

АБОРАТОРИЯ ТЕОРЕТИЧЕСКОЙ ФИЗИКИ

В.С. Барашенков, Г.М. Зиновьев, В.М. Мальцев

СТАТИСТИЧЕСКАЯ УНИТАРНО-СИММЕТРИЧНАЯ ТЕОРИЯ АННИГИЛЯЦИОННЫХ ПРОЦЕССОВ

P2 - 3001

В.С. Барашенков, Г.М. Зиновьев, В.М. Мальцев

СТАТИСТИЧЕСКАЯ УНИТАРНО-СИММЕТРИЧНАЯ ТЕОРИЯ АННИГИЛЯЦИОННЫХ ПРОЦЕССОВ

Направлено в ЯФ

4625 1 ng.

В настоящее время едва ли не единственной теорией, позволяющей рассчитывать множественное образование частиц при аннигиляционных процессах, является статистическая теория Ферми. При этом, как было показано многими авторами (см., например, работы $^{/1-4/}$, где приведена подробная библиография), согласие с экспериментом достигается лишь в том случае, если учитываются резонансные взаимодействия π -мезонов. Однако число возможных каналов аннигиляции в этом случае оказывается настолько большим, что вычисления становятся затруднительными даже при использовании электронно-счетных мащин.

Оказывается, что расчеты можно значительно упростить, если предположить унитарную симметрию взаимодействующих частиц. Выражение для статистического веса канала, в котором рождается в частиц, будет иметь вид

$$W_{n}(E_{0}; p, q) = V_{n}(E_{0}) M_{n}(E_{0}) - \frac{S_{n}}{G_{n}}U_{n}(p, q),$$

где V_n , M_n и S_n – соответственно, пространственный, энергетический и спиновый веса, а G_n – множитель, учитывающий тождественность рождающихся частип, все эти множители имеют в точности тот же вид, что и в обычной теории Ферми^{/1-4/} (E_0 – энергия сталкивающихся частиц). Множитель $U_n(p,q)$ – "унитарный вес" представляет собой число различных возможностей получить определенное SU₄ – представление (p,q), взяв прямое произведение всех синглетных n_1 , октетных n_8 и декуплетных n_{10} "частиц" конечного состояния. Для каждого парциального канала реакции вес $U_n(p,q)$ можно вычислить, применяя формулы работы^{/5/} к последовательному умножению пред-

ставлений

$$\underbrace{(3,0) \otimes \cdots \otimes (3,0)}_{n_{10}} \otimes \underbrace{(1,1) \otimes \cdots \otimes (1,1)}_{n_{2}} \otimes \underbrace{(0,0) \otimes \cdots \otimes (0,0)}_{n_{2}}.$$

Полученные таким образом значения для случая аннигиляции барионов (т.е. для N + N, N + Y , N : Y п Y : Y) приведены в таблице 1. Полиый статистический вес реакции получаем суммированием весов всех допустимых состояний (р,q), через которые идет реакция $W_{n}(E_{0}) = \sum_{(p,q)} k_{(p,q)}^{2}(I,I_{3},Y)W_{n}(E_{0};p,q),$

где $k_{(p,q)}(I,I_3,Y)$ - коэффициент Клебша-Гордона для искомого состояния (I,I_3,Y) в соответствующем представлении (p,q). Для практически наиболее важных случаев pp и пp - аннигиляций значения квадратов этих коэффициентов указаны в таблице II. . Статистические веса каналов, в которых рождаются частицы, принадлежащие к одному и тому же SU₃ -мультиплету, различаются в этом случае лишь квадратами соответствующих коэффициентов Клебша-Гордона.

Как и в общепринятой модели, чтобы получить правильную вероятность образования пар К -мезонов, в выражение для статистического веса каналов с К -мезонными парами следует ввести множитель λ^m , где m - число рождающихся пар К -мезонов, а величина постоянной λ подбирается из сравнения с экспериментом ^{/S/}. С точки зрения SU₃ -симметрии это можно рассматривать как введение некоего нарушения симметрии, приводящего к расщеплению эффективной постоянной связи.

В таблице III сравниваются теоретические и экспериментальные данные для случая аннигиляции остановившихся антипротонов в водороде. При вычислениях учитывались синглет ϕ -мезон, псевдоскалярный и векторный октеты мезонов. Для вероятностей различных типов распада мезонов η , ρ , ω и ϕ использовались известные экспериментальные значения.

Из таблицы вндно, что расчетные величины близки к экспериментальным, заметное расхождение наблюдается лишь для каналов с небольшим числом рождающихся частиц, особенно для двухчастичных каналов, где в ряде случаев вообще трудно говорить о каком-либо согласии эксперимента и теории. Для расчета таких каналов требуется какой-то более детальный подход, и этот вопрос пока остается открытым. Отметим, что в средние величины вклад каналов с небольшим числом невелик.

Приведенные в таблице III относительные вероятности вычислены при эначении постоянной $\lambda = 0,034$, определенном из условия, чтобы полная вероятность всех каналов с К -мезонами согласовалась с ее экспериментальным значением $W_k \approx 4,6\%$. Это значение λ в несколько раз меньше, чем соответствующая эффективная постоянная в выражении для статистического веса, не учитывающем унитарной симметрии $^{/3/}$.

Величина постоянной λ оказывается также несколько меньше, чем значение ее, определенное из сравнения с опытами по π⁺ p -взаимодействиям^{/7/}. Возможно, это обусловлено тем, что постоянная λ в случае аннигиляции и в случае πN -взаимодействий имеет различный физический смысл: в первом случае она характеризует рождение пар КК, во втором случае - образование пар YK. Впрочем, учитывая низкую точность данных по π[±] p - взаимодействиям, этому различию едва ли следует придавать сейчас серьезное значение.

