К-758 Объединенный институт ядерных исследований

C 3438

Дубна

DETHUE

1967.

P2 - 3201

В.И. Кочкин, О.В. Ложкин, Н.С. Мальцева, В.М. Мальцев, Ю.П. Яковлев

99,1968, T. 9, NI, C. 31-36 11/1.67

КИНЕМАТИЧЕСКИЕ ХАРАКТЕРИСТИКИ ОСТАТОЧНЫХ ЯДЕР В КАСКАДНОМ ПРОЦЕССЕ ПРИ ЭНЕРГИИ ПРОТОНОВ 660 Мэв

11.

P2 - 3201

В.И. Кочкин, О.В. Ложкин*, Н.С. Мальцева, В.М. Мальцев, Ю.П. Яковлев*

КИНЕМАТИЧЕСКИЕ ХАРАКТЕРИСТИКИ ОСТАТОЧНЫХ ЯДЕР В КАСКАДНОМ ПРОЦЕССЕ ПРИ ЭНЕРГИИ ПРОТОНОВ 660 МЭВ

11.

Направлено в ЯФ

х) Радиевый институт им. В.Г. Хлопина.

Colore and a terrary magnetic matrix remain ENREMANTERA

В работе рассчитаны угловые и энергетические распределения различных групп (по $Z \equiv U_{BOSG}$) остаточных ядер после завершения каскадного процесса в ядрах V, Br, Ag, Au, Bi и Th при энергии падающих протонов 660 Мэв. Хотя подобного рода данные нельзя непосредственно проверить экспериментально, выделение их казалось целесообразным в связи с вопросами, поставленными при изучении явления фрагментации (см., например, ¹¹). В настоящее время при описании явления фрагментации (см., например, ¹¹). В настоящее время при описании явления фрагментации в рамках статистической модели недостаточное внимание уделяется тому факту, что возбужденные ядра имеют широкие распределения по основным характеристикам (A, Z , U , \vec{v}) и используются трехпараметрическая модель (T_{code} , V_{addb} , v_{11}).

В силу известных трудностей расчета энергетических спектров фрагментов, образующихся на стадии распада возбужденного ядра (см., например, ^{/2/}), желательно иметь исходные кинематические распределения остаточных ядер после завершения каскадного процесса и использовать их для оценок влияния этих распределений на энергетические и угловые распределения фрагментов и на различные корреляции в лабораторной системе координат.

При этом вследствие сильной зависимости сечений испарения частиц от энергии возбуждения особый интерес приобретает группа сильновозбужденных остаточных ядер, обладающих к тому же большими импульсами.

Выделение в расчете каскадного процесса кинематических характеристик остаточных ядер позволяет получить величины средних значений продольной и перпендикулярной составляющих скорости возбужденных ядер и сопоставить их с величинами, используемыми в трехпараметрической модели.

Схема расчета внутриядерного каскада была подобной использованной в

работе^{/3/}, а программа, составленная для вычислительной машины М-20, позволяла получать одновременно двойные дифференциальные распределения как каскадных нуклонов (как в работе^{/4/}), так и остаточных ядер.

В расчете использовались следующие энергии обрезания для нейтронов (E_n) и протонов (E_n) в каскадном процессе:

	V 23	Br 80	Ag 108 47	Au 79	Ei 83	Th 232 90
Е _п , Мэв	38,6	37,6	37,8	36,5	36,4	37,0
Е р, Мэв	45,4	46,2	48,7	51,5	51,9	58,0

Полученные в работе данные по остаточным ядрам представлены в таблицах в виде двойных дифференциальных распределений по величинам скорости v и по сов d для различных групп ядер по заряду Z и энергии возбуждения U. Такое представление данных дает возможность использовать их как входные данные для расчета кинематических характеристик частип, образующихся при распаде возбужденных ядер и для расчета угловых корреляций частип, обусловленных движением испаряющего ядра, для проверки гипотез о механизме образования расшеплений с фрагментами ^{/5/}.

Для иллюстрации закономерностей, характеризующих остаточные ядра после завершения каскадного процесса, на рис. 1-4 показаны некоторые зависимости, извлеченные из таблиц.

