Ж-944 объединенный институт ядерных исследований

AABODATOPHS TEOPETHUEKKON

Дубна

C 324.3

Phys. Lett., 1967, V. 25B, NS, p. 34-343

P2 - 3385

31/11-67

В.И. Журавлев, В.А. Мещеряков, К.В. Рерих, А.Н. Тавхелидзе

дисперсионные правила сумм и п N-рассеяние при высоких энергиях

1967,

P2 - 3385

В.И. Журавлев, В.А. Мещеряков, К.В. Рерих, А.Н. Тавхелидзе

дисперсионные правила сумм и πN -рассеяние при высоких энергиях

52 15/1 mp.

В последнее время появилось большое число работ по дисперсионным правилам сумм (далее д.п.с.)^{/1/}. Д.п.с. являются следствием аналитичности, кроссинг-симметрии и определенных предположений о поведении амплитуды при высоких энергиях. Для амплитуд ^f(ν,t), удовлетворяющих условию

$$\left| f(\nu, t) \right| < \frac{1}{\left| \nu \right|^{1+\epsilon}} \quad \nu \to \infty , \epsilon > 0 , \qquad (1)$$

имеют место так называемые "сверхсходящиеся д.п.с." /2/:

$$\int_{-\infty}^{+\infty} \operatorname{Im} f(\nu, t) d\nu = 0.$$
(2)

Обычно д.п.с. (2) получают из двух дисперсионных соотношений: для самой амплитуды f(v,t) и для vf(v,t). Но если условие (1) выполнено, тогда (2) есть просто следствие теоремы Коши, примененной к функции f(v,t), аналитические свойства которой известны. Для получения различных правил сумм более удобно исходить из теоремы Коши (а не интегральной формулы Коши). Действительно, формула (2) имеет смысл только для антисимметричных амплитуд. Для симметричных амплитуд f(v,t) можно получить д.п.с., применяя теорему Коши к функции vf(v,t). Однако при этом ухудшается сходимость интегралов. Если учесть пороговое поведение амплитуды, то сходимость можно улучшить, применив теорему Коши к функции $^{/3/}$

3

$$\frac{\nu \cdot f(\nu, t)}{\nu^2 - \nu_0^2}$$

При этом просто получаются все известные д.п.с. для длин рассеяния⁴⁴. Аналогичным образом можно получить правила сумм Вандерса⁵⁵. Применение теоремы Коши к функции

$$\frac{f(\nu, t)}{\sqrt{\nu^2 - \nu_0^2}}$$

дает д.п.с. для реальной части амплитуды /6/

Для амплитуд, не удовлетьоряющих условию (1), можно получать д.п.с., применяя теорему Коши по коптуру конечного радиуса А. Такие д.п.с. были предложены А.А.Логуновым, Л.Д.Соловьевым и А.Н.Тавхелидзе /7/ и дают возможность определить параметры высокоэнергетического рассеяния. Отметим некоторую аналогию этих д.п.с. с д.п.с. для длин рассеяния. Последние получаются при учёте поведения амплитуды в окрестности порогов $\nu = \pm \nu_0$. Для получения соотношений на параметры высокоэнергетического рассеяния нужна информация о поведения амплитуды в окрестности бесконечно удаленной точки, которую дает, например, модель полюсов Редже.

Цель этой заметки - получить некоторые соотношения для параметров ^π N -рассеяния при высоких энергиях и сравнить их с имеющимися экспериментальными данными.

Далее используются обозначения работы /4/ . Из инвариантных амплитуд (±) (±) (±) (±) (±) удобно образовать комбинации

$$\begin{pmatrix} (\pm) \\ G \\ (\nu, t) = A \\ (\nu, t) + \nu B \\ (\nu, t)$$

Для рассеяния вперед (t = 0):

Im G (+) $(\nu, t) = \frac{k}{2} (\sigma_{-} (\nu) + \sigma_{+} (\nu)).$

Здесь ν и t-инвариантные переменные, $\nu = \omega + \frac{t}{4M}$, ω и k-энергия и импульс π -мезона в лабораторной системе, М-масса протона, σ_{-} и σ_{+} -полные сечения π^{-} р и π^{+} р -рассеяния, соответственно. G (ν, t) --чётная. G (ν, t) -нечётная функции ν при t = const. Ниже все соотношения приведены в натуральной системе единиц (h = μ = c = 1).