В таблице IV приведены результаты для рр -аннигиляции, полученные в рамках модели кварков /8/, широко обсуждаемой в настоящее время в литературе /9/, а

4

также соответствующие экспериментальные результаты и результаты, полученные в нашей модели. Как видно, полученные нами результаты лучше согласуются с экспериментом.

В заключение авторам приятно выразить глубокую благодарность Д.И. Блохнипеву и Б.В. Струминскому за интересное обсуждение и ценные замечания.

Литература

- 1. V.S. Barashenkov, Fortschr. d. Phys. 9, 29 (1961).
- 2. MN Kretzschmar. Ann. Rev. of Nucl. Sci. 11, 1 (1961).
- 3. V.S. Barashenkov, V.M. Maltsev, Huang Tzu-chang, Acta Phys. Pol. 23, 765(1962).
- 4. С.З. Беленький, В.М. Максименко, Д.И. Никишов, И.Л. Розенталь. УФН, 62,1 (1957).
- 5. J.G. Kurijan, D. Lurie, A.J. Macfarlane, Journ. of Math. Phys. 6, 722 (1965).
- C. Baltay, N. Barash, P. Franzini, P. Franberger, nN. Gelfand, R. Goldberg, L. Kirsch, G. Lutjens, D. Miller, I.C. Severiens, I. Steinberger, T.H. Tan, D. Tycko, R. Plano, D. Zanello, P. Yaeger. Phys. Rev. 139, 1659 (1965); 140, 1039 (1965); 140, 1042 (1965); 145, 1095 (1966); 145, 1103 (1966).
- 7. V.S. Barashenkov, G.M. Zinovjev, V.M. Maltsev. Phys. Lett. (в печати). Препряят ОИЯИ Р-2956, Дубна 1966.
- 8. Z.R.Rubinstein, H.Stern, Physics Letters 21, 447 (1966).
- 9. Harte J., R.H. Socolow, J. Vandermeulen, Preprint CERN, 66/1109/B/TH, 697/P3 em.

Рукопись поступила в издательский отдел 31 октября 1966 г. Таблица І.

(P,4) N ₈	V, (0,0)	Vn(3,0)=Vn(0,3)	Un (1,1)	V. (2,2)	
2	I	I	2	I	
3	2	4	8	6	
4	8	20	32	33	
5	• 32	100	I45	180	
6	I45	525	702	999	
7	702	2856	3598	557 0	
8	3598	15834	19180	32284	
9	19180	90390	105910	173766	
10	105910	511179	585546	1088220	

Знитарный вес Un (F, Q).

Таблица II.

<u>Значения козффициента</u> $k^{2}_{(P,\Phi)}(J,J_{3},Y)$

представление (р,ф)		(0,0)	(I,I) _I	(1,1)2	(3,0)	(0,3)	(2,2)
PP	k ² (1=1,]=¥=0)	-	3/10	I/6	I/6	1/6	I/5
	k ² _(P,9) (J=J ₃ =Y=0)	I/4	I/ I0	I/2	-	-	3/20
np	k ² _(P,4) (1=1,1 ₃ =1,44)	-	3/10	I/6	I/6	I/6	I/5

 ${\mathfrak I}$, ${\mathfrak I}_{{\mathfrak z}}$, ${Y}$ – значения полного изотопического спина, его третьей

проекции и гиперзаряда

Таблица III.

	Теория	Эксперимент /6/
0 лучей *)	3,9	3,2 \pm 0,5
2 луча *)	50,4	42,6 \pm 1,1
4 луча *)	40,1	45,8 \pm 1,0
6 лучей *)	1,0	3,8 \pm 0,2
П	4,7	4,65 \pm 0,15
π+π-	I,25	0,32 ± 0,03
κ+κ	0,II	0,11 ± 0,01
π°ρ°	2,I	1,4 ± 0,2
η ρ°	3,2	0,22 ± 0,17
ωρ°	8,2	0,7 ± 0,3
π•π-π•	6,7	7,8 應 0,9
π•π-9•	2,4	5,8 ± 0,3
π•π-ω	3,0	3,8 ± 0,4
π•π-η	2,5	I,2 ± 0,3
π+π+ π- π-	5,0	5,8 ± 0,3
π•π+π+π-π-	I6,6	18,7 ± 0,9
3π+ 3π- π•	∡I	1,6 ± 0,3

Распределение по лучам и вероятность некоторых каналов РР -аннигиляции в покое (в процентах)

ж) Без учета пар K -мезонов.

Таблица ІУ.

Распределения по числу заряженных частиц, вычисленные в модели кварков /9/, в унитарно-симметричной статистической модели и наблюдаемые экспериментальные значения /6/.

	I	2	3	4	5	6	7	8
	О дучей	π+π-	π⁺ π∙ π°	π⁺ Ͳ⁻ Χ°	2π+2π-	2 π+2π •	2π+2 π -x°	6 лучей
кварки (%)	12,9	0,0	7,4	22,3	25,6	28,5	3,I	0,1
Эксперимент (%)	3,2 ± 0,5	0,5 ± 0,I	?,3±0,9	34,8 ± I,2	5,8±0,3	18,7±0,9	2I,3 [±] I,I	3,8±0,2
Унитарно - симметричная статистиче - ская модель (%)	3,9	1,25	6,7	42,4	5,0	16,8	18,3	I