При интерпретации явления фрагментации в рамках статистической модели определяющим фактором является плотность уровней возбужденного ядра, которая в области высоких энергий возбуждения аппроксимируется выражением ρ(u)= const exp 2√аAU, где A - атомный вес, a - константа, равная примерно 0,1. Поэтому, чтобы характеризовать остаточные ядра с различными A, в качестве параметра было взято отношение U/A. Рис. 1 показывает распределение остаточных ядер по величине U/A при облучении мишений из V, Ag и Th. На рис. 2 и 3 показаны угловые распределения и распределения по скоростям остаточных ядер, характеризуемых параметрем U/A ≥ 1, т.е. тех остаточных ядер, которые

могут дать наибольший вклад в процессе испарения сложных частип. На рис. 4 приведены зависимости продольной и перпендикулярной компонент скорости для той же группы остаточных ядер в зависимости от атомного номера мишени. Примечательно постоянство величины \bar{v}_{11} в большой области атомных весов ядер мишеней. Эта величина $\bar{v}_{11} \approx 0,002$ с может быть сопоставлена с хорошо известной величиной переносной скорости v = 0,013 - 0,015, которая используется в трехпараметрической модели для описания угловых распределений фрагментов Li⁸ (см., например, $^{/1,2/}$). Это сравнение показывает, что и третий параметр данной модели не имеет физического содержания, подобно параметрам T_{addh} и V_{addh} .

Полученные в расчете кинематические характеристики остаточных ядер после каскадного процесса можно в известной мере проверить сопоставлением с экспериментальными данными по ядрам отдачи в процессе расшепления ядер Ag Br протонами 660 Мэв. На рис. 5 и 6 приведены экспериментальные пробеговое и угловое распределения ядер отдачи при расшеплении ядер Ag Br протонами 660 Мэв⁶⁷. Для сравнения на тех же рисунках показаны расчетные распределения для остаточных ядер из Ag c U > 80 Мэв, а в случае углового распределения еще и с ограничением по скорости v ≥ 8 · 10⁻³ с. Это необходимо для лучшего сопоставления с экспериментальными данными, которые получены для многолучевых расшеплений и при наличии нижней границы наблюдавшихся импульсов ядер отдачи ≥ 500 Мэв/с (пробег ≥ 1 мк). Для расчета пробегового распределения остаточных ядер использовалось соотношение пробегэнергия для Ag и Br , полученное в работе⁷⁷⁷. Для сравнения с экспериментальным угловым распределением ядер отдачи рассчитанное угловое распределение было трансформировано в распределение по углам в проекции.

Из рис. 5 можно сделать вывод о достаточно удовлетворительном совпадении расчета с экспериментом, если учесть следующие факторы: пропуск треков ядер-отдачи с R ≤ 1 мк в эксперименте, наличие ядер-отдачи от расшепления Вr, влияние испарения частиц на энергетический спектр остаточных ядер, которое увеличивает их среднюю кинетическую энергию^{/8/}. В то же время расчетное угловое распределение остаточных ядер существенно отличается от углового распределения ядер отдачи (рис. 6), особенно в пределах передней полусферы, хотя отношения F/B для расчетного распределения оказалось близким к экспе-

риментальному (2,1 и 3,1±0,5 соответственно). Как известно, расчет каскадного процесса с учетом отражения нуклонов от границы ядра^{/9/} приводит к более анизотропному угловому распределению (F/B ≈ 30) и к более мягкому энергетическому спектру остаточных ядер, чем и в эксперименте (рис. 5 и 6), и в то же время к большей энергии возбуждения, чем в нашем расчете, хотя, казалось бы, в данном случае рассчитывается более реальная картина. Таким образом, возникает нопрос о причинах расхождений расчетных и экспериментальных угловых распределений остаточных ядер.

Потребуется, по-видимому, варьирование в расчете каскадного процесса ряда параметров, чтобы понять происхождение данных различий.

