

Объединенный институт ядерных исследований дубна

1793 2.

21/4-80 P2 - 13018

В.С.Барашенков, Ф.Г.Жереги, Ж.Ж.Мусульманбеков

КАСКАДНАЯ МОДЕЛЬ НЕУПРУГИХ ВЗАИМОДЕЙСТВИЙ а-частиц с ядрами

Направлено в "Zeitschrift für Physik A"

*Кишиневский государственный университет

Если не считать специфического /"вырожденного"/ случая дейтрон-ядерных реакций, то взаимодействие *a*-частицы с атомным ядром представляет собой простейший пример, на котором можно опробовать различные модели, описывающие неупругие столкновения ядер. Этому способствует значительная экспериментальная информация, накопленная в последние годы для *a*-частиц с энергией несколько ГэВ/нуклон и широкого диапазона ядер-мишеней ^{/1.10/}. Интерес к *a*-ядерным взаимодействиям стимулируется также необходимостью радиационной защиты от космического излучения и воздействием этого излучения на биологические объекты *.

В работах $^{/11-18/}$ было показано, что основную часть амплитуды упругого а -ядерного взаимодействия можно представить в виде суперпозиции амплитуд, описывающих взаимодействие а -частицы как целого с отдельными нуклонами ядра-мишени. Существенно упрощая расчеты, такой подход позволяет достаточно хорошо описать не только интегральные, но и дифференциальные экспериментальные сечения. В применении к неупругим а -ядерным взаимодействиям этот подход рассматривался в работе $^{/14/}$,где удалось получить лучшее согласие с экспериментом, чем в более грубых моделях $^{/15,16/}$,рассматривавших налетающий ион гелия как совокупность несвязанных между собой четырех нуклонов и, что особенно важно, не учитывавших уменьшения плотности ядра-мишени в результате выбивания каскадными частицами ее нуклонов.

Однако рассмотренные в работе $^{/14/}$ вопросы были ограничены областью энергий $T = 50 \div 200$ МэВ/нуклон, где в то время были известны ускорительные и космические экспериментальные данные. Расчеты для больших энергий в рамках приближений, использованных в этой работе, имеют лишь ориентировочный характер и обнаруживают значительные количественные расхождения с экспериментом. Причина этого состоит, в частности, в том, что из-за недостатка экспериментальных сведений об α -нуклонных взаимодействиях не были учтены некоторые каналы α -N – реакции с пионообразованием, пренебрегалось каналами с дейтронной фрагментацией α -частицы, вследствие недоста-

* Мы благодарны А.И.Вихрову, Ю.Г.Григорьеву и В.Е.Дудкину за обсуждения этих вопросов.

точно точных кинематических аппроксимаций в каналах с образованием фрагментов t и ³Не иногда получалась отрицательной энергия возбуждения ядра-остатка и т.д.

Нашей целью является распространить модель на область энергий T_a -нескольких ГэВ/нуклон и проанализировать применимость механизма внутриядерных каскадов к *а*-ядерным взаимодействиям в этой области энергий*. Ядро-мишень мы будем рассматривать как ферми-газ нуклонов, плотность которого $\rho(\mathbf{r})$ для очень легких ядер, лития и углерода, описывается распределением осцилляторной модели, а для более тяжелых ядер – распределением Вудса-Саксона с параметрами, найденными в опытах с рассеянием быстрых электронов. При расчете каждого *а*-ядерного столкновения координаты всех внутриядерных нуклонов разыгрываются методом Монте-Карло и заносятся в блок памяти ЭВМ /19/.

Первичная а-частица может испытать упругое или неупругое столкновение с одним из нуклонов ядра-мишени внутри цилиндра с осью вдоль направления ее движения и радиусом $\mathbf{r}_{eff} = = \mathbf{r}_0 + \mathbf{r}_1 + \lambda$, где $\mathbf{r}_0 \stackrel{\sim}{=} 1,3\cdot 10^{-13}$ см - эффективный радиус сильного взаимодействия, \mathbf{r}_1 - параметр, учитывающий радиус а - частицы, λ - длина ее дебройлевской волны.

