4
	78,9 ± 3.8	617 ± 6	[36]
	8I,2 ± I,0	585 ± 17	[65,66]
	82,8 ± 4,0	582 ± 6	[36]
	84 ± ĭ.5	57I ± 6	[160]
	85	545 ± 10	[119]
	85 ± 28	550 ± 11	[1]
	85.5 ± 0.5	602 ± 19	[65_66]
	86.9 ± 4.3	555 ± 6	[36]
	88	530 ± 10	[119]
	88 ± 14	560 ± 8	[ee]
	88.2 ± T	547 ± TT	[128]
	91.3 ± 4.6	535 ± 6	[36]
	92.3 ± 7	520 ± 80	(65, 66)
	93.4 ± 0 5	5T8 ± 6	[65 66]
	95 1 T 5	508 ± 5	[158_160]
	95 ±·26	198 ± z	[כעי]
	960±48	509 ± 4	ርነሩ። የአረ
	97 ± 5	500 ± T2	رمحي [ترجع]
	972trn	$J_{00} = I_{2}$	[4.5. cc]
		474 + 4 400 t to	ز ە ס _ۇ כەن (تەم
	70 ₉ 1 → 1	470 ≠ 10 cto + %	
	ששקץ ∸ 4 דוסס		[00 ₉ C0]
		470 + 10 470 + c	
	101,04 5,0	472 - 6	[oc]
	101,14 0,5	466 - 7	[65,66] [76]
	106,04 5,5	456 <u>+</u> 5	[36] (cf. cf.)
	106,8-2	508 - 18	[65,66]
	110,0± I	439 ± 9	[119]
		437 ± 8	[50]
	III,5± >,7	435 1 7	[36]
	II4	420 ± 15	[119]
	II7 I 2	408 ± 4	[160]
	II7 ± 5	392 ± 6	[132]
	117,5± 6,0	405 ± 12	[36]
	119 , 6‡ I	403 ± 8	[128]
	I26 ± 2	390 ± 3	[160]
	129 , 4 ± I	375 ± 8	[I28]
	131	365 ± 15	[611]
	I39 ± 3	355 ± 3	[102]
	I40 ± 5	349 ± 4	[132]
	140 ,9± I	346 ± 7	[128]
	150 ,9± ľ	34I ± 7	[I28]
	153 ± 3	330 ± 3	[159, 160]
	155	2 7 0 ± 20	[119]
	156 ± 5	325 ± 10	[132]
	. .		

I	2	3	4	
<u></u>	169 ± 4	323 ± 3	[15 }]	
	180 ± 7	3II ± 9	[13:2]	
	190 ± 40	29I ± 9	[73]	
	220 ± 10	296 ± 3	[13:]	
	220 ± 45	285 ± 60	[75]	
	270 ± 60	288 ± 3	[71]	
	280 ± 45	279 ± 4	[85]	
	351,5 1 10	285,3 1,6		
	380 1 50	286 1 2	[75]	
	410 ± 20	297 - 3	[133]	
	500 ± 70	306 ÷ 2	[75]	
	590 - 80	519 + 2	[73,70] [70:1	
	650 670 † 95	$224_{9}U = 1_{9}2$	[102]	
	650 - 65	21/2 T t Z 7	ניס <u>ן</u>	
	$\frac{1}{10} = \frac{1}{10}$	$242_{1} = 2_{1}^{2}$	[J+] (62)	
	I,4 = 0,2 I3B	$\frac{576}{10} = 10$	ניבט (דג)	
	8 z ±	345 ± 15	[T36]	
	475 ± 12 Non	$\frac{1}{1}$	[99]	
д + N	47_{9} = 12 MGB	$\frac{1110}{656} = \frac{25}{21}$	[61]	
	88 ± 14	636 ± 10	[65]	
	88.2 ± I	622 ± 12	0281	
	95 ± 26	570 ± 7	[72]	
	98.I ± I	564 ± II	[128]	
	110.0 ± 1	508 ± 10	[128]	
	119.6 ± 1	471 ± 9	[128]	
	129,4 ± 1	437 ± 9	[128]	
	140,9 ± 1	407 ± 8	[128]	
	150,9 ± 1	389 ± 8	[128]	
$p + 0^{16}$	208 ± 4 Мэв	395 ± 8	[10]	
	315 ± 8	3 79 ± IO	(10)	
	408 ± 10	406 ± 3	[I27]	
	650 ± 5	4I6 ± 30	[I:I]	
	90 7 + 23 - 30	469 ± IO	[I:6]	
	I ± 0,03 Гэв	4 7 5 ± 44	[1(2]	
$n + 0^{10}$	47,5 ± 12 Мэв	122 0 ± 25	[9]	
	85 ± 28	76 5 ± 20	[[]]	
	88 ± 14	7 43 ± 15	[9]	
	88 ,2 ± I	73I ± 15	[1 :8]	
	93,4 ± 0,5	721 ± 13	[55,66]	
	95 ± 26	663 ± ?	[72]	
	97,2 ± 1,0	675 ± 9	[55,66]	
	98,I ± I	648 ± 13	[128]	
	IOI,I ± 0,5	649 ± 14	[35,66]	

I	2			3	5	4	
	106,8	± 2		668 ±	42	[65,66]	
	109	± II		656 ±	6	[5]	
	110,0	±Ι		58I ±	12	[128]	
	117	± 15		598 ±	6	[5]	
	II9 , 6	±Ι		537 ±	II	[128]	
	129,4	τI		49 7 ±	10	[128]	
•	I32	± 12		518 ±	6	[5]	
	I40,9	τī		45I İ	9	[128]	
	I49	t II		473 ±	6	- [5]	
	150,9	tΙ		44I İ	9	[I28]	
	156	± 3		430 ±	4	[159]	
	I69	t 4		430 ±	5	[157]	
	169	59		43I ±	6	[5]	
	270	£ 60		372 ±	7	[71]	
	280	45		380 ±	8	[85]	
	35I , 5	÷ 2,0		366 ±	3	[II]	
	380	:: 50		376 ±	6	[76]	
	410	:: 20		278 🛔	5	[133]	
	500	: 70		398 ±	4	[76]	
	590	1 80		407 ±	5	[75,76]	
	630	3 85		422 I	9	[76]	
243	765	2 30		460,7	± 6,0	[34]	
$n + Mg^{-\tau}$	85	- 28	Мэв	1030	± 20	[6I]	
$p + Al^2$	208	- 4	Мэв	592	± 10	[70]	
	315	18		580	± 16	[70]	
	650	+ 5		710	± 32 + 4	[131]	
	830	± 15		3 530	± 4 +	[64]	
	860	÷ 50		\$ 750	÷ 50 + 30	[58]	
	902	$\frac{10}{10}$	7 D.	823	± 30 + or	[33] [70] 70]	
	2,2 TO 1	+ 0,1.	c 1.9B	759	∸ 24 † το	[124,125]	
- 1 17 27	エロッキー	+ υ,υ: + το) 1/22	507 1750	+ 25	[20] [00]	
n + Al	41,9 //8 80	± τ Θ	มเอษ ก	1/20	= 55 ± 24	[32]	
	50,60	± 1,0	5 7	1620	- 27 ± 23	[20] [26]	
	52,00	± т 5	0	1600	- 25 ± ит	[Jo] [TeO]	
	52 5	± 2 0		1630	± 2T	[100] [36]	
	54.5	± 2.T		1620	± 19	[36]	
	56.6	± 2.2		1530	± 19	[36]	
	58.8	± 2.3		1500	± 18	[36]	
	60	± 1.5		T439	± 25	[160]	
	6I.I	± 2.4		1510	± 18	[36]	
	63.5	± 2.5		I453	± 17	1361	
	66 I	± 2.7		I406	± 16	[36]	
	68.9	± 3.0		I343	± 19	1 361	
	72,0	± 3,2		1319	± 15	[36]	
	75,3	± 3,5		I 27 2	± 15	[36]	
	•	•					