В качестве модели π N -рассеяния при высоких энергиях примем модель Редже с тремя полюсами: двумя вакуумными и ρ -полюсом. Вклад каждого полюса в амплитуды G (ν ,t) и B(ν ,t) имеет вид $^{/8/}$:

$$G_{i} = -C_{i} \left(\frac{\exp(-i\pi\alpha_{i}) + 1}{\sin\pi\alpha_{i}} \right) \left(\frac{\omega}{\omega_{0}} \right)^{\alpha_{i}}$$
(3)

$$B_{i} = -d_{i} \left(\frac{\exp\left(-i\pi a_{i}\right) + 1}{\sin\pi a_{i}} \right) \left(\frac{\omega}{\omega_{0}} \right)^{a_{i}-1}.$$
(4)

 $B^{/7/}$ было получено два д.п.с., связывающих параметры C_i и a_i с интегралами от полных сечений. Представляет интерес получить д.п.с., которые позволяли бы учесть новую по сравнению с полными сечениями информацию о π N -рассеянии и проверить, насколько она согласуется с анализом на основе модели полюсов Редже.

Для этого установим д.п.с. для реальных частей амплитуд πN -рассеяния $\beta/\delta/$. Применяя теорему Коши к функциям $\frac{G^{(-)}(\omega)}{\sqrt{\omega^2 - 1}}$ я $\frac{\omega G^{(+)}(\omega)}{\sqrt{\omega^2 - 1}}$ по контуру конечного радиуса А, получим:

$$-4\pi^{2}f^{2}\frac{1}{\sqrt{1-\frac{1}{4M^{2}}}} + \int_{1}^{A}\frac{\operatorname{Re}G^{(-)}(\omega)}{\sqrt{\omega^{2}-1}}d\omega = \frac{C\rho}{a\rho}\left(\frac{A}{\omega_{0}}\right)^{a}t_{g}\frac{\pi a\rho}{2}$$
(5)

$$\frac{2\pi^{2}}{M} = \frac{1}{\sqrt{1-\frac{1}{4M^{2}}}} + \int_{1}^{A} \frac{\omega \operatorname{Re} G^{(+)}(\omega)}{\sqrt{\omega^{2}-1}} d\omega = -\sum_{p,p} C_{1} \frac{A}{a_{1}+1} (\frac{A}{\omega_{0}})^{a_{1}} \operatorname{ctg} \frac{\pi a_{1}}{2} (6)$$

Здесь

$$\operatorname{Re} G \stackrel{(+)}{=} (\omega) = \frac{4 \pi W}{M} (D_{b_{-}} + D_{b_{+}})$$

W -полная энергия системы центра масс,

D_b -реальные части амплитуд упругого *п*р-рассеяния в системе центра ± масс.

Д.п.с. (5) вместе с ранее полученным соотношением /7/:

$$-8\pi^{2} f^{2} + \int_{1}^{A} k (\sigma_{-}(\omega) - \sigma_{+}(\omega)) d\omega = \frac{2C_{\rho}}{a_{\rho} + 1} (\frac{A}{\omega_{0}})^{a} \rho_{A}$$
(7)

позволяют определить $a_{\rho} = C_{\rho}$ по экспериментальным данным в области низких и средних энергий. Из д.п.с. (6) можно определить C_{ρ} , если принять эначения $a_{\rho} = 1$, $a_{\rho} = 0.5 \pm 0.02$, которые следуют из анализа πN -рассеяния при высоких энергиях ($\omega > 6$ Гэв)^{/8/}. Результаты приведены в таблице при различном выборе обрезания $A^{X/}$

А Гэв	8	5	7	10	15	20	25	
α ρ	0,514	0,468	0,465	0,470	0,490	0,5	0,51	
C ρ	2,04	2,65	2,69	2,97	2,86	2,91	2,88	
C ρ	8,94	11,4	12,56	13,21	13,84	13,86	13,88	