Литература

- 1. О.В. Ложкин, Н.А. Перфилов. Сб. "Ядерная Химия", стр. 96, М. 1965.
- В.В. Авдейчиков, Е.Л. Григорьев, О.В. Ложкин, Ю.П. Яковлев. Препринт ОИЯИ Р-2093, Дубна 1965.
- 3. V.S. Barashenkov, V.M. Maltsev, E.K. Mikhul Nucl. Phys., 24, 642 (1961).
- 4. В.И. Кочкин, О.В. Ложкин, Н.С. Мальцева, В.М. Мальцев, Ю.П. Яковлев. Препринт ОИЯИ Р-1713, Дубна 1964.
- 5. С.А. Азимов, П.А. Горичев, Р. Каримова, О.В. Ложкин. Изв. АН Узб. ССР, № 2, 50 (1964).
- В.И. Остроумов. ЖЭТФ 32, 3 (1957).
- 7. В.А. Кузьмин, В.И. Остроумов. ПТЭ, № 4, 49 (1965).
- 8. Ф.П. Денисов, В.П. Милованов, Р.А. Латышева, П.А. Черенков. ЯФ <u>2</u>, 1042 (1965).

Рукопись поступила в издательский отдел 6 марта 1967 г.

Пояснение к таблицам

U - энергия возбуждения остаточных ядер.

v - величина скорости остаточного ядра.

θ - угол относительно падающего протона.

∆Z- изменение заряда ядра мишени.

N_p - число протонов в расчете.

N - число ядерных взаимодействий данного числа протонов.

К - общее число каскадных нуклонов на данное число взаимодействий.

00

0,2+-0,2

-0,2 + -0,6

-0,6 +-I,0

I

I

I

2 2 0 0

IO 0 0

0 2

0 3

З

3

2

7 3

4 5

5 6

N_p =4762; N 45 =3258

N = 15782

									3 Z =	0 w 1					Nie	=1578	32									
v (10 ⁻⁹ c)		0 ÷	6			T		(5 + I2		1			12 +	18				18 + 2	24			>	24		
U, KeV Cos 0	020	20-40	40-60	60-30	> 80	0-20	20-40	40-60	60-90	> 80	0-20	20-40	140-60	60-80	> 80	0-20	20-40	40-60	60-80	> 80	0-20	20-40	40-60	60-80	× 80	t - en ar balle
0 +8,6	30	17	6	4	З	I	2 7	14	8	12	2	6	II	5	I 6	3	0	4	6	II	I	I	7	4	II	
0,6+0,2	29	IIO	24	8	I	8	62	35	22	I2	60	37	36	25	20	36	25	22	8	24	II	II	12	9	I	F
0,2-0,2	78	26	8	2	4	101	103	29	25	13	157	79	41	34	23	89	63	34	20	17	29	32	25	19	26	5
-0,2-0,6	28	21	5	6	0	II	77	52	20	9	42	4I	20	I4	14	I 4	13	13	IO	IO	0	5	5	0	4	F.
-0,6 :- I,0	48	23	ľĨ	5	2	2	3 19	II	14	3	9	8	5	5	3	0	2	4	2	5	2	0	0	2	1	
	L						Δ.	2 = 2	2 4 3		Jan											d		L		
v(10 ⁻³ C)					0:+6				6+ I2	2		T		I2+1	8			1	8+24				>	24		
Cost	U, MeV		020	20-40	40-60	60-80	> 80		20-40	19-11	60-80	> 80	20-40	40-60	60-80	> 80	0-20	20-40	40-60	60-80	~ 80	0-20	20-4	40-60	60-80	× 80
I • 0,6			0	I	0	0	I	0	II		0	3	0 0	I	2	5	0	4	5	2	4	0	2	2	0	4
0,6 + 0,	,2		0	I	0	0	0	0	4 3		3	2	I 6	5	3	5	2	6	9	2	IO	I	II	17	IO	22

6 **I**6 8 8

6 2 5

9

4

14

З 0

? 2

0

5 **I**4

I

0

IO

3

2 10

10

5 I5

0 0

0 2 2 2 6

0

15 9 16

4

I

∆z =4 и 5 - 28 саучеев; ∆z ≥ 6 - 0 саучеев

2 4

4

I 2 6 7 З I I

8 7

V 52 29

	80		
Br	35		

47-0

=II29 =5842

Np	=1426	;	N 63
			N

۰.	~	_	-		
	6	-	υ.		