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	2	3	4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		78,9 + 3,8	1254 <u>+</u> 15	[36]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		82,8 + 4,0	1184 ± 14	[36]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		84 ± 1,5	1188 ± 11	[160]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		84 <u>+</u> 34	1140 <u>+</u> 30	[39]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		85 <u>+</u> 29	1120 +_20	[61]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		86,9 <u>+</u> 4,3	1103 ± 13	[36]
$\begin{array}{c} 88,2 \pm 1 & 1026 \pm 22 & [128] \\ 93,4 \pm 0,5 & 1067 \pm 29 & [55,66] \\ 95 \pm 26 & 993 \pm 11 & [72] \\ 96,0 \pm 4,8 & 1032 \pm 13 & [55,66] \\ 96,1 \pm 1 & 993 \pm 20 & [128] \\ 101,1 \pm 5,0 & 955 \pm 12 & [36] \\ 101,1 \pm 5,0 & 955 \pm 12 & [36] \\ 101,1 \pm 0,5 & 920 \pm 50 & [55,66] \\ 106,0 \pm 5,3 & 910 \pm 12 & [36] \\ 110,0 & 86 \pm 18 & [65] \\ 111,5 \pm 5,7 & 889 \pm 12 & [36] \\ 111,5 \pm 5,7 & 889 \pm 12 & [36] \\ 111,5 \pm 5,7 & 889 \pm 12 & [36] \\ 117,5 \pm 6,0 & 818 \pm 12 & [36] \\ 117,5 \pm 6,0 & 818 \pm 12 & [36] \\ 117,5 \pm 6,0 & 818 \pm 12 & [36] \\ 117,5 \pm 6,0 & 818 \pm 12 & [36] \\ 119,6 \pm 1 & 816 \pm 16 & [128] \\ 126 \pm 2 & 799 \pm 17 & [160] \\ 129,4 \pm 1 & 763 \pm 15 & [128] \\ 139 \pm 3 & 729 \pm 11 & [160] \\ 140,9 \pm 1 & 705 \pm 14 & [128] \\ 150,9 \pm 1 & 677 \pm 11 & [159,160] \\ 180 \pm 35 & 575 \pm 13 & [73] \\ 190 \pm 40 & 540 \pm 28 & [73] \\ 220 \pm 45 & 576 \pm 21 & [73] \\ 220 \pm 45 & 576 \pm 12 & [73] \\ 220 \pm 45 & 576 \pm 12 & [73] \\ 220 \pm 45 & 576 \pm 12 & [73] \\ 220 \pm 45 & 576 \pm 12 & [73] \\ 220 \pm 45 & 576 \pm 12 & [73] \\ 220 \pm 45 & 576 \pm 12 & [73] \\ 220 \pm 45 & 576 \pm 12 & [73] \\ 220 \pm 45 & 576 \pm 12 & [73] \\ 220 \pm 45 & 576 \pm 12 & [73] \\ 220 \pm 45 & 576 \pm 12 & [73] \\ 220 \pm 45 & 576 \pm 12 & [73] \\ 220 \pm 45 & 576 \pm 12 & [73] \\ 220 \pm 45 & 576 \pm 12 & [73] \\ 220 \pm 45 & 576 \pm 12 & [73] \\ 270 \pm 60 & 555 \pm 8 & [74] \\ 380 \pm 50 & 582 \pm 8 & [76] \\ 410 \pm 28 & 587 \pm 7 & [13] \\ 580 \pm 50 & 682 \pm 8 & [76] \\ 410 \pm 28 & 587 \pm 7 & [13] \\ 580 \pm 50 & 685 & 645 \pm 7 & [75,76] \\ 580 \pm 80 & 631 \pm 9 & [90,16] \\ 630 \pm 85 & 645 \pm 7 & [75,76] \\ 765 \pm 30 & 660 \pm 223 & [136] \\ 5 \pm 0,4 & 614 \pm 33 & [13] \\ 8,3 & 600 \pm 22 & [136] \\ 1,4 \pm 0,2 & 738 & 118 & [62] \\ 5 \pm 0,4 & 614 \pm 33 & [13] \\ 8,3 & 600 \pm 21 & [136] \\ 1,4 \pm 0,2 & 738 & 118 & [62] \\ 5 \pm 0,4 & 614 \pm 33 & [13] \\ 8,3 & 600 \pm 22 & [136] \\ 8,3 & 600 \pm 22 & [136] \\ 9,3 & 4 \pm 0,5 & M08 & H36 \pm 52 & [65,66] \\ 97,2 \pm 1,0 & H67 \pm 42 & [65,66] \\ 97,2 \pm 1,0 & H67 \pm 42 & [65,66] \\ 97,2 \pm 1,0 & H67 \pm 42 & [65,66] \\ 97,2 \pm 1,0 & H67 \pm 42 & [65,66] \\ 97,2 \pm 1,0 & H67 \pm 42 & [65,66] \\ 97,2 \pm 1,0 & H67 \pm 42 & [65,66] \\ 97,2 \pm 1,0 & H67 \pm 42 & [65,66] \\ 97,2 \pm 1,0 & H67 \pm 42 & $		88 + 14	1200 ± 25	[99]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		88,2 ± 1	1026 ± 22	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		93,4 + 0,5	1067 ± 29	[02,00] [72]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		96.0 ± 4.8	1032 ± 13	[36]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$97,2 \pm 1,0$	1046 + 23	[65,66]
$101,1\pm 9,50 955 \pm 12 [56] 101,1\pm 9,5 920 \pm 50 [65,66] 106,0 \pm 5,3 910 \pm 12 [56] 106,8 \pm 2 1064 \pm 130 [65,66] 110,0 888 \pm 18 [65] 111 905 \pm 18 [50] 111,5 \pm 5,7 889 \pm 12 [36] 115 \pm 30 733 \pm 12 [73] 117 \pm 2 833 \pm 8 [160] 117,5 \pm 6,0 818 \pm 12 [36] 119,6 I 816 \pm 16 [128] 126 \pm 2 799 \pm 17 [160] 129,4 I 763 \pm 15 [128] 139 \pm 3 729 \pm 11 [160] 140,9 \pm 1 763 \pm 15 [128] 139 \pm 3 729 \pm 11 [160] 140,9 \pm 1 763 \pm 15 [128] 139 \pm 3 729 \pm 11 [160] 140,9 \pm 1 763 \pm 15 [128] 150 \pm 40 540 540 586 [13] 150 \pm 40 540 540 586 [73] 220 $		98,1 ± 1	993 +20	[128]
$101, 1 \pm 0, 5 $		101,1 <u>+</u> 5,0	955 <u>+</u> 12	[36]
$106, 0 \pm 5, 3 $		101,1 + 0,5	920 ± 50	[65,66]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		106,0 ± 5,3	910 + 12	[36]
$110,0 88 \pm 18 [65] III 905 \pm 18 [50] III,5 \pm 5,7 889 \pm 12 [36] II5 \pm 30 733 \pm 12 [73] II7 \pm 2 833 \pm 8 [160] II7,5 \pm 6,0 818 \pm 12 [36] II9,6 \pm 1 816 \pm 16 [128] I26 \pm 2 799 \pm 17 [160] I29,4 \pm 1 763 \pm 15 [128] I39 \pm 3 729 \pm 11 [160] I40,9 \pm I 705 \pm 14 [128] I50,9 \pm I 672 \pm 13 [128] I50 \pm 3 677 \pm 11 [159,160] I80 \pm 35 575 \pm 13 [73] I90 \pm 40 540 \pm 28 [73] 220 \pm 45 576 \pm 21 [73] 220 \pm 45 576 \pm 12 [73] 240 \pm 50 576 \pm 12 [73] 270 \pm 60 555 \pm 8 [71] 280 \pm 45 566 \pm 18 [85] 351,5 \pm 10 565 \pm 4,5 [11] 380 \pm 50 582 \pm 8 [76] 410 \pm 28 587 \pm 7 [133] 500 \pm 70 612 \pm 4 [76] 590 \pm 80 631 \pm 9 [90,16] 630 \pm 85 645 \pm 7 [75,76] 765 \pm 30 660 \pm 23 [136] 5 \pm 0,4 614 \pm 33 [$		106,8 ± 2	1064 ± 130	[65,66]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		110,0	88 <u>+</u> 18	[65]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		III	905 ± 18	[50]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		III,5± 5,7	889 ± 12	[36]
$II7 \pm 2$ $II7 \pm 2$ $II7 \pm 2$ $II7, 5^{\pm} 6, 0$ $II8 \pm I2$ $I39, 6^{\pm} I$ $I19, 6^{\pm} I$ $I20, 4^{\pm} I$ $I26 \pm 2$ $799 \pm I7$ $I60]$ $I29, 4^{\pm} I$ $765 \pm I5$ $I28]$ $I50, 9^{\pm} I$ $705 \pm I4$ $I28]$ $I50, 9^{\pm} I$ $705 \pm I4$ $I28]$ $I50, 9^{\pm} I$ $705 \pm I4$ $I28]$ $I50, 9^{\pm} I$ 71 $I29, 160]$ $I80 \pm 35$ $575 \pm I2$ $I73]$ $I90 \pm 40$ 540 ± 28 $I73]$ 220 ± 45 $576 \pm 2I$ $I73]$ 220 ± 45 $576 \pm 2I$ $I73]$ 220 ± 45 576 ± 12 $I73]$ 220 ± 45 576 ± 12 $I73]$ 220 ± 45 576 ± 12 $I73]$ 220 ± 45 $565 \pm 4, 5$ $I1]$ 380 ± 50 582 ± 8 $I76]$ 410 ± 28 587 ± 7 $I33]$ 500 ± 70 612 ± 4 $I76]$ 590 ± 80 631 ± 9 $90, 16]$ 630 ± 85 645 ± 7 $I5, 76]$ 765 ± 30 $660, 2^{\pm} 7, 3$ $I34$ $I, 4 \pm 0, 2 \Gamma 38$ 713 $I3]$ $R + S1^{281}$ $8, 3$ 600 ± 23 $I36$ $65, 66]$ $97, 2 \pm I, 0$ $I067 \pm 42$ $[65, 66]$		II5 ± 30	733 ± 12	[73]
$ \begin{array}{ccccccccccccccccccccccccccccccccc$		117 ± 2	833 ± 8	[160]
$I19,6^{\pm} I = 816^{\pm} 16 = [128]$ $I26^{\pm} 2 = 799^{\pm} 17 = [160]$ $I29,4^{\pm} I = 703^{\pm} 15 = [128]$ $I39^{\pm} 3 = 729^{\pm} 11 = [160]$ $I40,9^{\pm} I = 705^{\pm} 14 = [128]$ $I50,9^{\pm} I = 672^{\pm} 13 = [128]$ $I53^{\pm} 3 = 677^{\pm} 11 = [159,160]$ $I80^{\pm} 35 = 575^{\pm} 13 = [73]$ $I90^{\pm} 40 = 540^{\pm} 28 = [73]$ $220^{\pm} 45 = 576^{\pm} 21 = [73]$ $240^{\pm} 50 = 576^{\pm} 12 = [73]$ $240^{\pm} 50 = 576^{\pm} 12 = [73]$ $240^{\pm} 50 = 576^{\pm} 18 = [85]$ $351,5^{\pm} - 15 = 566^{\pm} 4,5 = [11]$ $280^{\pm} 45 = 566^{\pm} 18 = [85]$ $351,5^{\pm} - 15 = 565^{\pm} 4,5 = [11]$ $280^{\pm} 45 = 566^{\pm} 18 = [76]$ $410^{\pm} 29 = 587^{\pm} 7 = [133]$ $500^{\pm} 70 = 612^{\pm} 4 = [76]$ $590^{\pm} 80 = 631^{\pm} 9 = [90,16]$ $630^{\pm} 85 = 645^{\pm} 7 = [75,76]$ $765^{\pm} 30 = 660,2^{\pm} 7,3 = [34]$ $I,4^{\pm} 0,2^{\pm} 79 = 703^{\pm} 18 = [62]$ $5^{\pm} 0,4^{\pm} 614^{\pm} 33 = [13]$ $8,3^{\pm} 0,5^{\pm} M9B = I136^{\pm} 522 = [65,66]$ $97,2^{\pm} 1,0 = 1067^{\pm} 422 = [65,66]$		117 ,5± 6,0	818 ± 12	[36]
$126 \pm 2 $		119 ,6† 1	816 ± 16	[128]
$129,4^{\pm} I = 763 \pm 15 = [128]$ $139 \pm 3 = 729 \pm 11 = [160]$ $140,9^{\pm} I = 705 \pm 14 = [128]$ $150,9^{\pm} I = 672 \pm 13 = [128]$ $153 \pm 3 = 677 \pm 11 = [159,160]$ $180 \pm 35 = 575 \pm 13 = [73]$ $190 \pm 40 = 540 \pm 28 = [73]$ $220 \pm 45 = 576 \pm 21 = [73]$ $240 \pm 50 = 576 \pm 12 = [73]$ $240 \pm 50 = 576 \pm 12 = [73]$ $240 \pm 50 = 576 \pm 12 = [73]$ $270 \pm 60 = 555 \pm 8 = [71]$ $280 \pm 45 = 566 \pm 18 = [85]$ $351,5^{\pm} - 15 = 565 \pm 4,5 = [11]$ $380 \pm 50 = 582 \pm 8 = [76]$ $410 \pm 28 = 587 \pm 7 = [133]$ $500 \pm 70 = 612 \pm 4 = [76]$ $410 \pm 28 = 587 \pm 7 = [75,76]$ $630 \pm 85 = 645 \pm 7 = [75,76]$ $765 \pm 30 = 660,2^{\pm} 7,3 = [34]$ $I,4^{\pm} \pm 0,2^{\pm} \Gamma_{98} = 703 \pm 18 = [62]$ $5^{\pm} \pm 0,4 = 614 \pm 33 = [13]$ $8,3 = 600 \pm 23 = [136]$ $93,4^{\pm} \pm 0,5^{\pm} M_{98} = 1136 \pm 52 = [65,66]$ $97,2^{\pm} \pm 1,0 = 1067 \pm 42 = [65,66]$		126 ± 2	799 ± 17	[160]
$139 \pm 3 729 \pm 111 (160) 140,9\pm 1 705 \pm 14 (128) 150,9\pm 1 672 \pm 13 (128) 153 \pm 3 677 \pm 111 (159,160) 180 \pm 355 575 \pm 13 (73) 190 \pm 40 540 \pm 28 (73) 220 \pm 45 576 \pm 21 (73) 240 \pm 50 576 \pm 12 (73) 240 \pm 50 576 \pm 12 (73) 270 \pm 60 555 \pm 8 (71) 280 \pm 45 566 \pm 18 (85) 351,5 \pm 15 565 \pm 4,5 (11) 380 \pm 50 582 \pm 8 (76) 410 \pm 28 587 \pm 7 (133) 500 \pm 70 612 \pm 4 (76) 590 \pm 80 631 \pm 9 (90,16) 630 \pm 85 645 \pm 7 (75,76) 765 \pm 30 660,2\pm 7,3 (34) 1,4 \pm 0,2 \Gamma_{3B} 703 \pm 18 (62) 5 \pm 0,4 614 \pm 33 (13) 8,3 600 \pm 23 (136) 97,2 \pm 1,0 1067 \pm 42 (65,66)$		129 ,4 ± I	763 ± 15	[128]
$ \begin{bmatrix} 140,9^{\pm} I & 705^{\pm} I4 & [128] \\ 150,9^{\pm} I & 672^{\pm} I3 & [128] \\ 153^{\pm} 3 & 677^{\pm} II & [159,160] \\ 180^{\pm} 35 & 575^{\pm} I3 & [73] \\ 190^{\pm} 40 & 540^{\pm} 28 & [73] \\ 220^{\pm} 45 & 576^{\pm} 2I & [73] \\ 220^{\pm} 45 & 576^{\pm} 12 & [73] \\ 240^{\pm} 50 & 576^{\pm} 12 & [73] \\ 270^{\pm} 60 & 555^{\pm} 8 & [71] \\ 280^{\pm} 45 & 566^{\pm} 18 & [85] \\ 351,5^{\pm} 15 & 565^{\pm} 4,5 & [11] \\ 380^{\pm} 50 & 582^{\pm} 8 & [76] \\ 410^{\pm} 28 & 587^{\pm} 7 & [133] \\ 500^{\pm} 70 & 612^{\pm} 4 & [76] \\ 590^{\pm} 80 & 631^{\pm} 9 & [90,16] \\ 630^{\pm} 85 & 645^{\pm} 7 & [75,76] \\ 765^{\pm} 30 & 660,2^{\pm} 7,3 & [34] \\ 1,4^{\pm} 0,2^{\pm} 1^{58} & 703^{\pm} 18 & [62] \\ 5^{\pm} 0,4 & 614^{\pm} 33 & [13] \\ 8,3 & 600^{\pm} 23 & [136] \\ 97,2^{\pm} 1,0 & 1067^{\pm} 422 & [65,66] $		139 ± 3	729 ± II	[160]
$ \begin{bmatrix} 150,9^{\pm} I & 672^{\pm} I3 & [128] \\ 153^{\pm} 3 & 677^{\pm} II & [159,160] \\ 180^{\pm} 35 & 575^{\pm} I3 & [73] \\ 190^{\pm} 40 & 540^{\pm} 28 & [73] \\ 220^{\pm} 45 & 576^{\pm} 2I & [73] \\ 240^{\pm} 50 & 576^{\pm} I2 & [73] \\ 240^{\pm} 50 & 576^{\pm} I2 & [73] \\ 270^{\pm} 60 & 555^{\pm} 8 & [71] \\ 280^{\pm} 45 & 566^{\pm} I8 & [85] \\ 351,5^{\pm} 10 & 565^{\pm} 4,5 & [11] \\ 380^{\pm} 50 & 582^{\pm} 8 & [76] \\ 410^{\pm} 28 & 587^{\pm} 7 & [133] \\ 500^{\pm} 70 & 612^{\pm} 4 & [76] \\ 590^{\pm} 80 & 631^{\pm} 9 & [90,16] \\ 630^{\pm} 85 & 645^{\pm} 7 & [75,76] \\ 765^{\pm} 30 & 660,2^{\pm} 7,3 & [34] \\ 1,4^{\pm} 0,2^{\pm} 198 & 703^{\pm} 18 & [62] \\ 5^{\pm} 0,4 & 614^{\pm} 33 & [13] \\ 8,3 & 600^{\pm} 23 & [136] \\ 97,2^{\pm} 1,0 & 1067^{\pm} 422 & [65,66] $		140,9 [±] I	705 ± 14	[128]
$ \begin{bmatrix} 153 \pm 3 & 677 \pm 11 & [159,160] \\ 180 \pm 35 & 575 \pm 13 & [73] \\ 190 \pm 40 & 540 \pm 28 & [73] \\ 220 \pm 45 & 576 \pm 21 & [73] \\ 240 \pm 50 & 576 \pm 12 & [73] \\ 270 \pm 60 & 555 \pm 8 & [71] \\ 280 \pm 45 & 566 \pm 18 & [85] \\ 351,5 \pm 15 & 565 \pm 4,5 & [11] \\ 380 \pm 50 & 582 \pm 8 & [76] \\ 410 \pm 29 & 587 \pm 7 & [133] \\ 500 \pm 70 & 612 \pm 4 & [76] \\ 590 \pm 80 & 631 \pm 9 & [90,16] \\ 630 \pm 85 & 645 \pm 7 & [75,76] \\ 765 \pm 30 & 660,2 \pm 7,3 & [34] \\ 1,4 \pm 0,2 \ 1738 & 703 \pm 18 & [62] \\ 5 \pm 0,4 & 614 \pm 33 & [13] \\ 8,3 & 600 \pm 23 & [136] \\ 93,4 \pm 0,5 \ M38 & I136 \pm 52 & [65,66] \\ 97,2 \pm 1,0 & I067 \pm 42 & [65,66] \end{bmatrix} $		150,9 [±] I	672 ± 13	[128]
$ \begin{bmatrix} 180 & \pm 35 & 575 & \pm 13 & [73] \\ 190 & \pm 40 & 540 & \pm 28 & [73] \\ 220 & \pm 45 & 576 & \pm 21 & [73] \\ 240 & \pm 50 & 576 & \pm 12 & [73] \\ 270 & \pm 60 & 555 & \pm 8 & [71] \\ 280 & \pm 45 & 566 & \pm 18 & [85] \\ 351,5 & \pm 15 & 565 & \pm 4,5 & [11] \\ 380 & \pm 50 & 582 & \pm 8 & [76] \\ 410 & \pm 29 & 587 & \pm 7 & [133] \\ 500 & \pm 70 & 612 & \pm 4 & [76] \\ 590 & \pm 80 & 631 & \pm 9 & [90,16] \\ 630 & \pm 85 & 645 & \pm 7 & [75,76] \\ 765 & \pm 30 & 660,2 \pm 7,3 & [34] \\ 1,4 & \pm 0,2 & \Gamma_{2B} & 703 & \pm 18 & [62] \\ 5 & \pm 0,4 & 614 & \pm 33 & [13] \\ 8,3 & 600 & \pm 23 & [136] \\ 93,4 & \pm 0,5 & M_{2B} & 1136 & \pm 52 & [65,66] \\ 97,2 & \pm 1,0 & 1067 & \pm 42 & [65,66] \end{bmatrix} $		153 ± 3	677 ± 11	[159,160]
$190 \pm 40 \qquad 540 \pm 28 \qquad [73]$ $220 \pm 45 \qquad 576 \pm 21 \qquad [73]$ $240 \pm 50 \qquad 576 \pm 12 \qquad [73]$ $270 \pm 60 \qquad 555 \pm 8 \qquad [71]$ $280 \pm 45 \qquad 566 \pm 18 \qquad [85]$ $351,5 \pm 10 \qquad 582 \pm 8 \qquad [76]$ $380 \pm 50 \qquad 582 \pm 8 \qquad [76]$ $410 \pm 29 \qquad 587 \pm 7 \qquad [133]$ $500 \pm 70 \qquad 612 \pm 4 \qquad [76]$ $590 \pm 80 \qquad 631 \pm 9 \qquad [90,16]$ $630 \pm 85 \qquad 645 \pm 7 \qquad [75,76]$ $765 \pm 30 \qquad 660,2\pm 7,3 \qquad [34]$ $1,4 \pm 0,2 \ 1^{33} \qquad [13]$ $8,3 \qquad 600 \pm 23 \qquad [136]$ $93,4 \pm 0,5 \ M^{38} \qquad H^{36} \pm 52 \qquad [65,66]$		180 ± 35	575 ± 13	[73]
$220 \pm 45 \qquad 576 \pm 2I \qquad [73]$ $240 \pm 50 \qquad 576 \pm 12 \qquad [73]$ $270 \pm 60 \qquad 555 \pm 8 \qquad [71]$ $280 \pm 45 \qquad 566 \pm 18 \qquad [85]$ $351,5 \pm 10 \qquad 582 \pm 8 \qquad [76]$ $380 \pm 50 \qquad 582 \pm 8 \qquad [76]$ $410 \pm 29 \qquad 587 \pm 7 \qquad [133]$ $500 \pm 70 \qquad 612 \pm 4 \qquad [76]$ $590 \pm 80 \qquad 631 \pm 9 \qquad [90,16]$ $630 \pm 85 \qquad 645 \pm 7 \qquad [75,76]$ $765 \pm 30 \qquad 660,2\pm 7,3 \qquad [34]$ $I,4 \pm 0,2 \ \Gamma^{3B} \qquad 703 \pm 18 \qquad [62]$ $5 \pm 0,4 \qquad 614 \pm 33 \qquad [13]$ $8,3 \qquad 600 \pm 23 \qquad [136]$ $93,4 \pm 0,5 \ M^{3B} \qquad H136 \pm 52 \qquad [65,66]$ $97,2 \pm I,0 \qquad H07 \pm 42 \qquad [65,66]$		190 ± 40	540 ± 28	[73]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		220 ± 45	576 ± 21	[73]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		240 ± 50	576 ± 12	[73]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		270 ± 60	555 ± 8	[71]
$351,5 \pm 15$ $565 \pm 4,5$ $[II]$ 380 ± 50 582 ± 8 $[76]$ 410 ± 29 587 ± 7 $[I33]$ 500 ± 70 612 ± 4 $[76]$ 590 ± 80 631 ± 9 $[90,16]$ 630 ± 85 645 ± 7 $[75,76]$ 765 ± 30 $660,2 \pm 7,3$ $[34]$ $I,4 \pm 0,2$ $\Gamma B 703 \pm 18$ $[62]$ $5 \pm 0,4$ 614 ± 33 $[13]$ $8,3$ 600 ± 23 $[136]$ $93,4 \pm 0,5$ $M B II36 \pm 52$ $[65,66]$ $97,2 \pm I,0$ $I067 \pm 42$ $[65,66]$		280 ± 45	566 ± 18	[85]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		351,5 - 15	565 ± 4,5	[11]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		380 ± 50	582 ± 8	[76]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		410 ± 2 0	587 ± 7	[133]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		500 ± 70	612 ± 4	[76]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		590 ± 80	63I ± 9	[90,16]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		630 ± 85	645 ± 7	[75,76]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		765 ± 30	660,2± 7,3	[34]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		I,4 ± 0,2 Гэв	703 ± 18	[62]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		5 ± 0,4	6I4 ± 33	[13]
$n + s1^{201}$ 93,4 ± 0,5 MaB II36 ± 52 [65,66] 97,2 ± 1,0 IO67 ± 42 [65,66]	207	8,3	600 ± 23	[136]
97,2 ± 1,0 1067 ± 42 [65,66]	$n + Si^{281}$	93,4±0,5 Мэв	II 36 - 52	[65,66]
		97,2 ± 1,0	1067 ± 42	[65,66]