Для определения упругого и неупругого сечений a-N -взаимодействия $\sigma_{e\ell}$ и σ_{in} используем аппроксимационные кривые работы ²⁰. Вероятности каналов фрагментации $a+N \rightarrow a+...,$ ³He+...,t+...,d+...,p+... определим на основе экспериментальных данных, приведенных в работах ⁵,²¹, ²² / <u>рис.</u> 1/. Так же, как и в предыдущей работе^{/14/}, будем предполагать, что неупругое a-N -взаимодействие осуществляется путем однократного N-N -столкновения, происходящего внутри a-частицы. В каждом таком столкновении должен учитываться как фермиевский импульс нуклона ядра-мишени P_{T} , так и импульс нуклона P_{a} , входящего в состав a-частицы. Модуль P_{T} разыгрывается по известному фермиевскому распределению с граничным импульсом

 $P_{F}(r) = c \rho(r)^{1/3}$,

* Изучение пион и нуклон-ядерных взаимодействий приводит к выводу, что в области энергий, больших 20-30 ГэВ, а в тяжелых ядрах уже при $T \geq 10$ ГэВ, необходимо дальнейшее усовершенствование модели, чтобы можно было более точно учитывать временную координату в процессе развития каскада и вклад многочастичных взаимодействий, когда с одним внутриядерным нуклоном одновременно взаимодействуют сразу несколько каскадных частиц $^{/17,18/}$.

Рис. 1. Сечения инклюзивных a-N-реакций в системе покоя a-частицы. Кривые a, b, c, d, f относятся соответственно к каналам $a+N \rightarrow a+..., {}^{3}$ Не+..., t+..., d+..., 4N+....

где г – точка расположения нуклона, с – нормировочная постоянная $^{/28/}$; модуль P_{α} разыгрывается соответственно распределению

 $W(P) \sim P^2 \exp(-P^2/P_0^2)$,

где $P_0 = 140$ МэВ/с - постоянная, определенная из условия наилучшего согласия с экспериментальными данными работы $^{/5/*}$ Рассчитанное таким образом импульсное распределение нуклонов, входящих в состав α -частицы, показано на рис. 2. Угловое распределение этих нуклонов является изотропным.

Характеристики вторичных частиц в N-N -столкновении внутри движущейся α -частицы будем рассчитывать с учетом законов сохранения заряда, энергии и импульса тем же способом, что и для взаимодействий каскадных частиц внутри ядра-мишени /подробнее см. об этом в книге ^{/20/}/. Импульсы фрагментов и характеристики не испытавших столкновения нуклонов в каналах с полным расщеплением α -частицы определим с учетом законов сохранения для системы α +N. Представление о соотношении вероятностей каналов и степени согласия полученных указанным выше способом данных с экспериментом дает <u>табл. 1</u>, где в качестве примера рассматриваются данные для T_{α} = 1,34 ГэВ/нуклон **.

* В работе^{/5/} измерен спектр ядра ³Не в реакции *a* + p → → ³Не+p+n.В импульсном приближении /спектаторная модель/ этот спектр совпадает с импульсным распределением нуклона внутри *a*-частицы /в системе ее покоя/.

** Здесь и далее везде T_a - энергия a -частицы в лабораторной системе координат.

				Таблица	a 1			
Сечения	каналов	a +	p	-реакции	при Та=	1.	34	ГэВ/нуклон

Канал	О /мб/*								
d+p->	нет Л°	π °	270						
dp	35	-							
3 He d	(36 ± 3)	(I.06 ± 0.18)	0						
	0,7	0	0						
³ He pr	7,5 (II,0±0,5)	4,3	0,6						
"He 2pgr-	4,2	0,3							
3 He 2n7+	2,3	0,4	0						
3Hepn Tto-	0,8	0,2	0						
t2p	I2,2 (II,5 ± 0,5)	2,6	0,25						
tpn n+	II,4	I,I	0						
±2pπ+π-	0,6	0	0 -						
+ 2n 211+	0,3	0	0						
depn	10,7	3,5	0,4						
d 3pg-	3,0	0,2	0						
dp2nst+	6,4	0,8	0						
d2pn J+J-	I,0	0	. 0						
3p2n	10,6	4,3	0,4						
4pnor-	3,0	0,3	0						
2p3n 11+	6,I	0,8	0						
3p2n11+1-	0,9	0	0						

* В скобках указаны экспериментальные данные работы /5/.