♥(10 ⁻³ C)		0+4					44	8					8+12				I	2+16				>	16		
U, MeV Cos Ø	0+-0	40-80	80-I20	I20-I60	> 160	0+-0	40-80	80-I20	120-160	> 160	0++-0	40-80	80-I20	I20-I60	> 160	0+-0	40-80	80-I20	I20-I60	> 160	0-4-0	40-80	80-I20	I20-160	>160
I +0,6	16	5	3	0	I	4	8	5	8	0	I	3	З	З	6	I	2	4	2	0	0	I	0	0	6
0,6 + 0,2	22	27	4	0	I	26	19	15	15	4	20	8	17	IO	9	13	15	6	I	2	4	8	13	5	II
0,2+-0,2	34	4	I	0	3	3I	27	16	З	6	35	27	I4	8	4	37	28	II	9	8	5	12	?	2	4
-0,2 +-0,6	IO	7	З	I	0	3I	19	12	2	0	16	6	З	8	I	4	IO	8	4	5	0	I	8	0	3
-0,6 +-I,0	8	7	5	0	0	6	4	I	З	0	0	5	2	I	3	0	I	3	I	I	0	0	0	0	0

. Az = 2 H 3

8

v(10 ⁻⁹ C)			0:4					4+8				8	+12				I2-	16				-	> 16		
U, Μεν Cos θ	0++-0	40-80	80-120	I20-160	> I60	0+1-0	40-80	80-I20	I20-160	> 160	0+-0	40-80	80-I20	I20-160	> 160	04-0	40-80	80-120	I20-160	> 160	0+-0	40-80	80-12	I20-160	> I60
I + 0.6	I	I	0	0	0	I	I	0	0	0	0	0	0	0	0	0	0	0	0	I	I	0	I	2	8
0,6 + 0,	2 0	0	0	0	0	0	З	I	0	I	0	8	θ	0	0	0	2	I	0	I	0	9	I	3	6
0,2 +-0,	2 1	0	0	0	0	0	I	3	I	I	0	2	2	0	8	I	2	3	2	0	I	4	2	2	5
-0,2 +-0,	6 0	0	0	I	0	0	3	З	I	I	З	7	I	I	3	I	2	0	0	5	0	I	2	I	2
-0,6 +-I,	0 0	0	0	0	0	0	0	2	2	2	I	2	I	I	3	0	0	0	I	0	0	0	I	I	0

Az-4 и 5° - IO случаев; AZ>6 - О случаев

.

Ag 108

AZ = 0

N, =6809; ^N ¢_b =5284 ^N K =30096

v (10 ⁻⁸ .C)		0+4			t drock proving		4+8		and the set of the set	and the stangation		84	-I2				1)-1- (manual) (M	12.176	Nor 1.1 alertic also being		p			Phase in subscription per	lana aminar a me
U, Nev	0+7-0	08-04	80-I20	I20-I60	> 160	0-40	40-80	80-I20	I20-I60	> 160	0+-0	40-80	80-I20	I20-I60	> 160	0+-0	40-80	80-I20	20-I60	> 160	0+0	40-80	>16 071-08	[20-160	> 160
I + 0,6 0,6+ 0,2 0,2+ 0,2 -0,2+-0,6 -0,6+-I,0	60 286 193 68 72	17 130 31 34 14	I I9 I4 II I	I 2 5 I 3	2 0 2 0	I3 I33 2I3 I33 I9	83 136 47 14	12 31 33 14 5	6 13 16 2 0	2 3 0 4 4	I 52 I66 20 0	II 53 69 I0 I0	7 42 31 17 4	IO 22 II 4 0	I IO I O O	0 I0 I0 3 0	10 31 18 5 0	8 19 20 4	0 9 I 0 I	0 12 0 0	0 2 0 0 0	0 5 0 0	0 7 I I	I 0 0 0	B I S O