<u> </u>	2		3	4	
	TOT T + 0 F		TOU 0 + 00	ter col	
	$101,1 \pm 0,5$		1040 ± 90	[65,66]	
.	$106,8 \div 0,5$	Non	925 - 220	[00,00]	
p + 5	208 ÷ 4 z⊤⊑ † o	мэв	680 - 20	[70]	
	$\frac{1}{10} = 0$	linn	600 - 10	[10] [133]	
n + S 35,5	208 ± 4	Mar	$\frac{672}{740} \pm 20$	[70]	
$p + c_1$	$\frac{200}{315} \pm 8$		740 ± 20	[70]	
$n + c1^{355}$	76.7 ± 0.5	Мав	1420 ± 85	[66]	
	8I.2 ± I.0		1597 ± 59	[66]	
	85 ± 28		1380 ± 30	[61]	
	85.5 ± 0.5		1371 ± 59	[66]	
	93,4 ± 0,5		1382 ± 58	[6 ⁶]	
	95 ± 26		1280 ± 20	[72]	
	97,2 ± I,0		1336 ± 40	[66]	
	99,4 ± 4		1332 ± 19	[66]	
	IOI,I ± 0,5		1380 ± 75	[66]	
	106,8 ± 2		1260 ± 90	[66]	
	410 ± 20		742 ± 9	[133]	
$n + Al^{39}$	47,5 ± I2	Мэв	2080 ± 45	[99]	
	88 ± 14		I480 ± 20	[99]	
$p + Ca^{4}q^{1}$	830 ± I5	Мэв	> 720 ± 10	[64]	
$n + Ti^{47,9}$	6I,0 ± 0,5	Мэв	1905 ± 90	[66]	
	66,I <u>I</u> 1,0		2210 ± 80	[66]	
	71,2 ± 0,5		1880 ± 80	[66] [cc]	
	76,7 ÷ 0,5		1760 ± 90	[66]	
	81,2 - 1,0		1900 ÷ 57	[66]	
	$85_{9}5 - 0_{9}5$		1//2 ÷ 39 1020 † 15	[00] [cc]	
	92,5 - 7		1/5/ = 15 1/5/ = 41	[66]	
	97,4 = 0,7		1000 = 41 1565 ± 29	[66]	
	99 L ± L		1509 = 29 1628 ± 20	[66]	
	TOT.T ± 0.5		1520 ± 20	[66]	
	106.8 ± 2		1490 ± 80	[66]	
n + Fe ^{55,9}	51 ± 2	Мав	2350 ± 100	[161]	
	59 ± 2		2200 ± 100	[161]	
	69 ± 2		2150 ± 100	[161]	
	79 ± 2		2000 ± 100	[161]	
	90 ± 2		1850 ± 90	[161]	
	93,4 ± 0,5		1947 ± 48	[65,66]	
	97,2 ± I,0		1874 ± 37	[65,66]	
	101,1 ± 0,5		1735 ± 80	[65,66]	
	IO4 ± 2		1750 ± 80	[161]	
	106,8 ± 2		1940 ± 185	65,66	
	III		1680 ± 30	[50]	
	410 ± 20		1238 ± 16 1073 ± 12	[159] [133]	

1	2	3	4
p+Cu ^{63,5}	902 ± 10 Мэв	1530 ± 160	[33]
	2,2 ± 0.13 Гэв	1534 ± 85	[1:4,125]
	18,4 ± 0.05	1360 ± 20	[26]
n + Cu ^{63,5}	47,5 ± 12 ₩∂B	2810 ± 70	[36]
	48,80 ± 1,80	2680 ± 35	[36]
	50,60 ± 1,90	2770 ± 33	[36]
	51 ± 1,5	2600 ± 70	[161]
	52 ± 1,5	2630 ± 50	160]
	52,5 ± 2,0	2740 ± 31	[36]
	54,5 ± 2,1	2720 ± 31	[36]
	56,6 ± 2,2	2690 ± 30	[36]
	58,8 ± 2,3	2620 ± 28	[36]
	59 ± 2	2550 ± 70	[161]
	60 ± 1,5	2559 ± 40	[160]
	61,0 ± 0.5	2440 ± 20	[66]
	61,1 ± 2,4	2630 ± 28	[36]
	63,4 ± 2,5	2630 ± 27	[36]
	66,1 ± 1,0	2495 ± 80	[66]
	66,1 ± 2,7	2540 ± 26	[36]
	68,9 ± 3,0	2520 ± 36	[36]
	71,2 ± 0,5	2450 ± 103	[66]
	72,0 ± 3,2	2490 ± 24	[36]
	75,3 ± 2,5	2410 ± 22	[36]
	76,7 ± 0,5	2150 ± 100	[66]
	78,9 ± 3,8	2370 ± 21	[36]
	81,2 ± 1,0	2335 ± 65	[66]
	82,8 ± 4,0	2250 ± 20	[36]
	84 ± 1,5	2260 ± 22	[160]
	84 ± 34	2,50 ± 40	[96]
	85 ± 28	2220 ± 40	[61]
	85,5 ± 0,5	2225 ± 70	[66]
	86,9 ± 4,3	2220 ± 19	[36]
	88 ± 14	2265 ± 35	[99]