Аналогичным образом рассчитываются взаимодействия в ядремишени фрагментов d,t и ³He. Постоянная г₁ в выражении для радиуса цилиндра взаимодействия определяется при этом экспериментальными радиусами ядра d ,t и ⁸Не.Считается, что каждое неупругое взаимодействие этих ядер с нуклоном ядрамишени приводит к их полному расщеплению.

Остальные детали расчетов /в частности, способ розыгрыша каскадных *n*-N и N-N-взаимодействий/такие же, как в работах /19,20/

Для сравнения с результатами каскадных расчетов мы будем использовать экспериментальные данные при наибольшей достигнутой в настоящее время энергии a-частиц $T_a =$ = 3,64 ГэВ/нуклон. Эти данные получены с помощью стримерной камеры в магнитном поле⁷⁵⁻⁹⁷ и в разностных опытах со стандартной и обогащенной легкими ядрами фотоэмульсией ¹⁻³⁷.

Рис. 2. Распределение импульса нуклона внутри *а*-частицы. Гистограмма - расчетные, точки - экспериментальные данные ^{/5/}.

где была выделена информация для групп ядер (C,N,O) и (Ag, Br) со средними массовыми числами $A_L = 14$ и $A_H = 102*$. При расчетах будем учитывать соответствующие критерии отбора событий, использовавшиеся в экспериментальных работах.

В табл. 2 приведены сечения взаимодействия *а*-частиц с различными ядрами. В пределах статистических ощибок результаты каскадных расчетов достаточно хорошо согласуются

5

^{*} Среднее массовое число в ядер с массовыми числами ${\rm A}_{\rm i}$ и неупругими сечениями $\sigma_{\rm in,i}$

0	C.	Gin /M6/								
ядро	Каскад Глаубер		Опыт							
Li	· 30I+15	320	315+20 [7]							
С	455 <u>+</u> 17	472	4I0 <u>+</u> 25 [2] 450 <u>+</u> 30 [7]							
0	540+20	568	500 <u>+</u> 30 [2]							
AL	746 <u>+</u> 20	793	720+25 [7]							
Сц	1200 <u>+</u> 50	1390	II50 <u>+</u> 60 [7]							
Br	1350 <u>+</u> 50	I505	I570 <u>+</u> 60 [2]							
Ag	1560 <u>+</u> 50	1835	1910 <u>+</u> 70 [2]							
PЬ	2200 <u>+</u> I00	2600	2400+170[7]							

Таблица 2

взаимодействий

Сечения неупругих а-ядерных

с экспериментом. Для сравнения в таблице указаны сечения, рассчитанные с помощью модели Глаубера 12 .Эти сечения также близки к экспериментальным данным, однако систематически завышены по сравнению с каскадным расчетом: приблизительно на 5% в случае ядер $Li \div Al$ и на 15-20% в случае тяжелых ядер.

В работах $^{2,9/}$ из полного сечения неупругого *а*-ядерного взаимодействия были выделены сечения фрагментации *а*-частицы. Эти сечения с расчетными данными приведены на <u>рис.</u> 3 и в <u>табл.</u> 3. Эксперимент и теория хорошо согласуются между собой. На <u>рис.</u> 3 приведено также сечение неупругих каналов *a* + A → *a* + ..., которые в работе $^{9/}$ были подавлены системой триггера. Оно значительно меньше сечений других фрагментационных каналов, особенно в случае тяжелых ядер, и практически не зависит от массового числа мишени A.

В табл. 4 и 5 сравниваются расчетная и экспериментальная средняя множественность вторичных частиц различных типов*. риментальными радиусами ядра d ,t и ⁸Не.Считается, что каждое неупругое взаимодействие этих ядер с нуклоном ядрамишени приводит к их полному расщеплению.