Д.п.с. (7) анализировалось в работе $^{/9/}$, а интегралы от реальных частей вычислялись по данным $^{/10/}$. Анализ π N -рассеяния при высоких энергиях ($\omega > 6$ Гэв) дает: $a_{\rho} = 0.54 \pm 0.02$, C $_{\rho} = 2.7 \pm 0.3$ мбарн, C $_{p} = 17.7 \pm 0.1$ мбарн $^{/8/}$. Величина C $_{p'}$, полученная из (6), ниже реджевского значения. Одной из причин этого расхождения может быть различный выбор фазы кулоновского и ядерного рассеяния, что существенно в области высоких энергий. Результаты, приведенные в таблице, соответствуют фазе, полученной в работе Соловьева $^{/12/}$. Реджевский анализ проводился с фазой, полученной

х/Ошибки в параметрах а , С и С , связанные с ошибками в сечениях и реальных частях, могут составлять 15-20%.

Бете ^{/13/}. Как показано в ^{/12/}, различный выбор фазы приводит к существенно разным значениям реальных частей при высоких энергиях, причем хорошее согласие с дисперсионными соотношениями получается при выборе фазы Соловьева. Если провести реджевский анализ с учётом фазы Соловьева, согласие с нашими анализом должно улучшиться.

Параметры d₁ можно определить, записав д.п.с. для амплитуд В^(±)(ν, t). Однако мы не можем проанализировать их, т.к. в настоящее время фазоый анализ *п* N -рассеяния проведен только до = 1 Гэв. Довольно грубый анализ д.п.с. этого типа приведен в^{/3/}.

В заключение отметим, что выведенные здесь д.п.с. полезны при анализе рассеяния в области высоких энергий. Они явным образом учитывают информацию о низких и средних энергиях и позволяют проверить согласованность этой информации с моделью рассеяния при высоких энергиях.

Литература

- В.А.Матвеев, Л.Д.Соловьев, Б.В.Струминский, А.Н.Тавхелидзе, В.П.Шелест. Препринт ОИЯИ Р2-3318, Дубиа, 1967. И.И.Орлов, Д.В.Широков, Препринт ТФ-2, Новосибирск, 1967.
- 2. L.D.Soloviev. Препрант ОИЯИ Е-2343, Дубна 1966. ЯФ, <u>3</u>, 188 (1966).
- 3. В.И.Журавлев, В.А.Мещеряков, К.В.Рерих. Препринт ОИЯИ Р2-3383, Дубна 1967.
- 4. J.Hamilton and W.S.Woolcock. Rev. Mod. Phys., 35, 737 (1963).
- 5. G.Wanders. Helv. Phys. Acta 39, 228 (1966).
- 6. W.Gilbert. Phys. Rev., 108, 1078 (1957).
- 7. A.A.Logunov, L.D.Soloviev, A.N.Tavkhelidze. Phys. Lett. 24 B, 181 (1967).
 - В.Г.Кадышевский, Р.М.Мир-Касимов, А.Н.Тавхелидзе. Препринт ОИЯИ Р2-3198, Дубна 1967.
- 8. P.J.N.Phillips and W. Rarita. Phys. Rev., <u>139 B</u>, 1336 (1965).

К.А.Тер-Мартиросян, Препринт ИТЭФ № 499, Москва 1967.

9. В.И.Журавлев, К.В.Рерих, Препринт ОИЯИ Р2-3081, Дубна 1966.

7

- 10. В.С.Барашенков. Препринт ОИЯИ Р-2582, Дубна 1966. G.Hohler, G.Ebel, I.Gusecke. Zs.F.Phys., 180, 430 (1964).
- S.J.Lindenbaum. "Coral Gables Conference on Symmetry Principles at High Energies ", 1967.
- 12. Л.Д.Соловьев. ЖЭТФ, 49, 292 (1965).
- 13. II.A.Bethe. Ann.Phys., (N.Y.) 3, 140(1958).

Рукопись поступила в издательский отдел 13 июня 1967 года.

Примечание при корректуре

В связи с найденным разногласием в определении параметра C_p , из (6) интересно заметить следующее: если мы используем значение α_p , = 0,69 ± 0,01 (J.J.G.Scano, Phys.Rev., <u>152</u>, 1337 (1968)),мы получим C_p , ~18 мбарн. Это значение C_p , находится в хорошем согласии с анализом¹⁸ и показывает, что наше правило сумм (6) чувствительно к параметрам р'-полюса.