			ويستعمل والمتحد والمتحدين والمتحدين والمتحدين والمحاد والمحاد والمحاد والمحاد والمحاد والمحاد والمحاد
1	2	3	4
	01.2 + 4.6	2130 + 19	[36]
	$91,5 \pm 4,0$	2139 ± 19	[66]
	$92_{3}5 \pm 7$	2204 + 56	[66]
	$95_{94} \pm 0_{95}$	2000 + 20	[72]
	95 ± 25	2050 ± 19	[136]
	96,0 ± 4,6	2023 + 39	[66]
	· 9/92 ± 190	2118 ± 23	[66]
	$99_{9}/\pm 4$	1970 ± 17	[36]
	101,0 12 9,0	1000 . 70	[66]
	101,1 ± 0,5	1860 ± 70	[36]
	106,0±>,3	1000 ± 17	[66]
	106,8± 2	1957 ± 110	[50]
		1790 ± 17	[36]
	111,5 - 2,7	1/90 ± 1/	[73]
	115±25	1920 ± 00	[73]
	115±30	1490 1 20	[160]
	117 ± 2	$1/02 \pm 10$	[36]
	<u>117,5±</u> 6,0	1607 + 22	[160]
	126 ± 12	1400 + 20	[160]
	139 ± 3	1490 ± 20	[73]
	145 ± 30	1376 + 18	[159, 160]
	153 ± 3	1300 ± 40	[73]
	155 ± 30	100 ± 40	[73]
	180 ± 35	1250 ± 40	[73]
	190 ± 40	110 ± 40	[73]
	220 ± 45	110 ± 20	1731
	240 ± 50	$11/0 \pm 32$	[71]
	270 ± 60	1147 ± 20	[85]
	280 ± 45	1130 ± 20	[11]
	351,5 - <u>15</u>	1170 ± 30	[76]
	380 ± 30	1187 + 14	[133]
	410 ± 20	1210 + 20	r6]
	500 ± 70	1250 + 40	[75,76]
	290 ± 80	1310 + 30	[76]
		1310 + 24	[34]
		1388 ± 39	[62]
	$1,4 \pm 0,2$ 13B	1260 **	[140]
	5.04	1158 ± 34	[13]
	9 ± 0;+	1217 ± 48	[136]
	65,4 7n 85 ± (8 Man	2210 ± 40	[61]
<u>n</u> -	a_{112} , 4_{8} , 80 ± 1.80 Mpp	3370 + 53	[36]
n +	50,60 1,90	3400 ± 50	[36]
	52 + 1 - 5	3376 ± 52	[160]
	52.5 2.0	3390 ± 49	[36]
	54.5 :: 2.1	3450 ± 48	[36]
	/ · · · · · · · · · · · · · · · · · · ·		

	2	3	4
	56,6 <u>+</u> 2,2	3440 ± 47	[36]
	58,8 ± 2,3	3500 ± 45	[36]
	60 ± 1,5	3324 ± 48	[160]
	61,1 <u>+</u> 2,4	3500 ± 44	[36]
	63,5 ± 2,5	3540 ± 43	[36]
	66 , 1 ± 2 , 7	3530 ± 42	[36]
	68,9± 3,0	3580 ± 49	[36] -
	72,0 ± 3,2	352 ⁰ ± 39	[36]
	75,3 ± 3,5	3540 ± 38	[36]
	78,9 ± 3,8	3530 ± 38	[36]
	82,8 ± 4,0	340 0 ± 35	[36]
	84 ± 1,5	3341 ± 31	[160]
	86,9 ± 4,3	3320 ± 35	[36]
	91 , 3 ± 4,6	3240 ± 35	[36]
	93±1,5	3146 ± 61	[160]
	96,0 ± 4,8	3170 ± 34	[36]
	101,0 ± 5,0	3020 ± 35	[36]
	102 <u>+</u> 2	3083 ± 52	[1eo]
	106,0 ± 5,3	29 30 ± 35	[36]
	111	2850 ± 60	[50]
	111,5 <u>+</u> 5,7	2820 ± 35	[36]
	117 ± 2	2686 ± 37	[160]
	117 , 5 ± 6,0	2660 ± 33	[36]
	126 ± 2	2568 ± 30	[160]
	139 ± 3	2349 ± 19	[160]
	410 ± 20	1848 ± 21	[133]
n + Sn ¹¹⁸ ,7	85 ± 28 M	эв 3280 ± 60	[61]
	95 ± 26	3180 <u>+</u> 30	[72]
	190 ± 40	190 ± 70	[27]
	270 ± 60	1870 ± 30	[71]
	280 ± 45	1830 ± 30	[85]
	351.5 + 10	1887 ± 15	[11]
	$380 + 50^{15}$	1880 ± 40	[76]
	500 ± 70	1930 ± 30	[76]
	590 ± 80	1980 + 40	75, 76
	630 + 85	2030 ± 40	[76]
	1,4 ± 0,2 I	эв 2202 + 62	[62]
	5,0 ± 0,4	1986 ± 88	[13]
	8,3	1805 ± 57	[136]
, 121,8	57 . O V	3B 2400 - 700	[1 42]
u + 30	50 ± 2	3400 ± 100	[2 6 2 J
	29 ± 2	3300 £ 100	[101]
	69 ± 2	3550 ± 100	[1 61]
	79 ± 2	100 ± 100	[tor]

1	1	3	4
	90 ± ;	3050 + 100	โาธาไ
	104 ± 2	3050 ± 100	[261]
	111	2910 ± 60	[50]
	765 ± 30	2149 ± 74	[34]
_ 137.4			52
1 + Ba	156 ± 3 M3B	2476 ± 88	[159]
181	51 ±; №эв	4100 ± 150	[161]
1 + 14	59 ± 4	3950 ± 150	[161]
	71 ± %	4200 ± 170	[161]
	80 ± 2	4200 ± 170	[161]
	90 ± 2	4100 ± 150	[161]
	104 ± 2	4150 ± 150	[161]
183,9		0(10 . 50	[m]
<u>п</u> + т	270 ± 60 M3B	261° ± 50	[71]
	380 ± 50	2690 ± 40	[76]
	500 ± 70	2730 ± 30	[76]
	590 ± 80	2780 ± 60	[75, 76]
	630 ± 85	2820 ± 50	[76]
200 n + Hg	,6 61,0 1 0,5 Mom	3770 ± 490	[66]
-	66,1 ± 1,0	5000 ± 400	[66]
	71,2 ± 0,5	5320 ± 575	[66]
	76,7 ± 0,5	4310 ± 200	ြို့ရှေ
	81,2 ± 1,0	4985 ± 150	ໂຍປ
	85, 5 ± 0,5	4680 ± 150	[66]
	92,3 ± 7	4765 ± 120	[66]
	93,4 ± 0,5	4315 ± 150	[66]
	97,2 ± 1,0	4450 ± 1 ⁰ 5	[66]
	99,4 ± 4	4697 ± 50	[66]
	$101, 1 \pm 0, 5$	4525 <u>+</u> 180	[66]
	106,8 ± 2	4540 ± 255	[66]
	111	4200 ± 80	[50]
	280 ± 45	2800 ± 30	[85]
207 , 2 p + Pb	830 ± 15 Мэв	> 2080 ± 40	[64]
	1±0,003 Гэв	3155 ± 450	[102]
	3	3300 **	[140]
	18,4 ± 0,05	3290 ± 100	[26]
· 207.	2		.
n + Pb,	47,5 ± 12 MOB	4460 ± 100	[36]
	48,80 ± 1,80	4290 ± 52	[36]
	50,60 t 1,90	4290 ± 50	[36]
	52 ± 1,5	4274 ± 67	[1 60]

1	2	3	4	
	52,5 ± 2,0	4300 ± 50	[36]	
	54,5 ± 2,1	4410 ± 48	[36]	
	55	4220 ± 70	[134]	
	56,6 ± 2,2	4390 ± 46	[36]	
	58,8 ± 2,3	4430 ± 45	[36]	
	60 ± 1,5	4236 ± 52	[160]	
	$61,0 \pm 0,5$	4590 ± 225	[65,66]	
	$61,1 \pm 2,4$	4460 ± 44	[36]	
	$63,5 \pm 2,5$	4640 ± 43	[36]	
	64 ± 1,5	4463 ± 82	[160]	
	$66,1 \pm 1,0$	4550 ± 160	[65,66]	
	$66,1 \pm 2,7$	$461^{0} \pm 42$	[36]	
	$68,9 \pm 2,0$	4620 ± 55	[36]	
	71,2 ± 0,5	4650 ± 195	[65,66]	
	72 ± 1,5	4762 ± 94	[160]	
	72.0 ± 3.2	4690 ± 40	[36]	
	75,3 ± 3,5	4760 ± 39	[36]	
	76.7 ± 0.5	4590 ± 225	[65,66]	
	78.9 ± 3.8	4790 ± 38	(36)	
	79 ± 1,5	4742 ± 52	[160]	
	81,2 ± 1,0	4450 ± 160	[65,66]	
	82,8 ± 4,0	4780 ± 37	[36]	
	84 ± 1,5	46 8 5 ± 48	[160]	
	84 ± 34	4470 ± 110	[39]	
	85 🛨 27	4530 ± 90	[61]	
	85	4870 ± 60	[134]	
	85,5 ± 0,5	4650 ± 195	[65,66]	
	86,9 ± 4,3	4750 ± 36	[36]	
	88 ± 14	4830 ± 40	[99]	
	9 1, 3 ± 4,6	4690 ± 36	[36]	
	92 , 3 ± 7	4605 ± 120	[65,66]	
	93 ± 1,5	4762 ± 66	[160]	
	9 3,4 ± 0,5	4630 ± 90	[65,66]	
	95 ± 26	4480 ± 30	[72]	
	96,0 ± 4,8	4690 ± 35	[36]	
	97,2 ± 1,0	4595 ± 65	[65,66]	
	99,4 ± 4	4605 ± 1 20	[65,66]	
	100 ,7± 12	4569 ± 46	[96]	
	101 ± 5	4560 ± 35	[36]	
	101,1 ± 0,5	4410 ± 120	[65,66]	
	102 ± 2	4593 ± 64	[160]	
	106,0 ± 5,3	4450 ± 34	[36]	
	106,8 ± 2	4740 ± 209	[65,66]	
	111	4250 ± 80	[50]	
	111,5 ± 5,7	4400 ± 34	[36]	
	115 ± 30	3710 ± 60	[73]	

1	2	3	4
	117 ± 2	4214 ± 44	[160]
	117,5 ± 0,0	4210 ± 34	[36]
	126 ± 2	3917 ± 64	[160]
	139 ± 3	3691 ± 41	[160]
	153 ± 3	34 99 ± 26	[159,160]
	180 ± 35	3 060 ± 60	[73]
	190 ± 40	2850 ± 100	[73]
	220 ± 45	2990 ± 140	[73]
	240 ± 50	2880 ± 50	[73]
	2 7 ⁰ ± 60	2840 ± 30	[71]
	280 ± 45	289 0 ± 3 0	[85]
	351,5 + ¹ ,	2828 ± 14	[11]
	380 ± 50	2810 ± 50	[76]
	41 ⁰ ± 20	2 890 ± 30	[133]
	500 ± 7 ⁰	2850 ± 30	[76]
	59 ⁰ ± 80	2920 ± 70	[75 , 76]
	630 ± 85	294 0 ± 70	[76]
	765 ± 30	3106 ± 45	[45]
	1,4 ± 0,2 ₽ЭВ	3209 ± 55	[63]
	5 ± 0,4	2534 ± 105	[13]
	8,3	2556 ± 100	[136]
$n + B^{\dagger}$	45 ± 8 ^M ∋B	4800 ± 400	[161]
	52 ± 6	44 0 0 ± 400	[161]
	60 ± 9	4150 ± 350	[161]
	70 ± 8	4930 ± 400	[161]
	78 ± 1 ⁰	479 ⁰ ± 300	[161]
	9 0 ± 10	4750 ± 300	[161]
	105 ± 16	4 6 70 ± 300	[161]
	111	4270 ± 80	[50]
	122 ± 16	4220 ± 300	[161]
	142 ± 22	3740 ± 350	[161]
	170 ± 25	3200 ± 450	[161]
	1,4 ± 0,2 Гэв	3275 ± 62	[62]
232 n + Th	410 ± 20 Мэв	3210 ± 40	[133]
$n + v^{238,1}$	45 ± 8 Мэв	500 0± 400	[161]
	48,80 ± 1,80	4760 ± 73	[36]
	50,60± 1,30	4820 ± 69	[36]
	52 ± 6	4330 ± 400	[161]
	52,5 ± 2,)	4 5 80 ± 68	[36]
	54,5 ± 2,1	4780 ± 65	[36]
	56,6 ± 2,2	4680 ± 63	[36]
	58,8 ± 2,3	4690 ± 61	[36]

•

I.