Остальные детали расчетов /в частности, способ розыгрыша каскадных и-N и N-N-взаимодействий/такие же, как в работах /19,20/

Для сравнения с результатами каскадных расчетов мы будем использовать экспериментальные данные при наибольшей достигнутой в настоящее время энергии a-частиц $T_a =$ = 3,64 ГэВ/нуклон. Эти данные получены с помощью стримерной камеры в магнитном поле⁷⁵⁻⁹⁷ и в разностных опытах со стандартной и обогащенной легкими ядрами фотоэмульсией ¹⁻³⁷,

Рис. 2. Распределение импульса нуклона внутри *а*-частицы. Гистограмма - расчетные, точки - экспериментальные данные ^{/5/}.

где была выделена информация для групп ядер (C,N,O) и (Ag, Br) со средними массовыми числами $A_L = 14$ и $A_H = 102*$. При расчетах будем учитывать соответствующие критерии отбора событий, использовавшиеся в экспериментальных работах.

В табл. 2 приведены сечения взаимодействия а-частиц с различными ядрами. В пределах статистических ощибок результаты каскадных расчетов достаточно хорошо согласуются

^{*} Среднее массовое число ${\tt n}$ ядер с массовыми числами ${\tt A}_{i}$ и неупругими сечениями $\sigma_{{\tt in},{\tt i}}$

^{*} При интерпретации фотоэмульсионных данных мы будем использовать стандартную классификацию частиц, применяемую в фотоэмульсионных экспериментах /подробнее см., напр.,^{/20/}/. в' -частицы - это та часть s-частиц, которая остается после отделения однозарядных фрагментов *a*-частицы.

Таблица 3

		Таблица 2	
Сечения	неупругих	а-ядерных	взаимодействий

gapo.								
лдро	Каскад	Глаубер	Опыт					
Li	· 30I+15	320	315+20 [7]					
С	455 <u>+</u> 17	472	4I0 <u>+</u> 25 [2] 450 <u>+</u> 30 [7]					
0	540+20	568	500 <u>+</u> 30 [2]					
Al	746+20	793	720+25 [7]					
Cu	1200 <u>+</u> 50	1390	II50±60 [7]					
Br	1350 <u>+</u> 50	1505	I570 <u>+</u> 60 [2]					
Ag	1560 <u>+</u> 50	I835	1910 <u>+</u> 70 [2]					
РЬ	2200 <u>+</u> 100	2600	2400+170[7]					

с экспериментом. Для сравнения в таблице указаны сечения, рассчитанные с помощью модели Глаубера $^{/12}$.Эти сечения также близки к экспериментальным данным, однако систематически завышены по сравнению с каскадным расчетом: приблизительно на 5% в случае ядер $Li \div Al$ и на 15-20% в случае тяжелых ядер.

В работах $^{(2,9)'}$ из полного сечения неупругого a-ядерного взаимодействия были выделены сечения фрагментации a-частицы. Эти сечения с расчетными данными приведены на рис. 3 и в табл. 3. Эксперимент и теория хорошо согласуются между собой. На рис. 3 приведено также сечение неупругих каналов $a + A \rightarrow a + ...$, которые в работе $^{(9)'}$ были подавлены системой триггера. Оно значительно меньше сечений других фрагментационных каналов, особенно в случае тяжелых ядер, и практически не зависит от массового числа мишени А.

В табл. 4 и 5 сравниваются расчетная и экспериментальная средняя множественность вторичных частиц различных типов*, Сечения образования однозарядных (p, d, t) и двухзарядных (8 He, a) фрагментов в фотоэмульсии под действием a-частиц с энергией 3,64 ГэВ/нуклон /в мб/. Отобраны релятивистские фрагменты, вылетающие под углами $\theta_{\rm лаб.} \leq 3^{\circ}$.