 $\Delta Z = 1$

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	v(10 ⁻³ .C))	· · · · · · · ·	+ · · · · ·	0+4	*/				4+8		and the party of the party of	T	8-	12	an a		1	12	+16			1		<i>c</i>		
I + 0,6 38 II 6 I 0 I0 18 I0 4 5 I2 I8 5 4 I 0 8 6 4 I 0 2 I 0 0 0,6 + 0,2 43 30 .8 4 0 68 5I 23 I4 4 46 40 31 9 8 I2 38 I4 I0 22 I 0 2 I 0 0 0,2 + -0,2 42 I4 8 8 I50 48 27 I0 8 I47 70 44 7 6 27 32 I8 4 6 0 4 6 44 7 6 27 32 I8 4 6 0 4 4 4 1 10 10 10 12 11 10 12 18 14 70 44 7 6 27 32 18 4 6 0 0 0 0 0	U, MeV Cos O	0+0	40-80	80-I20	I20-I60	> 160	0+-0	40-80	80-I20	I20-I60	> I60	04-0	40-80	80-I20	I20-160	> 160	04-0	40-80	80-120	120-160	> 160	0+0	10-90	80-I20	20-I60	0914
0,6 + 0,2 43 30 .3 4 0 68 51 23 14 4 46 40 31 9 8 12 83 14 10 10 2 1 0 2 1 0 </td <td>I + 0,6</td> <td>38</td> <td>II</td> <td>6</td> <td>I</td> <td>0</td> <td>IO</td> <td>IS</td> <td>IO</td> <td>4</td> <td>5</td> <td>IZ</td> <td>IS</td> <td>5</td> <td>4</td> <td>T</td> <td>0</td> <td>8</td> <td>1-</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>H</td> <td>1-</td>	I + 0,6	38	II	6	I	0	IO	IS	IO	4	5	IZ	IS	5	4	T	0	8	1-			-			H	1-
0,2 -0,2 42 I4 8 8 I50 48 27 I0 8 I47 70 44 7 6 27 32 18 4 6 0 4 6 4 0 -0,2 -0,6 32 I3 2 0 I 99 87 I5 I I 20 38 3 2 I 0	0,6 + 0,2	43	30	. 3	4	0	68	51	23	14	4	46	40	31	9	8	IZ	38	IA	TO	TO	2	2	I	0	0
-0,6 * -I,0 47 I3 I 2 I 3I I9 I5 6 4 0 9 0 3 0 0 0 I 0 0 0 0 0 0 0	0,2 + -0,2	82	14	8	8	8	150	48	27	IO	8	147	70	44	7	6	27	32	18	4	6	0		14	-	1
	-0.6 + -1.0	47	13	2	0	I	99	87	15	I	I	20	38	3	2	I	0	4	0	0	0	0	0	0	0	0
			10	-	4	1	81	19	15	6	4	0	9	0	3	0	0	0	I	0	0	0	0	0	0	0

4.4	108
AR.	47

 $\Delta Z = 2$

v (IO-8.C)			0+4			-	448						8+12				1	12+16				>	16		
U, MeV Cos Ø	04-0	4080	80-120	I20-I60	> I60	04-0	40-80	80-I20	I20-I60	> 160	0-40	40-80	80-120	I 20-160	> 160	0+-0	40-80	80-120	I 20-160	> 160	0-40	40-80	80-I20	I 20-160	> 160
I + 0,6	0	I	7	0	0	0	0	IS	8	2	2	I	6	5	8	4	I	2	I	4	0	3	2	4	3
0,6 + 0,2	3	4	IO	0	I	7	IS	3	0	3	17	28	16	8	8	21	IO	15	4	I	4	IO	IO	3	II
0,2 +-0,2	0	5	2	0	0	18	20	9	5	8	28	33	5	7	3	II	II	7	4	3	8	2	I	4	0
-0,2+-0,6	7	I	9	4	0	20	14	13	6	0	7	16	7	0	0	7	2	5	8	0	0	0	2	0	0
-0,6+-1,0	7	IO	4	0	I	12	9	2	I	6	2	IO	7	4	0	0	I	4	З	0	0	0	0	0	0