1	2	3	4
_	60 ± 9	4360 ± 350	[161]
	61,1 ± 2,4	4800 ± 59	[36]
	$63,5 \pm 2,5$	4860 ± 57	[36]
	661 ± 2,7	5040 ± 56	[36]
	$68,9 \pm 3,0$	5030 ± 64	[36]
	70 ± 8	5200 ± 350	[161]
	$72,0 \pm 3,2$	5100 ± 53	[36]
	75,3 ± 3,5	5120 ± 51	[36]
	78 ± 10	5150 ± 300	[161]
	78,9 ± 3,8	5070 ± 51	[36]
	$82,8 \pm 4,0$	5220 ± 50	[36]
	85 ± 28	5030 ± 100	[61]
	86,9 ± 4,3	5190 ± 49	[36]
	90 ± 10	5100 ± 300	[161]
	91,3 ± 4,6	5190 ± 49	[36]
	95 ± 26	4920 ± 60	[72]
	96,0 ± 4,8	5200 ± 49	[36]
	101, 0±5,0	5080 ± 49	[36]
	105 ± 16	5000± 400	[161]
	106,0 ± 5,3	4920 ± 51	[36]
	111,5 ± 5,7	4820 ± 54	[36]
	117,5 ± 6,0	4610 ± 66	[26]
	122 ± 16	4800 ± 300	[161]
	142 ± 22	4190 ± 350	[161]
	170 ± 25	300 0+ 450	[161]
	190 ± 40	3280 ± 130	[73]
	270 ± 60	3290 ± 30	[71]
	280 ± 45	3140 ± 50	[85]
	380 ± 50	3250 ± 60	[76]
	410 ± 20	$323^{\circ} \pm 40$	[133]
	500 ± 70	3270 ± 50	[76]
	590 ± 80	3290 ± 70	[76,75]
	630 ± 85	3300± 80	[76]
	1,4 ± 0,2 Гэв	3640 ± 91	[62]

^{x)}В приведенное значение не вкличено сечение для углов $\theta < 10^{\circ}$. Однако эта часть сечения незначительна по сравнению с полным интегральным сечением.

хх)_{Вычислено по экспериментальному} сечению упругого рассеяния на нулезой угол

 $G_{t} = 4\pi \sqrt{\mathcal{G}_{el}(0)} / k$.

Таблица и

Сечение неупругого взаимодействия протонов и нейтронов

Взаимо- действие	C I	Gin [MO]	Литература
1	2	3	4
p + He	53:4 Мэв	1077 ± 4.4^{x}	[46]
r	630 ± 15	126 ± 14	[110]
	970 ± 10	9 3 ± 1 3	[148]
	1 ± 0,0003 Гэв	111 ± 10	[102]
4 n + He	90 д 50 Мэв	92 ± 50 ⁺	[156]
6			C - 2
p + Li	18,4 ± 0,005 TBB	194 ± 5,4	[26]
$p + Li_{2}^{6,9}$	180 M 3B	$149,0 \pm 3,0$	[104]
$p + L1^{7}$	18,4 ± 0,05 Гэв	208 ± 5,5	[26]
9 n + Be	99. + 0.5	231 ± 6	[108]
p · 20	180	172 ± 17	[104]
	185	169 ± 17	[109]
	240	169 ± 17	[109]
	305	151 ± 15	[109]
	650 ± 5	191 ± 8	[131]
	860 ± 50	169 ± 15	[58]
	2,2±0,13 Гэв	$236 \pm 4,0$	[124,125]
	18,4 ± 0,05	227 ± 4,8	[26]
	23,1 ± 1,1	180	[9]
9 7 + Be	14 ± 0.2 Tom	187 + 16	[62]
n + c ¹²	-14 - 192 - 198 60 - Man	215 + 15	[49]
p + c	00 m3b		[0]
	77 3 5	218,7 ± 7,7	[90]
	95 ± 5	$2325 \pm 7,3$	
	עיע ± ענצע ± גנצע ביי	247 ± 7	[roo]
	112 ± 2	21994 ± /92	[90]
		223,1 ± 0,3	[yu] [s]
	134 ± 4	220 ± 24	[21]
	780	$212, 5 \pm 4, 8$	[±04]
	185	204 ± 20	[109]
	240	202 ± 20	[109]
	290	199 ± 20	[130]
	305	187 ± 18	[109]

1	2	3	4
	650 ± 5	227 ± 12	[131]
	860 ± 50	209 ± 2 2	[58]
	902 ± 10	230 ± 20	[33]
	907 + 23 - 30	$241,9 \pm 8,4$	[126]
	967 ± 10	254 ± 37	[24]
	1±0,003 Гэв	258 ± 17	[102]
	2,2 ± 0,13	260 ± 6	[124,125]
	2,78 ± 0,17	230 ± 12	[35]
	5	210 ± 20	[23]
	10	215 ± 10	[23]
	17 +17	210 ± 15	[25]
	20 -/	190 ± 20	[23]
	20,6 ± 0,05	$254 \pm 6,4$	[26]
	23,3 ± 1,1	210	[9]
	30	230 ± 10	[23]
	32 ± 18	256 ± 15	[168]
	80	270 ± 20	[23]
	250	380 ± 50	[23]
	500	370 ± 60	[23]
	600	220 + 20 - 26	[149]
$n + c^{12}$	55 ± 2 ¥∋в ^{xx}	276 + 25	[153]
- •	61 ± 4.5	200 ± 13	[129]
	81 ± 2 xx	202 + 20	[163]
	95 ± 26	223 + 7	[72]
	105 ± 3 xx	234 ± 8	[163]
	$140 \pm 4 \times 10^{10}$	221 ± 9.5	[163]
	—	•	
	2 7 0 ± 60	1 4 5 ± 6	[71]
	300 + 10	203 ± 33	[17]
	351,5 - 15	≤ 200,8 ± 4,7 ++	[12]
	765 ± 30	198 ± 18	[34]
	1,4.±0,2 Гэв	201 ± 13	[62]
	5 + 0,4	2 35 ± 16	[13]
	8,3	218 ± 8	[136]
$p + N^{14}$	800 Məz	≥ 260	[14]
	2,2 .10 ³ Гэв	290	[14]
	5,103	> 350	[14]
	1.07	260 ± 110	[162]
	(10 ⁶ -10 ⁸)		
0 1 0 LG	45 Мэв	395 + 27	[48]
	907+23	296 + 19	[126]
	1 ± 0,003 Гэв	296 + 50	[102]
		- 2 - 2 - 2 - 2 - 2 - 2	(LUC)

1	2		3	4
$-\frac{1}{p + F^{19}}$	99,1 ±),5	Мэв	353 ± 7	[108]
$p + Mg^{24,3}$	99 ,4 ±),5	Мэв	399 ± 11	[108]
p + Al ²⁷	60 77 ± 5 95 + 5	Мэв	420 ± 30 444 ± 14 415 ± 13	[49] [90] [90]
	99 , 7 ±),5		430 ± 12	[108]
	113 ± 5 134 ± 5 134 ± 4		408 ± 13 424 ± 13 372 ± 37	[90] [90] [51]
	180 185 240		390 ± 10 408 ± 41 383 ± 41	[104] [109] [109]
	290 305		416 ± 42 334 ± 33 418 + 22	[130] [109] [131]
	710 860 ± 50		440 ± 40 394 ± 10	_28) [58] [33]
	902 ± 10 2,2 ± (,13	Гэв	570 ± 29 503 ± 16	[124,125]
	~ 4 18,4 ± 0,05 23.3+ 1		3,98 ± 11 472 ± 15 400	[153] [26] [9]
$n + Al^{27}$	55 ± 2 81 ± 2 84 ± 3^{4}	МЭв хх хх	499 ± 40 412 ± 33 430 ± 50	[163] [163] [39]
	95 ± 26 105 ± 26 105 ± 26		418 ± 15 428 ± 10 418 ± 14	[72] [163] [163]
	$ \begin{array}{c} 140 \pm 7 \\ 300 \\ 351,5 - 10 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15$		390 ± 23 $\leq 395 \pm 11^{++}$ 392 ± 10	[17] [12] [34]
	$765 \pm .10$ $1,4 \pm 0,2$ $3,6 \pm 0,7$ $5 \pm 0,$ 8.3	Гэв	322 ± 10 414 ± 23 430 ± 56 381 ± 27 380 ± 13	(62) [21] [13] [136]
$p + s^{32}$	32	Гэв	680 ± 100	[168]
$p + Ca^{40}$.1 99,3 ± 0,5 180	Мэв	58 ⁰ ± 16 524 ± 14	[108] [104]

ļ

		بنهيني، البه جينا أيكار ويشتلك في البرزي ألا الله الكرامي المتروكي المارك ال	
99,2 ± 0,5	Иэв	634 ± 18	[108]
99,9 ± 0,5	Мэв	674 ± 19	[109]
99,1 ± 0,5	Мэв	692 ± 19	[108]
$61 \pm 4,5$ $987 \pm 0,5$ 180 $2,78 \pm 0,17$	Мэв Гэв	617 ± 40 747 ± 21 662 ± 19 690 ± 28	[129] [108] [104] [35]
32 (15÷50)		790 ± 120	[168]
37 (28 ; 58)		590 ± 50	[41]
77		$61^{0} \pm 60$	[41]
$(58 \div 121)$ 175 ± 75 178 $(121 \div 387)$		690 ± 50 790 ± 250	[77] [41]
325 ± 175 500		570 ± 70 910 +140 -136	[77] [15]
		860 ± 280	[77]
37 (28 ± 58)	Гэв	600 ± 40	[41]
(10 + 90) 77 (58 ±121)		620 ± 50	[41]
()0 +11) 178 (121÷387)		670 ± 130	[41]
98,5 ± 0,5	Мэв	771 ± 2 2	[108]
98,5 ± 0,5	Мэв	780 ± 22	[108]
77 ± 5 95 ± 5	Мэв	746 ± 21 774 ± 22	[90] [90]
99 ± 0,5 113 ± 5 134 ± 5 134 ± 4 185 240 290 305		835 ± 23 751 ± 25 779 ± 23 752 ± 68 746 ± 75 667 ± 67 717 ± 72 608 ± 61	[90] [108] [90] [51] [109] [109] [130] [109]
	$99,9 \pm 0,5$ $99,1 \pm 0,5$ $61 \pm 4,5$ $98,7 \pm 0,5$ 180 $2,78 \pm 0,17$ 32 (15+50) 37 (28+58) 77 $(58 \div 121)$ 175 ± 75 178 (121+387) 325 ± 175 500 600 37 $(28 \div 58)$ 77 $(58 \div 121)$ 178 $(121\div 387)$ $98,5 \pm 0,5$ $98,5 \pm 0,5$ $98,5 \pm 0,5$ $98,5 \pm 0,5$ $98,5 \pm 0,5$ $98,5 \pm 0,5$ 13 ± 5 13 ± 5 1	$99,9 \pm 0,5$ M3B $99,1 \pm 0,5$ M3B $61 \pm 4,5$ M3B $98,7 \pm 0,5$ M3B 180 2,78 \pm 0,17 F3B $2,78 \pm 0,17$ F3B 32 (15+50) 37 (26+58) 77 (58 ± 121) 175 ± 75 T78 $(121+387)$ 325 ± 175 500 600 37 (28 + 58) 77 (58 ÷ 121) 178 (121÷387) $98,5 \pm 0,5$ M3B $98,5 \pm 0,5$ M3B 77 ± 5 M3B 77 ± 5 M3B 77 ± 5 M3B $99 \pm 0,5$ 13 \pm 5 134 ± 5 134 \pm 4 185 240 290 305 650 ± 50 50	99,9 \pm 0,5M3B674 \pm 1999,1 \pm 0,5M3B692 \pm 1961 \pm 4,5M3B617 \pm 40987 \pm 0,5747 \pm 21180662 \pm 192,78 \pm 0,17Г3B690 \pm 2832790 \pm 120(15+50)7737590 \pm 50(28+58)7777610 \pm 60(28+58)790 \pm 250(121+387)570 \pm 70325 \pm 175570 \pm 70500910 \pm 140600860 \pm 28037Г3B600 \pm 40(28 \pm 58)7777620 \pm 50(121+387)670 \pm 130178670 \pm 130(121+387)71 \pm 2298,5 \pm 0,5M3B780 \pm 2277 \pm 5M3B780 \pm 2277 \pm 5M3B746 \pm 2195 \pm 5774 \pm 2299 \pm 0,5835 \pm 23113 \pm 5751 \pm 25134 \pm 4752 \pm 68135746 \pm 75240667 \pm 67290717 \pm 72305608 \pm 61650 \pm 50850 \pm 17