Ядро-	Z = 1		Z = 2		
мишень	Теория	0пыт /2/	Теория	0пыт /2	
C, 0	263+25	203+52	51+8	37+12	
Ag, Br	705+45	570+160	98+25	130+54	

Рис. 3. Сечения фрагментации a-частицы. Q, I, V - экспериментальные сечения соответственно для фрагментов d, t, ⁸He. \Box - экспериментальные данные для полного инклюзивного сечения выхода протонов в реакциях фрагментации, $\frac{1}{2}$ - полные экспериментальные сечения фрагментации σ_{fr} . Все эти данные взяты из работы ⁹/⁹/³ фотоэмульсионные сечения σ_{fr} - Приведены расчетные кривые. Пунктиром указаны данные для ³He. Нижняя кривая - сечение неупругих каналов $a+A \rightarrow a+...$

На <u>рис. 4 и 5</u> показаны соответствующие распределения множественности. В целом имеет место хорошее согласие, некоторые расхождения наблюдаются лишь для тяжелых ядер.

При взаимодействии α -частиц с тяжелыми ядрами фотозмульсии расчетная множественность s'-частиц, состоящих в основном из π^{\pm} -мезонов, приблизительно на 10% выше экспериментальной. В случае взаимодействий со свинцом превышение расчетной множественности составляет уже около 25%. Аналогичное расхождение теоретических и экспериментальных зна-

^{*} При интерпретации фотоэмульсионных данных мы будем использовать стандартную классификацию частиц, применяемую в фотоэмульсионных экспериментах /подробнее см., напр., ^{/20/}/. s' -частицы - это та часть s-частиц, которая остается после отделения однозарядных фрагментов *a*-частицы.

Таблица 4

Средняя множественность частиц, рождающихся при неупругом взаимодействии *а*-частиц с группой легких и группой тяжелых ядер фотоэмульсии

Группа	<	<ns></ns>		<ns>></ns>		< n=>		< ne>		na>
ядер	Теория	OIDIT	Теория	OTHT	Теория	OIIIIT	Теория	OTHT	Теория	Omet
C,N,O	3,3±0,I	2,99±0,08 [3] 3,59±0,12 [2]	2,3±0,2	2,33±0,08 (3)	I,6±0,2	I,4I±0,06 [3]	I,8±0,2	I,46±0,06[3]	3,4±0,2	2,88±0,09[3 2,97±0,13[2
łą, Br	5,0±0,I	4,49±0,08 [3] 4,8I±0,08 [2]	4,5±0,2	4,12±0,08 [3]	4,2±0,2	6,82±0,18 [3]	7,2±0,2	6,87±0,16[3]	II,6±0,2	13,7±0,13[3 11,66±0,16[2

iz

Таблица 5

Среднее число *п* - мезонов, рождающихся в неупругом *а* - ядерном столкновении

					1
Ядро	Li	С	Al	Cu	Pb
Теория	0,77+0,04	0,97+0,03	1,30+0,03	1,66+0,02	2,40+0,04
0пыт /8/	0,80+0,44	1,00+0,05	1,30+0,06	1,60+0,06	1,90+0,07

Рис. 4. Распределение множественности s', g , b -частиц, образующихся при неупругих столкновениях а-частиц с группами легких и тяжелых ядер фотоэмульсии. Гистограммы расчетные, точки - экспериментальные данные /8/.

00

чений $<\!{\rm n}_{\rm 8}>$ имеет место для пион и нуклон-ядерных столкновений при T>10ГэВ $^{/17/*}$. Для его устранения необходимо перейти к каскадной модели, более точно учитывающей временную динамику процесса $^{/18/}$.

Расчетная множественность g-частиц, состоящих в основном из каскадных нуклонов отдачи, во взаимодействиях с тяжелыми ядрами, наоборот, оказывается заметно меньше экспериментальной. Сравнение с результатами расчетов нуклон-ядерного каскада показало, что это расхождение также связано с конкретным вариантом каскадной модели. В более точной модели ^{/18/} множественность g-частиц для тяжелых ядер несколько больше экспериментальной **.