 ${}^{n}_{k}$

 $\Delta Z = 3$

v (10 ⁻⁸ .C)		0.	+4				4	+8					8+12					1241	6				> 16		
U, MeV Cos Ø	0++-0	4080	80-I20	I20-I60	> 160	0+0	40-80	80-I20	I20-160	> I60	0+0	40-80	80-I20	I20-I60	≫ 160	04-0	40-80	80-I20	I20-I60	> 160	04-0	40-80	80-I20	I20-I60	> 160
1+0,6	0	0	0	0	0	3	0	0	5	0	0	0	0	0	0	0	8	I	0	I	0	0	3	0	2
0,6+0,2	0	0	0	0	з	0	4	I	I	I	6	8	5	2	0	5	I	4	I	0	0	I	5	2	I
0-2-0,2	0	0	4	0	0	0	6	2	0	I	0	7	5	4	I	0	4	2	1 7	0	5	0	2	7	·I
-0,2-0,6	0	0	0	0	I	0	I	I	3	2	0	2	4	0	0	0	0	I	0	0	0	0	0	З	0
-0,6 +- I,0	0	0	0	8	0	3	I	0	0	0	I	0	2	I	I	0	0	0	0	0	0	0	0	0	0
1		-																			-				

Az - 4 - 30 случаев

Аг > 5 - О случев

=

∧z=0 HI

78

N = 2000; N = 1656 N_K =12120

												ha	5				6+8					>	8		
V (10 ⁻³ C)		(0÷2				2+	4	200		0-	100-	200-	300-	5400	0-	100-	200-	300-	>400	0- -T00	100-	200-	300-	400
U, MeV	-100	100- -200	200- -300	300	>400	-I00	-200	-300	-400	>400	-100	-200	-300	-400	700	-100	-200	-300	-400	0	3	IO	5	0	0
I+0.6	19	6	0	0	0	39	15	I	2	0	16	14	4	0	0	2	T4	4	0	0	SI	18	7	I	0
0,6 + 0,2	III	3	0	0	0	100	28	3	0	0	78	36	3	0	0	40	25	4	0	0	17	I	0	0	0
0,2+(-0,2)	51	8	0	0	0	ISI	27	I	0	0	28	8	3	0	0	9	7	2	0	0	I	0	0	0	0
(-0,2)+(-0,6)	54	5	0	0	0	93	20	2	0	0	12	5	0	0	0	2	0	0	0	0	0	I	0	0	0
(-0,6)+(-I,0)	34	I	0	0	0	25										1		1							

	~		•		-
Δ.	z	-	Ζ.	110	
	-		-		<u> </u>

													har					6+8	3				>	8			-
	V (10 ⁻³ C)		0	+2				2+4				0	440	200-	300-		0-	100-	200-	300-	400	0-	100-	200-	300- ;	+00	
	U, MeV	P-00	100-	200-	300-	2400	0- -I00	100-	-300	-400	+400	-100	-200	-300	-400	> 400	-100	-200	-300	-400	-	-100	-200	-000		10	-
2	Cos e	200		0	0	0	2	2	0	0	0	2	I	I	0	0	Ι	4	I	0	0	4	3	4	0	0	
	I + 0,6	3	1	0	т	0	TO	4	0	0	0	6	15	2	0	0	8	9	З	0	0	6	0	-	0	2	
	0,6 + 0,2	2	2	0	0	0	IO	3	0	0	0	6	8	4	0	0	7	II	0	0	0	2	4	T	0	0	
	0,2+(-0,2)		0	0	0	0	6	6	2	0	0	4	3	2	I	0	3	5	0	0	0	1	0	0	0	0	
	(-0,2)+(-0,6	1.	0	0	0	0	5	0	I	0	0	5	3	0	0	0	I	I	0	0	0	0	0	U			-
	(-0,6)+(-1,0	1°	0				1							-	-	1	1	-	1		-	-					

∆z =4 . и 5 - IO сжучаев ∆z≥6 - 0 случаев

.