1	2		3	4
	860±50		728 ± 17	[58]
	902 ± 10		740 ± 52	[33]
	2,2± 0,13	Гэв	914 ± 44	[124,125]
	~ 4		899 ± 3 8	[153]
	5,7		893	[20]
	18,4		850 ± 32	[26]
	23,1		715 ± 20	[137]
	2,00		740 ± 20	[10]
$n + Cu^{63,5}$	55 ± 2	Мэв ^{xx}	< 1122 ± 13	[163]
	81 ± 2	xx	840 ± 43	[163]
	84 ± 34		780 ± 81	[39]
	95 ± 26		782 ± 10	[72]
	105.: 3	xx	773 ± 13	[163]
	140 .= 4	xx	741 ± 13	[163]
	270 - 60		573 ± 23	[71]
	300		755 + 33	ר ז ו ז
	351 +10		≤ 774 ± 18 ⁺⁺	[12]
	765 :: 30		742 ± 23	[34]
	1.4 - 0.2		674 ± 34	[62]
	3,6 0,7		704 ± 1,40	[21]
	5 ± (1,4		598 ± 25	[13]
	8,3		626 ± 29	[136]
$p + 2n^{65,4}$	00 1 / 0 5	Von	057 + 04	[108]
- 91-12	99,1 ± 0,5	Mar	857 ± 24	
$p + 2r^{-1}$	98,8 ± 0,5	мэв	1077 ± 30	[108]
p + Nb 96	98,8 ± 0,5	мэв	1094 ± 31	
p + Ho	99 ,1 ± 0,5	МЭв	1119 ± 31	
p + Pd	98,9 ± 0,5	Мэв	1189 ± 33	[108]
$p + Ag^{107,9}$	77 ± 5	Мэв	989 ± 38	[90]
	95 ± 5		1050 ± 36	[90]
	98,8 ± 0,5		1194 ± 33	[108]
	113 ± 5		1125 ± 38	[90]
	134 ± 5		1077 ± 41	[90]
$p + Cd^{112,4}$	98,8 ± 0,5	Мэв	1267 ± 35	[106]
-	134 ± 4	Detail	1286 ± 103	[s1]
	23,1	T.DB	1146 ± 40	[137]
110 4	23,3		11 80 ± 25	[10]
$n + Cd^{\perp l 2}, 4$	55±2 ^{CX}	Мев	4 1546 ± 17	[163]
	81 ± 2 ^{xx}		1249 ± 54	[163]
	105 ± 3^{xx}		1198 ± 31	[162]

.

1	2	اد کرد می اندرید در وید	3	4
	140 ± 4^{XX}		1073 ± 19	[163]
$p + In^{114,8}$	99,3 ± 0,5	Мэв	1275 ± 46	[108]
-	180		1165 ± 34	[104]
$n + Sn^{118,7}$	$61 \pm 4,5$	Мањ	995 ± 70	[129]
P · · · 2	99,1 ± 0,5	102	1292 ± 36	[108]
	650 ± 5		1285 ± 70	[131]
	860 ± 50		1110 ± 30	[58]
$n + Sn^{118,7}$	351,5 +10	Мэв	≤ 1293 ± 28 ⁺⁺	[12]
	$1,4 \pm 0,21$	Гэв	1158 ± 63	[62]
	8,3		1218 ± 50	[136]
p + Sp ^{121,8}	902 ± 10	Мэв	1153± 22	[33]
$n + La^{138,9}$	98,8 ± 0,5	Мэв	1450 ± 41	[108]
$p + Pr^{140.9}$	98,6 ± 0,5	Мэв	1446 ± 40	[108]
$p + Nd^{144,3}$	98,6±0,5	Мэв	1496 ± 42	[108]
$p + Eu^{152}$	99,4 ± 0,5	Мэв	1632 ± 46	[108]
p + Ga ^{157,3}	98,3 ± 0,5	Мэв	1596 ± 45	[108]
р + Тъ ^{158,9}	98,7 ± 0,5	Мэв	1619 ± 45	[108]
$p + D_y^{162,5}$	98,2 ± 0,5	Мэв	1630 ± 46	[108]
$p + H_0^{164,9}$	99,1 ± 0,5	Мэв	1640 ± 46	[108]
p + Tu ^{168,9}	99,3 ± 0,5	Мэв	1637 ± 46	[108]
p + Hf ^{178,5}	98,8 ± 0,5	Мэв	1700 ± 48	[108]
p ▲ Ta ¹⁸¹	98,3 ± 0,5	Мэв	1710 ± 48	[108]
192.0	5,7	Гэв	~ 1500	[96]
p + W 186 2	99,3 ± 0,5	Мэв	1733 ± 48	[108] [108]
$p + Re^{100}$	99,0 ± 0,5	Мэв	1730 ± 48	[108]
p + Pz ²⁰⁰ ,1	$99,3 \pm 0,5$	Мэв	1812 # 21	[100]
$p + Au^{197}$	$99,4 \pm 0,7$	Мэв	$1/27 \pm 49$ 1660 + 50	[106]
n + m 204,4	99.6 ± 0.5	Non	1791 + 50	[108]
207.2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	MOR		(La)
p + Pb ²⁰ ,	60	MOB	1825 ± 100	[49] [120]
	61 ± 4,7		1490 ± //	[ອບ] [159]
	11 ± 2		1756 + 67	[90]
	99.2 ± 0.5		1831 ± 51	[108]
	113 + 5		1716 ± 56	[90]
	134 ± 5		1834 ± 62	[90]
	134 ± 4		1782 ± 143	[51]
	185		1550 ± 155	[109]
	240		1570 ± 157	[109]
	305		1480 ± 148	[109]
	650±5		1930 ± 110	[131]
	860 ± 50		1680 ± 4 0	[58]
	902 ± 10		1660 ± 50	[33]

1	2	3	4
· · ·	2,78 \pm 0,17 $\Gamma_{\partial B}$ ~4 17 $^{+17}_{-7}$	1630 ± 74 2050 ± 13 1740 ± 90	[35] [153] [25]
	$18,4 \pm 0,05$ $23,1$ $23,3$ 30 23 ± 1^{16} $3,5 \pm .0^{3}$ 7.10^{3} $(5.10^{3}.1,3.10^{4})$	1750 ± 126 1810 ± 60 1750 ± 30 1550 ± 130 2150 ± 100 1670 ± 170 1810 ± 380 ± 800	[26] [137] [10] [31] [168] [117] [78]
n + Pb ^{207,2}	7.4 ⁴ (5.10 ⁴ -1,3.10 ⁵) 55 ± 2 M3B **	<pre>5300 + 800 -1400</pre> < 2337 ± 21	[163]
	81 ± 2 81 ± 3 95 ± 2 105 ± 3 140 ± 4 270 ± 1.0 300 351,5 -10 765 ± 10	1977 ± 30 1680 ± 180 1740 ± 45 1715 ± 41 1704 ± 24 1420 ± 28 1720 ± 80 $\leq 1848 \pm 42^{++}$ 1771 ± 62	[163] [39] [72] [163] [163] [71] [17] [12] [34]
	1,4 ± (,2 Гав 3,6 ± (,7 5 ± 0,4 8,3	1727 ± 45 1930 ± 300 1670 ± 79 1713 ± 66	[62] [21] [13] [136]
n + B1 ²⁰⁹ p + Th ²³² ,1 p + U ²³⁸ ,1	1,4 ± (,2 F3B 99,2 ± 0,5 M3B 98,9 ± 0,5 M3B 185 230 240 290	1793 ± 55 2006 ± 56 2066 ± 58 1900 ± 190 2030 ± 203 1770 ± 177 1830 ± 183	[62] [108] [108] [109] [130] [109] [130]
	650 ± 5	2215 ± 104	[131]

1	2		3	4
n + y ²³⁸ ,1	18,4 ± 0,05	Гэв	1860	[26]
	1,4 ± ⁰ ,2	Гэв	1887 ± 98	[62]

х) _{См.примечание} х) к таблице Ш.

+) Получено при некоторых предположениях о величине G_t.

хх) указанное значение △Т представляет собой лишь неточность <u>средней</u> <u>эйфективной</u> энергии пучка нейтронов, что в несколько раз меньше энергетической ширимы нейтронного пика. В области Т ≈ 50 Мэв это эквивалентно завышению сечения для среднего значения Т.

++)Приведенное значение может быть завышено на величину, не превылающую 10%.

1	2		3	4
	860 ± 50		€ 360 ± 50	[58]
	902 ± 10		453 ± 27	[22]
	2,2± 0,13	Гэв	236 ± 17	[124,125]
	18,4 ± 0,05		215 ± 11	[26]
$n + Al^{27}$	84 ± 34	Мэв	710 ± 40	[29]
	95 ± 26		575 ± 19	[72]
	351,5+10		$170 \pm 10^{+}$	[12]
	765 ± 30		268 ± 12	[34]
	1,4 ± 0,2	Гэв	289 ± 29	[62]
	5 ± 0,4		233 ± 42	[13]
	8,3		220 ± 26	[136]
$p + Cu^{63,5}$	340 ± 1	¥эв	515	[147]
F	902 ± 10		790 ± 168	[33]
	2.2 ± 0.13	Гэв	620 ± 17	[124.125]
	18,4 ± 0,05		510 ± 25	[26]
$n + Cu^{63,5}$	84 ± 34	Мэв	1370 ± 70	[39]
	95 ± 26		1218 ± 22	[72]
	270 ± 6 0		572 ± 23	[71]
	351,5 + 10 -15		364 ± 16 ⁺	[12]
	765 ± 30		568 ± 33	[34]
	$1,4 \pm 0,2$	Гэв	714 ± 52	62]
	5 ± 0,4		572 ± 42	[1]
	8,3		591 ± 56	[1:36]
$p + A_{P}^{107,9}$	340 + 1	Мая	894	[] + 7]
	351.5 +10	Мэв	2589 + 24+	[12]
n + Sh	1.4 + 0.2	Гэв	1044 + 88	[+2]
	8.3		587 + 76	[36]
$p + Pb^{207,2}$	340 ± 1	Мэв	934	۴۶۵] [147]
F ·	18,4 ± 0,05	Гэв	1540 ± 77	[26]
$n + Pb^{207,2}$	84 ± 34		2790 ± 140	[39]
	95 ± 26		2740 ± 54	[72]
	270 ± 60		1420 ± 41	[71]
	351,5 + 10 -15		≥ 979 ± 40 ⁺	[12]
	02 ± 00	Гар	1335 ± 77	[34]
	1,4 ± 0,2	1.918	1482 4 71	[52]
) ± 0,4		864 ± 131	
	ر,ه		843 ± 121	[136]

Ī	2		3	4
n + Bi ²⁰ 9	1,4 ± 0,2	Гэв	1482 ± 83	[62]
$n + v^{238,1}$	1,4 ± 0,2	Гэв	1753 ± 234	[62]

х)_{См.}примечание ^{х)} к таблице Ш.

+)Приведенное значение может быть занижено на величину, не превышающую 20-25%.