На <u>рис. 6</u> приведены данные по пионообразованию, сопровождающему рождение фрагментов. Выход *п*-мезонов практически не зависит от мишени, поскольку фрагментация *а*-частиц про-

Рис. 6. Данные выхода π⁻мезонов в каналах фрагментации α-частицы. Приведены расчетные кривые. О, ▲, ⊽ - экспериментальные значения < n_> соответственно для каналов с образованием фрагментов d, t , ³Не; □ - суммарная экспериментальная множественность <n_> для неупругих каналов без образования фрагментов.

* Поскольку каскад, порожденный a -частицей, грубо говоря, представляет собой сложение четырех каскадов, инициированных нуклонами ^{/14,15/}, энергия $T_a = 3,64$ ГэВ/нуклон соответствует области T > 10 ГэВ в случае нуклон-ядерных столкновений.

** Следует заметить, что в то время как $\langle n_g \rangle^{3KCII} \simeq 0.6$ /для тяжелых ядер/, а расчетное отношение $\langle n_b \rangle / \langle n_g \rangle$ в таблице 4 в 1,6 раза больше экспериментального, суммарные расчетные и экспериментальные множественности низкоэнергетических частиц $n_h = n_g + n_b$ не сильно отличаются одна от другой. Это показывает, насколько важно раздельное изучение частиц с серыми и черными треками. исходит при периферических столкновениях в результате одного, очень редко двух взаимодействий. Этим же объясняется обнаруженная в работе ^{/9/} очень слабая зависимость от массы ядра-мишени величины средних поперечного и продольного импульсов мезонов сопровождения /рис. 7/.

Как уже отмечалось при анализе пион и нуклон-ядерных взаимодействий /см., например, ^{/17, 18/} /, форма средних угловых распределений быстрых вторичных частиц в лабораторной системе координат определяется в основном кинематическими факторами и слабо зависит от деталей модели. Это проявляется и в *a*-ядерных столкновениях.Как видно из <u>рис.8</u>, эксперимент и теория хорошо согласуются; однако это согласие можно получить при различных теоретических предположениях о механизме внутриядерных взаимодействий. Для оценки этих предположений требуются экспериментальные угловые распределения в более узких энергетических интервалах. Слабо чув-

Рис. 7. Средние поперечные и продольные импульсы π^- -мезонов, сопровождающих образование фрагментов. Все обозначения, как на рис. 6.

ствительны к деталям каскадного механизма и средние импульсные спектры вторичных частиц. На <u>рис. 9</u> показан суммарный спектр фрагментов а-частицы. Теоретическая гистограмма хорошо согласуется с экспериментальными точками, что оправдывает использованную при вычислениях модель а-N-взаимодействия.

-

Рис. 8. Угловые распределения s', g и b -частиц, образующихся при взаимодействии а -частиц с легкими и тяжелыми ядрами фотоэмульсии. Гистограммы - расчетные, точки - экспериментальные данные ^{/8/}.

исходит при периферических столкновениях в результате одного, очень редко двух взаимодействий. Этим же объясняется обнаруженная в работе⁷⁹⁷ очень слабая зависимость от массы ядра-мишени величины средних поперечного и продольного импульсов мезонов сопровождения /рис. 7/.

Как уже отмечалось при анализе пион и нуклон-ядерных взаимодействий /см., например, ^{/17, 18/} /, форма средних угловых распределений быстрых вторичных частиц в лабораторной системе координат определяется в основном кинематическими факторами и слабо зависит от деталей модели. Это проявляется и в а-ядерных столкновениях.Как видно из рис.8, эксперимент и теория хорошо согласуются; однако это согласие можно получить при различных теоретических предположениях о механизме внутриядерных взаимодействий. Для оценки этих предположений требуются экспериментальные угловые распределения в более узких энергетических интервалах. Слабо чув-

Рис. 7. Средние поперечные и продольные импульсы π^- -мезонов, сопровождающих образование фрагментов. Все обозначения, как на рис. 6.

ствительны к деталям каскадного механизма и средние импульсные спектры вторичных частиц. На <u>рис. 9</u> показан суммарный спектр фрагментов *а*-частицы. Теоретическая гистограмма хорошо согласуется с экспериментальными точками, что оправдывает использованную при вычислениях модель *а*-N-взаимодействия.