Np= 2000; Nto= 1639 N_K= 11920

v .(10°.C)		0	+ 2	8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9			2	+4			Ι	4	6				6+8						> 8		
U, HeV Cos A	0- -50	50- -I00	100- -150	150- -200	>200	0- -50	50- -I00	100- -150	150- -200	200	0-	-100	100- -150	150- -200	200	0- -50	50- -I00	100- -150	150-	200	0- -50	-100	100- -150	150	200
I + 0,6	19	28	2	0	I	16	16	16	IO	6	I	5	6	4	9	0	I	IO	4	9	0	8	5	I	8
0,6+0,2	69	18	II	0	0	67	55	I 9	6	2	45	36	22	4	I	12	21	,IO	2	5	8	15	8	?	5
0,2+(-0,2)	55	6	I	0	3	IOI	60	12	I	I	6I	32	16	4	7	26	23	6	-14	6	0	I	0	4	0
(-0,2)(-0,6)	39	14	4	0	3	60	42	26	3	0	II	29	7	6	2	3	6	0	0	8	0	0	0	0	0
(-0,6)+(-I,0)	30	6	0	3	0	IO	14	5	0	0	I	2	13	0	0	0	0	0	0	0	0	0	0	0	0

Bi 209

∆z **=0 H I**

13

83

								$\Delta Z = 2$	a no																
v (10 ³ .C)	1	0+2	2			T		2+4			T	4+6	;				6+8					> 8	3		
U, NeV Cost	0	50- -I00	100- -150	150 -200	>200	0- -50	50- -I00	100- -150	150- -200	>200	0- -50	50- -100	100- -150	150- -200	>200	0- -50	-100	100- -150	150- -200	>200	0- -50	50- -I00	100-	I50 -20	200
I + 0,6	3	0	0	0	0	0	з	2	0	0	2	2	5	0	o	0	5	0	0	0	0	8	4	0	þ
0,6 + 0,2	0	0	0	0	0	5	I	0	0	2	з	I	5	2	3	6	4	II	9	0	0	0	8	3	0
0,2+(-0,2)	3	0	0	I	0	7	I	0	4	З	0	5	6	I	0	0	IO	7	0	I	I	0	0	8	0
(-0 _₹ 2)+(-0,6)	5	I	0	0	0	6	7	з	I	0	8	9	8	2	0	0	6	0	0	0	0	0	0	0	0
(-0,6) +(- I,0)	0	3	0	0	0	4	I	I	I	0	0	6	I	0	0	0	0	0	I	0	0	0	0	0	0
												1										1 1			1

Az-4 H 5 18 BT.

Az=6 # 7 3 #2. 0 mr. $\Delta Z \ge 8$

v (IO ⁻⁸ .C)			0+2				;	2+4				4+	6				6	+8				> 8			and a state
U, MeV Cos Ø	05-0	50-I00	100-I50	I50-200	> 200	020	50-I00	I00-I50	I50-200	> 200	020	50-I00	100-I50	I50-200	> 200	020	50-I00	05I-00I	I50-200	> 200	050	50-I00	I00-I50	I50-200	> 200
I + 0,6	25	28	19	9	2	0	40	23	II	9	2	4	7	13	7	0	6	7	2	3	0	I	з	I	13
0,6 + 0,2	172	63	12	6	I	82	73	54	28	IO	15	35	39	24	IO	14	20	7	II	12	7	7	I	7	0
0,2 +-0,2	94	32	15	I	I	138	108	ЗI	7	3	36	23	14	IS	7	8	18	6	I	6	6	6	0	0	0
-0,2 + -0,6	55	15	2	I	0	73	6	15	7	0	12	18	13	I	0	0	0	0	6	0	0	0	0	0	0
-0,6 + -I,0	25	IO	0	I	I	14	17	3	0	0	I	0	I	I	0	0	0	0	0	0	0	0	0	0	0

 $\Delta Z = 0$

 $\Delta Z = 1$

v (10 ⁻⁸ .C)			0+2				24	4					4++	5			6-	8				>	8		
U, MeV Cos 0	0-50	50-I00	I00-I50	I 50-200	> 200	050	50-I00	I00-I50	I50-200	> 200	050	50-100	I00-150	I50-200	> 200	0~20	50-100	I00-I5	I50-200	> 200	050	50-I00	I00-I50	I50-200	> 200
I + 0,6	I 4	¥2	15	0	0	12	26	20	I	I	8	2	0	0	IO	I	0	5	9	0	0	I	0	0	I
0,6 + 0,2	22	I	9	0	2	4I	30	23	З	0	60	15	16	4	3	6	8	18	4	0	I	3	I	IS	I
0,2 +-0,2	34	17	0	I	0	72	42	32	IO	2	32	28	9	4	5	19	5	12	З	12	I	7	2	0	I
-0,2 + -0,6	20	16	2	0	I	25	37	IO	17	II	2	15	IO	6	0	0	I	0	I	0	0	0	0	0	0
-0,6 + -I,0	23	7	2	0	0	19	5	8	0.	2	5	IO	I	0	I	0	0	0	0	0	0	0	0	I	0