		Таблица IV			
Полные	сечени	взаимодействий	П- мезонов		

Взаимо- действие	T		St [mg]	Литература
I	2		3	4
π ⁻ + He ⁴	46 ± 6	Мэв	325 ± 50	[155]
	60 ± 8		89 ± 18	[84]
	68 ± 10		300 ± 20	\$ 55]
	105		207 ± 24	[84]
	153 ± 9		26 6 ± 16	[44]
	2 30 ± 3 0		150 ± 15	[101]
	273 ± 7		220 ± 20	[111,113]
	330 ± 6		150 ± 15	[111, 112, 113]
	446 ± 12		111,5 ± 4 ^x	[56]
	630 ± 13		116,4 ± 3,5 ^x	[56]
	710 ± 13		120 ± 3 [×]	[56]
	760 ± 13		123,3 ± 3,5 ^x	[56]
	829 ± 14		126,3 ± 3 ^x	[56]
	884 ± 14		132,2 ± 3 [×]	[56]
	958 ± 14		133,6 ± 3 [×]	[56]
	960		∼ 110	[29]
	970		167,4 ± 5,4	[4C]
	1,16 ± 0,0	о15Гэв	130,5± 4 [×]	[56]
	1,66		~ 135	[29]
	1,67		140,7 ± 8,1	[40]
-	2,26		104,7 ± 1,5	[40]
$\mathfrak{T}_{+\mathrm{Li}}^{6,9}$	85	Мэв	≽242 ± 10	[57]
T Bo ⁹	85	Мэв	≫ 253 ± 20	[57]
J. + De	140 ± 7		560 ± 32	[100,101]
	184 ± 7		583 ± 24	[100,101]
	197 ± 7		594 ± 26	[100,101]
	240 ± 7		526 ± 20	[100,101]
	350 <u>+</u> 7		368 🛨 21	[100,101]

I	2	3	3
	970 ± 15	273 ± 18	[64]
	4,2 Гэв	302 ± 27	[166]
П ⁺ + Ве ⁹	442 ± 8 [№] ЭВ	366 ± 34	[47]
	2,86 ± 0,13 Гэв	234 ± 9	[125,124]
Я ⁻ + с ¹²	85 Man	344 ± 13	[57]
	140 ± 7	638 ± 31	[100,101]
	184 ± 7	654 ± 24	[100,101]
	197 ± 7 216 ± 7 226 ± 7	666 ± 20 614 ± 23	[100,101] [100,101] [100,101]
	256 ± 7	547 ± 24	[100,101]
	290 ± 7	502 ± 20	[100,101]
	335 ± 7	469 ± 19	[100,101]
	363 ± 7	440 ± 11	[100,101]
	393 ± 7	411 ± 14	[100,101]
	490	310 ± 5	[97]
	540	305 ± 5	[97]
	590	300 ± 4	[97]
	600 ± 9	286 ± 19	[64]
	710	320 ± 5	[97]
	800 ± 12	337 ± 22	[64]
	830	310 ± 7	[97]
	900	305 ± 7	[97]
	915 ± 25	383 ± 20	[1]
	970 ± 15	330 ± 25	[64]
	1,055 Гав	325 ± 7	[97]
	1,200 ± 0,018	351 ± 26	[64]
	1,256	335 ± 7	[97]
	$1,30 \pm 0,02$ 3,66 3,76	301 + 24 -22 266 + 264 +	[152] [59] [59]
	3,96 3,96	263 ⁺ 262 ⁺	[59] [59] [59]
	4,06 4,16 4,2	250^{+} 259^{+} 386 ± 23	[59] [166]
	4,26	257*	[59]
	4,46	255*	[59]
	5,46	254*	[59]
	4,66	252 *	[59]
	4,76	251 *	[59]

I	2		3	4
91 ⁺ 1 ²		1(20		
<i>, + c</i>	442 ± 8	Lon Lon	366 ± 33	[47]
	$2,86 \pm 0,13$	198	280 _± 12	[124,12]
	3,96		259	[59]
	4,06		258	[59]
	4,16		257	[59]
	4,26		256+	[59]
	4,46		254	[59]
	4,56		253+	[59]
	4,66		252+	[59]
	4 76		251+	[59]
	4,86		250+	[59]
	4,96		2 4 9 ⁺	[59]
	5,06		248+	[59]
	5,16		248+	[59]
	5,26		247+	[59]
	5,36		246+	[59]
	5,46		245+	[59]
T+ 0 ¹⁶	85	Мав	> 466 ± 18	[57]
-	140 ± 7		792 ± 32	100.10
	184 ± 7		827 + 34	[100,10]
	197 + 7		826 + 33	[100,10
	216 + 7		753 + 25	100.10
	226 + 7		739 + 27	[100,10]
	256 + 7		683 + 31	[100,10]
	290 + 7		640 + 25	[100,10
	235 ± 7		557 ± 24	[100 , 10
	263 / 7		522 ± 10	[100,10
	393 ± 7		498 ± 14	[100,10]
T 127	85	Non	≥ 623 + 25	[57]
71 + 7(1	970 + 15	щUр	659 + 46	[64]
	1.36 ± 0.2	Гэв	7530 ± 20	[64]
	2,36		578 ⁺	[04] [50]
	2,46		566+	[73] [50]
	2 56		550+	[ec]
	2,66		551+	[22] [so]
	2,00		2011 520 ⁺	[59]
	2,10			[20] [50]
	2,00 2,00		504 507	[29]
	5, 00		517 500't	الرسا
	3, 10		503 1051	[تانن]
	3,26		4951	[:0]
	3,36		493'	[:::]
	3,46		483	[56]
	3,56		477	[29]
	3,66		453+	[29]

 $b \in \mathcal{J}$

.

1	2	3	4
	3,86	451 ⁺	[59]
	3,96	446+	[59]
	4,06	439+	[59]
	4.16	430+	[59]
	4.2	826 ± 42	[166]
	4.26	424+	[59]
	4.36	418+	[59]
	4.46	406+	[59]
	4.56	404+	[59]
	4.66	395+	[59]
	4.76	390+	[59]
	4.86	380+	[59]
	5-06	370+	[59]
	5,16	367+	59
	5-26	357*	[59]
	5-36	350+	[59]
	2,20		<u>[]</u>
$\mathfrak{A}^+ + \mathfrak{A} \mathfrak{I}^{27}$	442 + 8 МЭВ	782 ± 46	[47]
	2.16 Гэв	266+	[59]
	2.26	267+	[59]
	2.36	269 +	[59]
	2.46	270+	[59]
	2.56	271+	[59]
	2.66	273+	[59]
	2.76	273+	[59]
	2.76	274+	[59]
	2.86 ± 0.13	588 ± 22	[124.125]
	2,66	276+	[59]
	3,06	277+	[59]
	3,16	279+	[59]
	3,26	279+	[59]
	3,36	280+	[59]
	3,46	281+	[59]
	3,56	28 3 +	[59]
	3,66	283+	[59]
	3,76	2 84 ⁺	(59)
	3,86	285+	[59]
	3,96	28 6 +	[59]
	4,06	2 87 +	[59]
	4,16	28 8 +	[59]
	4,26	289+	[59]
	4,36	290+	[59]
	4,46	291+	[59]
	4,56	2 92 +	[59]
	4,66	292 +	(59)
-	4,76	293+	[59]

1	2		3	
	4.86		205+	[50]
	4,96		295+	[22]
	5.06 ·		296+	[50]
	5,16		296+	[59]
	5.26		297	[59]
	5.36		298+	[59]
	5,46		298+	[59]
	5,66		300+	[59]
	7,76		300+	[59]
	6,36		303+	[59]
	6,56		304+	[59]
	6,76		305+	[59]
¶ + Ca ⁴⁰ ,1	970 ± 15 1,36 ± 0,2	Мэв Гэв	908 ± 56 > 720 ± 30	[64] [64]
¶ − + cu ^{63,5}	85 4,2	Мәв Гәв	≫ 990 ± 15 1620 ± 118	[57] [166]
Ji ⁺ + cu ^{63,5}	442 ± 8	Мәв	1683 ± 205	[47]
	2,86 ± 0,.3	Гав	1235 +70 -35	[124,125]
T + Ca ^{112,4}	85	Мэв	> 1590 ± 70	[57]
Ji+ + Ca ^{112,4}	442 ± 8	мэв	2428 ± 530	[47]
π ⁻ + Pb ²⁰⁷ ,2	85	Мэв	2400 ± 110	[57]
	1,36 ± 0,2	Гәв	2100 ± 100	[64]

х) Приведенное значение не является чисто экспериментальной величиной; оно получено с помощью оптической модели для параметров, подобранных по экспериментальному дифференциальному сечению $C \delta_{el}(\Theta)$.

+) В работе^[59] указаны лищь относительные значения сечений. Приведенные в данной таблице сечения получены нормировкой данных работы^[59] на значения, вычисленные с помощью оптической модели для параметров, наилучшим образом согласующихся с другими известными экспериментальными данными.

Tao	лица	V

Сечения упругих и неупругих взаимодействий

Л – мезонов

Взаимо- цействие	T	Jol [NO]	(Jin [110]	Литература
I	2	3	4	5
<u> </u>		30.10	E0 . 00	[وم]
JI + He	00 ± 8 ± 05	37 ± 12	$\frac{1}{2} \pm \frac{2}{2}$	[84]
	153 + 9	74 ± 14 95 ± 8.4	171 ± 12	[44]
	230 + 30	51 ± 19	99 + 12	[101]
	273 + 7	75 + 9	145 + 15	[111,113]
	330 + 6	47 + 5	103 ± 12	í111. 112. 113
	446 + 12	31.5 + 4	83 ± 3.5	[56] ×)
	630 ± 13	24.5 + 3.5	91.9 ± 3	[56] ×)
	710 ± 13	23 ± 3	97 ± 3	[56] ^{×)}
	760 ± 13	$29 \pm 3,5$	$94,3 \pm 3$	[56] ×)
	829 ± 14	25 ± 3	$101,3 \pm 3$	[56] ×)
	884 ± 14	32 ± 3	$100,5 \pm 3$	[56] ×)
	958 ± 14	35 ± 3	$98,6 \pm 0,0$	[56] ×)
	1,16 ± 0,0 ₁ 5 Гав	36 ± 4	94,5 ± 4	[56] ×)
¶ ⁺ + не ⁴	50 ± 20 Мазв		40 ± 2	[30]
ĴĨ¯+ Ве ⁹	140 ± 7 M9B	287 ± 38	273 ± 20	[100,101]
-	350 ± 7	218 ± 27	150 ± 16	[100,101]
	970 ± 15	76 ± 15	197 ± 9	[64]
	4,2 Гэв	125 ± 18	177 ± 9	[166]
Л ⁺ + ве ⁹	442 ± 8 Man	128 ± 27	238 ± 20	[47]
	2,66 ± 0,13 Гав	41,5 ± 3,5	192 ± 8	[124 ,2 5]
¶ + c ¹²	216 ± 7 ₩3B	316 ± 31	350 ± 24	[100,101]
	230 ± 30		307 ± 37	[74]
	256 ± 7	221 ± 39	326 ± 31	[100,101]
	290 ± 7	233 ± 32	269 ± 26	[100,101]
	350 ± 7		166 ± 21	[100,101]
	600 ± 9	70 ± 16	216 ± 10	[64]
	800 ± 12	99 ± 19	238 ± 12	[64]
	915 ± 25	89 ± 12	294 ± 18	[1]
	970 ± 15	78 ± 21	252 ± 13	[64]
	1,200 ± 0,019 T9B	105 ± 22	246 ± 14	[64]
	1,51 +0,18 -0,25		240 ± 14	[35]
	4,2	167 ± 22	219 <u>+</u> 8	[166]

1	2	3	4	5
¶ ⁺ + c ¹²	442 .: 8 Мэв	128 ± 26	238 ± 20	[47]
	2,86 ± 0,13	66,6 ± 7	213 ± 8	[124,125]
	4,60 ± 0,15		182 ± 8	[118]
9 + A1 ²⁷	970 at 15 M9B	217 + 41	442 + 20	[64]
,	4,2 Гэв	356 ± 41	470 ± 10	[166]
97++ A127	442 . o Mar	300 . 30	410 . 05	 [4]
д · А1	2 96 1 0 13 Par	$\frac{5}{2} \pm \frac{5}{14}$	410 ± 25	[47] [204 205]
	2,00 ± 0,10 -02	-10	⁴²⁸ –12	[124,125]
	4,60 ± 0,15		344 ± 13	[118]
$\pi^{-} + c_{a^{40}},$	1 970 ± 15 Мэв	290 ± 60	618 ± 27	[64]
¶ + 5e ⁵⁵ ,	⁹ 1,51 + 0,18 Гэв		705 ± 37	[35]
¶ ⁶³	⁵ , 5 Far	005 . 03	805 05	[n (c)
<i>y</i> . + cu	4,2 ••• 5.96	897 ± 95	720 ± 20	[166]
	2,000		$6/5 \pm 50$	[137]
	14 16:		010 ± 50	[127]
+ 63	5		0/2 ± 40	[171]
$\pi' + Cu'''$	442 ± 8 ₩Эв	997 ± 175	686 ± 106	[47]
	2,86 :: 0,13Гэв	445 + 60 - 23	790 + 41 - 26	[124, 125
	4,60 :: 0,15	- 29	689 ± 33	[118]
T + ca ¹¹²	^{,4} 5,86 Гэв		1230 ± 50	[137]
	11,16		1120 ± 80	[137]
	16,66		1240 ± 70	[137]
M⁺ + ca ¹¹²	, ⁴ 442 ± 8 Гэв	1674 ± 330	754 ± 200	[47]
π^+ sn ¹¹⁸	970 ± 15 ₩88		1199 ± 52	[64]
M⁺ + Sn ¹¹⁸	^{,7} 4,60 ± 0,15 Гэв		1241 ± 190	[118]
π + Pb ²⁰⁷	² 216 ± 7 Мав		2356 ± 152	[100,101]
	250 ± 30		2153 ± 194	[74]
	256 ± 7		2430 ± 183	[100,101]
	290 ± 7		2313 ± 175	[100,101]
	970 ± 15		1690 ± 100	[64]
	1,51 + 0,18 -),25 Гэв		1600 ± 95	[35]
	5,86		1610 ± 80	[137]
	11,16		1830 ± 130	[137]
	16,166		1700 ± 120	[137]
π ⁺ + Pb ²⁰⁷ ,	[∠] 4,60 ± 0,15 Γ∂Β		1912 ± 161	[118]

к таблице ІУ.