11

Рис. 8. Угловые распределения s', g и b -частиц, образующихся при взаимодействии α-частиц с легкими и тяжелыми ядрами фотоэмульсии. – Гистограммы – расчетные, точки – экспериментальные данные ^{/8/}.

Рис. 9. Импульсный спектр фрагментов а -частиц, образующихся в реакции а+ ⁸Li при энергии 3,64 ГэВ/нуклон. Гистограмма расчетные, точки - экспериментальные данные ^{/9/}.При вычислениях были введены также поправки на неточность измерения импульсов в стримерной камере ^{/24, 25/}. Модель внутриядерных каскадов объясняет все известные в настоящее время экспериментальные данные по взаимодействиям *а*-частиц с ядрами. Некоторые расхождения, требующие дальнейшего усовершенствования модели, обнаруживаются лишь для очень тяжелых ядер.

Мы благодарны М.Г.Мещерякову, К.Д.Толстову и А.Т.Матюшину за стимулирующие обсуждения.

ЛИТЕРАТУРА

- 1. Толстов К.Д. и др. ОИЯИ, Р1-8313, Дубна, 1974.
- 2. Бокова Л.Н. и др. ОИЯИ, Р1-9364, Дубна, 1975.
- 3. Basova A.S. et al. Z. f. Phys., 1978, A287, p.393.
- 4. Аблеев В.Г. и др. ОИЯИ, Р1-10565, Дубна, 1977.
- 5. Глаголев В.В. и др. ОИЯИ, Р1-10894, Дубна, 1977.
- 6. Абдурахманов Е.О. и др. ЯФ, 1978, 27, с.1020.
- 7. Аникина М.Х. и др. ЯФ, 1978, 27, с.724.
- 8. Aksinenko V.D. et al. Nucl. Phys., 1979, A324, p.266.
- 9. Abdurakhimov A.U. et al. JINR, E1-12713, Dubna, 1979.
- 10. Angelov N. et al. JINR, E1-12548, Dubna, 1979.
- 11. Барашенков В.С., Гаврилов Э.Г., Елисеев С.М. Аста Phys. Polonica, 1973, B4, p.353.
- 12. Барашенков В.С., Мусульманбеков Ж.Ж. Acta Phys. Polonica, 1979, B10, p.373.
- 13. Alkhazov J.D. et al. Nucl.Phys., 1977, A280, p.365.
- 14. Барашенков В.С. и др. ЯФ, 1973, 17, с.434.
- Gabriel T.A., Santoro R.T., Alsmiller R.G. Nucl. Sc. and Eng., 1971, 44, p.104.
- 16. Вихров А.И. и др. ЯФ, 1970, 11, с. 36.
- 17. Барашенков В.С., Костенко Б.Ф. Acta Phys. Polonica, 1979, B10, p.607.
- Барашенков В.С., Задорожный А.И., Костенко Б.Ф. ОИЯИ, P2-12503, Дубна, 1979.
- 19. Барашенков В.С., Ильинов А.С., Тонеев В.Д. Яф, 1971, 13, с. 743.
- 20. Барашенков В.С., Тонеев В.Д.Взаимодействие высокоэнергетических частиц и атомных ядер с ядрами. Атомиздат, М., 1972.
- 21. Ramaty R., Lingenfelter R.E. Astrophys. Journ., 1969, 155, p.587.
- 22. Bizard G. et al. Nucl. Phys., 1977, A285, p.467.
- 23. Барашенков В.С. и др. ОИЯИ, Р2-6503, Дубна, 1972.
- 24. Абдурахимов А.У., Иванов В.Г., Мусульманбеков Ж.Ж. ОИЯИ, P10-11814, Дубна, 1978.
- 25. Абдурахимов А.У., Иванов В.Г., Мусульманбеков Ж.Ж. ОИЯИ, P10-11323, Дубна, 1978.

Рукопись поступила в издательский отдел 21 декабря 1979 года.