Th 80

						Δ	Z = 2																		
v (IO ⁻⁸ .C)			0 +	2				2 ÷ 4				4 .	• 6				6 .	8				>	8		
U, MeV Cos B	050	50-I00	05I-00I	I50-200	> 200	05-0	1001-05	100-I50	I50-200	> 200	050	50-I00	I00-I50	I 50-200	>200	020	50-I00	100-IS0	I50-200	> 200	050	50-I00	100-150	I50-200	> 200
1 + 0,6 0,6 + 0,2 0,2 + -0,2 -0,2 + -0,6 -0,6 + -I,0	4 0 2 I I	0 2 6 1 12	2 0 0 1	0 0 6 0	I 0 I 0	8 10 8 7	0 I I4 2 9	8 0 8 10 13	I I 8 0 8	0 0 1 1	0 5 18 8 0	7 I II I5 0	0 4 1 18 0	2 6 2 8 I	0 I 7 6 0	0 0 0 0	0 I6 I 0 I	9 2 18 0 0	0 I I3 0 0	8 7 0 0	0 0 I 0 0	0 0 2 0	I 6 0 I 0	6 8 0 0	6 I 0 0 0

,	-		
¢	7	ı.	

14

v (10 ⁻⁸ .C)			0 ÷ 3	2				2 ‡	4				4 4	6				6 .	+ 8				> 8		the spectra was
U, HeV Con Ø	050	50-I00	I00-I50	I 50-200	> 200	0-50	50-I00	I00-I50	I50-200	> 200	0-50	50-I00	05I-00I	I50-200	> 200	0-50	50-I00	I00-I50	I50-200	> 200	020	50-I00	I00-I50	I50-200	> 200
I + 0,6 0,6+0,2	0	0	0	0 6	I O	0	0 7	0	2	0	0	7	0 I	0	0 I	0	I 6	2	7	0 I	0	0	07	I O	2
0,2 +-0,2	0	0	6	0	0	0	I	6	0	0	0	6	7	6	0	0	0	12	0	0	0	0	0	0	0
-0,2-0,6	0	0	0	0	0	0	0	0	I	I	0	0	0	I	0	0	6	I	0	0	0	0	0	0	0
-0,6 +- I,0	0	0	0	0	0	I	3	0	0	0	0	0	I	0	0	0	0	I	0	0	0	0	0	0	0
annaderen delaganer mengelikere oftale in 1961 - altere in de								1	L	!				1									_		

Ала-4 - 5 случаев;

 $\Delta Z = 3$

Рис. 1. Распределения остаточных ядер из V , Ag , Th в зависимости от величины U/A.

Рис. 2. Угловые распределения остаточных ядер при U/A $\gtrsim 1$ V (U> 60 Мэв), Ag (U> 120 Мэв), Th (U> 200 Мэв),

Рис. 3. Распределения остаточных ядер по скоростям при U/A \geq 1: V(U > 60 Мэв), Ag (U > 120 Мэв), Th (U > 200 Мэв).

Рис. 4. Зависимость продольной и перпендикулярной составляющей скорости остаточных ядер от атомного веса ядер-мишени при U/A >1: V(U>60 Мэв), Ag(U>120 Мэв), Au, Bi, Th (U>200 Мэв).

Рис. 5. Расчетное пробеговое распределение остаточных ядер из Ag при U > 80 Мэв (кривая) и экспериментальное пробеговое распределение ядер-отдачи из Ag Br (гистог рамма). Пунктирная кривая - пересчет результатов работы /8/.

Рис. 6. Расчетное угловое распределение остаточных ядер из Ag при U > 80 Мэв и v > 8.10⁻³ с (кривая) и экспериментальное угловое распределение ядер-отдачи из Ag Bt (гистограмма). Пунктирная кривая - пересчет результатов работы /8/.