ίο

Таблица_ 🗸

Сечения взаимодействия антипротонов с атомными ядрами

(IIII)	T	⊘ ₄[₩0]	$\mathcal{O}_{in}[MO]$	Gt[MQ]	Литература
I	2	3	4	5	6
ве9					6
	430 ± 30 MBB	-	-	50)	[55]
	500 ± 25			484 ± 60	[63]
• •	700 ± 35			425 ± 50	[63]
C ¹²	106 ± 32МЭв	345 ± 60	474 ± 76^{-x}	819 ± 97^{x}	[2]
	169 ± 31	255 ± 45	360 ± 65^{x}	615 ± 79^{-x}	[2]
	300 ± 15	87 ± 232	568 ± 102	655 ± 130	[63]
	470		368 ± 60^{-1}		[89]
63 5	700 ± 35	221 ± 98	436 ± 19	65 7 ± 7 9	[63]
Cu ^{oj} ,	455 ± 40 Мэв			250)	[55]
Эмульсия	40 ± 30 Mar		1083 ± 225		[7]
	55 ± 15		259 + 250 - 138		[54]
	72 ± 43		$634 + 112^{x}$		[81]
	85 ± 15		674 + 244 - 218		[54]
	11o ± 40		553 + 74		[7]
	120 ± 80		716		[53]
	125 ± 25		868 ± 138		[54]
	140 ± 25		$604 + 100^{x}$		[81]
	140 ± 100		$1030 + 304^{-1}$		[19]
	175 ± 25		587 ± 93		[54]
	182 ± 18		507 <mark>+</mark> 97 - 70		[81]
	192 ± 43		624 ± 62		[7]
	212 ± 12		704 + 140		[81]
	215 ± 15		845 + 422		[54]
	238 ± 12		604 + 142		[81]
+ Эмульсия	140 ± 100Мэв		1600 ± 400		[19]
•	150 + 80	530 ± 70	1210 ± 64	1740 ± 97	[6]
	2,2 <u>Г</u> эн	_	740 ± 23		[22]
Ph207,2	650 + 33 Man		2330 ± 285		631

x)

Приведенное значение является сечением лишь аннигиляционных процессов и не включает вклада других неупругих каналов.

+) В сечения не включен вклад взаимодействий с водородом фотозмульсии.

		Таблица	1	VII	
Полное	сечение	взаимодействия	K	+_	мезонов

Ядро ——————————	Т		Õ _t [мб]	Литература
c ¹²	190 ± 30	Эв	110 ± 10	[18]
	374 ± 4		171 ± 6.3	[53]
	467 ± 4		177,9 ± 5,4	[53]
	537 ± 5		187,1 ± 5,2	[53]
	594 ± 5		188,4 ± 4,9	[53]
	697 ± 6		195,4 ± 4,7	[53]
	794 ± 6		201,8 ± 4,3	[53]
	890 ± 7		202,2 ± 4,7	[53]
	998 ± 8		202,6 ± 4,5	[53]
	1,146 ± 8],ЭВ	202,7 ± 4,4	[53]
	1,626 ± 11		195,6 ± 4,2	[53]
	2,107 ± 14		$188,0 \pm 4,2$	[53]
а1 ^{27}	190 ± 30	1 9B	280 ± 20	[81]
Cu ^{63,5}	190 ± 30	∿эв	650 ± 40	[81]
ьсия +)	75 ± 25	∦ эв	673 ± 81	[76]
	130 ± 20		496 ± 59	[76]
Ag ^{107,9}	190 ± 30	Мэв	720 ± 50	โลป
Pb ²⁰⁷ ,2	190 ± 30	Мэв	1450 ± 100	ໂສ.]

+) В сечения не включен вклад взаимодействий с водородом фотоэмульсии.

Таблица VIII

Сечения веупругого взаимодействия К⁺ - мезонов

Ядро	T		б _{іп} [иб]	Лит ера ту ра	
c ¹² Al ²⁷ Cu ⁶³ ,5	4,60 ± 0,15 4,60 ± 0,15 4,60 ± 0,15	Гэв Гэв Гэв	136 ± 21 254 ± 33 430 ± 120	[118] [118] [118]	
Эмульсия	54 + 20 - 25 75 ± 45 94 ± 25	Мэв	156 + 45 - 28 - 28 - 133 + 27 - 19 - 19 - 98 + 30 - 20	[165] [115] [165]	
	$125 \pm 25 \\ 140 + 50 \\ - 40 \\ 175 \pm 25 \\ 225 \pm 25 \\ 270 \pm 30 \\ 275 \pm 75 \\ \end{bmatrix}$		303 ± 65 $181 + 30$ 269 ± 50 319 ± 50 $249 + 27$ $- 22$ 230 ± 25 $222 \pm 24 \times 3$	[69] [165] [69] [69] [106] [94]	
⊖мульсия +	$40 \pm 20 \\ 50 \pm 10 \\ 70 \pm 10 \\ 75 \pm 25 \\ 80 \pm 20 \\ 90 \pm 10 \\ 120 \pm 20 \\ 130 \pm 20 \\ 135 \pm 25 \\ 155 \pm 15 \\ 160 \pm 20 \\ 180 \pm 10 \\ 198 \pm 8 \\ 200 \pm 20 \\ 212 \pm 6$	Мэв	$178 + 44 81 \pm 15 405 \pm 75 \times 140 \pm 19 389 \pm 47 \times 155 \pm 23 218 \pm 30 238 \pm 23 425 \pm 42 \times 277 \pm 29 235 \pm 30 278 \pm 22 420 \pm 32 \times 336 \pm 56 277 \pm 29 353 \pm 50 480 \pm 75 426 \pm 120 458 \pm 68$	[116] [93, 95] [16] [116] [93, 95] [116] [16] [93, 95] [150] [116] [150] [150] [150] [116] [150]	

+) В сечение не включен вклад взаимодействий с водородом фотозмульсии.

	Τ	<i>6</i> t [⊻σ]	Литература
L2	326 ± 3 Мэв	306,0 ± 10,7	[45]
	442 ± 4	338,2 ± 9,4	[45]
	514 ± 4	351,5 ± 8,4	[45]
	615 ± 5	352,9 ± 8,2	[45]
	780 ± 6	324,7 ± 7,2	[45]
	908 ± 7	303,9 ± 7,1	[45]
	1,029 ± 8 ^{ГЭВ}	287,9 ± 5,6	[45]
	1,378 ± 10	272,0 ± 4,8	[45]
	1,619 ± 11	262,7 ± 4,8	[45]
	1,867 ± 12	257,8 ± 4,7	[45]
	2,114 ± 14	252,7 ± 4,7	[45]
	2,158 ± 14	251,7 ± 5,2	[45]

<u>Таблица Iv</u> Полные сечения взаимодействий К - мезонов

Ядро	T	Gin [MG]	Литература
Эмульсия	55 ± 5 M 65 ± 15	3B 427 ± 70 $634 + \overline{86}^{54}$ -68	[4] [4]
	65 ± 15	469 + 59 - 47	[121]
	95 ± 15 125 ± 15	$\begin{array}{r} 422 + 47 \\ 431 + 38 \\ - 40 \end{array}$	[121] [121]
	270 ± 3 0	418 ± 35	[106]
Эмульсия +)	40 ± 10 M	Эв 1100 ± 100	[7]
	60 ± 10 75 ± 5	920 ± 70 570 ± 100	(27 (27]
	75 ± 5	570 ± 100	[27]

+) С унстом поправки на кулоновежое оттелкивание.

В заимо- действие	Т (на нуклон)		6 _{in} [NO]	Лигература
$t + c^{12}$	105 N9B		519 ± 100	[130]
$a + c^{12}$	60 Мэв		640 ± 100	[130]
$t + Al^{27}$	105 Mab		910 ± 150	[130]
$t + Cu^{0,j}$	105 Mam		1800 ± 300	[130]
$oc + Cu^{o3}$	60 Мэв		1800 ± 300	[130]
оС+ эмульсия	42,5 ± 10	M 318	2100 🛦 700	[87]
	52,5 ± 10		1500 🛓 500	[87]
	88 + 8		634 + 60 - 50	[143]
	95		689 + 33	[169]
	6 Гэв		618 + 74 - 60	[164]
	6		643 + 80 - 70	[151]
	8		689 +190 -123	[98]
	10		643 + 90 - 70	[122]
	12		724 ± 45	[8]
	20		627 + 58 - 50	[122]
	40		700+100	[12 2]
	166		469 + 164 - 97	[123]
	300		434 ± 115	[67]
	500		491 ± 218	[146]
	3,10 ³		373 + 36 - 48	[42,43,80]
<u>I</u> + Эмульсия	≻0,3 Гав		783 + 360	[134]
	>1,55		805 + 84	[52]
	>1,55		941 + 126	[83,145]
	> 7		939 + 153 - 115	[122]
СР + эмульсия	70,3		810 + 90 - 74	[124]
	> 1,55		936 + 64 - 56	52]
	> 1,55		935 + 74 - 64	[83, 145]
	>7		970 + 76 - 65	125]
С Т + Эмульсия	>1 , 55		1312^{+} 120 - 100	[8 3, 145]

Таблица хі Сечения неупругого взаимодействия двух ядер

	_				
I	2		3	4	
T + эмульсия	>0,3	Гэв	1 323 +200 -154	[134]	
	>1,55		1136 +120 100	[52]	
	>7		1093 +125 -100	[122]	
ОТ + эмульсия	1,55 <	Êаз	1556 +255 -192	[83 ,145]	
	>7		1360 +395 -250	[122]	
$t + Ta^{181}$	105	ИЭв	3500 ± 500	[130]	
\propto + Ta ^{1B1}	60	N ətr	3600 ± 500	[130]	
t + U ^{238,1}	105	Изв	4400 ± 700	[130]	

i
Таблица УЦ

Сечения взаимодействия дейтронов с атомными ядрами

Адро	Т ,на нуклон)	б _{ев} [иб]	б _{st} [мб]	∂ _α [Μσ]	∂ _{in} [∞σ]	(ў _t [мб]	Литература
Be ⁹	80 Мэв	-	330+30	185 +19	512+25	-	[130]
c ^{l2}	₈₀ Мэв		430 + 40	237 + 24	667 + 33		[120]
	325	131 + 15	161 + 8	185 + 12	346 + 9	456 + 8	[79]
	325	110 + 11		185 + 5			[103]
A1 ²⁷	80 Мэв		530 + 50	465 + 47	996 + 50		[130]
	325	287 + 19		345 + 5			[103]
	325			490 + 40		1600 +17 0	[28]
	1,05+0,10 [°] ЭІ	3	290+72				[114]
Cu ⁶³ ,5	80 Мэв		910+1 90	850+90	1 760+ 170		[130]
	325			665 + 10			[103]
	1,05+0,10°j	3	550+13 7				[1 14]
Cd ^{ll2} ,	4 325 Мэв			1009+15			[103]
181							6
Tator	80 M3B				3130+300		[130]
гъ ²⁰⁷ ,	² 80		1630+250	1810+180	344 0+17 0		[130]
	325			1483+25			[103]
	1,05 .0 10 Гэ н	3	950+237				[114]
			JJ 0 + L J				(·]
B1 ²⁰⁹	80 MI3B				355 0+1 80		[130]
_Ū ²³⁸ ,1	80 № Эв		1750+250	20 6 0+200	3810+150		[130]