

объединенный NHCTNTYT ядерных исследований дубна

1585 9-80

7/4-80 P2 - 13007

Г.В.Ефимов, М.А.Иванов, Р.Х.Мурадов

РАСПАД **п°**→уе+е-В НЕЛОКАЛЬНОЙ МОДЕЛИ КВАРКОВ

12

Направлено в "Physics Letters B"

1. В последнее время интерес к изучению редких распадов псевдоскалярных мезонов заметно возрос $^{/1/}$. Недавно зарегистрировано и исследовано около 30000 событий превращения $K_{\pi 2}^{-}$ распадных π^{o} -мезонов в γ -квант и электронно-позитронную пару $^{/2/}$:

$$\pi^{\circ} \rightarrow \nu + e^{-} + e^{+}$$

Далитц^{/8/} впервые указал на существование этой реакции и вычислил отношение ширин распада /1/ и основного распада нейтрального пиона $\pi^{\circ} \cdot 2\gamma$. Распад $\pi^{\circ} \cdot \gamma e^-e^+$ примечателен тем, что при сходе фотона, конвертируемого на e^-e^+ пару, с массовой поверхности появляется уникальная возможность исследования электромагнитной структуры π° -мезона. В работе было проведено разложение формфактора пиона $F_{\pi}(s^2)$ по инвариантной массе у кванта s^2 /в единицах массы π -мезона m_{π} /

 $F_{(s^2)} = 1 + as^2$,

где а-некоторый вещественный параметр.

Справедливость такого разложения для физической области $\frac{2m_e}{m_\pi} \le s \le 1$ следует из аналитичности $F_\pi(s^2)$ во всей комплексной плоскости за исключением разреза вдоль действительной оси $4 \le s^2 \le \infty$. Все последующие работы, посвященные изучению процесса /1/, в основном сведены к измерению /2,7,8,10/и вычислению параметра а с помощью гипотезы МВД и дисперсионных соотношений /4,6,9/. Результаты этих работ приведены в таблице.

		Таблица Модели	
	Эксперимент		
-	-0,15 <u>+</u> 0,10 ^{/8/} -0,24+0,16 ^{/7/}	0,031	Д.С. ^{/4/} мвд ^{/6/}
a	+0,01+0,11 /10/	0,046	Д.С. ^{/9/}
	+0,1+0,03 /2/	0,078	нелокальная модель кварков

111

the liver A

2. В данной работе мы вычисляем параметр а в нелокальной модели кварков $^{11/}$. Модель, представляющая собой самосогласованную схему квантовополевого релятивистского мешка, позволяет с единой точки зрения описывать сильные, слабые и электромагнитные взаимодействия адронов при энергиях ≤ 2 ГэВ. В модели имеется лишь два свободных параметра ξ и L , характеризующих кварковые поля, которые определяются путем фитирования по экспериментальным данным. В работах $^{11-13/}$ был рассмотрен широкий круг характеристик сильных, слабых и электромагнитных распадов псевдоскалярных, векторных мезонов и барионов и получено согласие с экспериментом в рамках 10 - 30% - точности.

Для описания распада $\pi^{o} \rightarrow \gamma e^{-}e^{+}$ нам понадобится следующий лагранжиан взаимодействия /11/ :

$$\mathcal{L}_{\mathbf{I}} = \mathcal{L}_{\mathbf{I}}^{\mathbf{s}} + \mathcal{L}_{\mathbf{I}}^{\mathbf{em}} , \qquad (3)$$

$$\begin{aligned} \mathfrak{L}_{I}^{s} &= \frac{ih}{\sqrt{2}} \pi^{\circ} (\bar{q}_{a}^{1} \gamma_{5} q_{a}^{1} - \bar{q}_{a}^{2} \gamma_{5} q_{a}^{2}) + \\ &+ \frac{h}{\sqrt{2}} \rho_{\mu}^{\circ} (\bar{q}_{a}^{1} \gamma_{\mu} \bar{q}_{a}^{1} - \bar{q}_{a}^{2} \gamma_{\mu} q_{a}^{2}) + \frac{h}{\sqrt{2}} \omega_{\mu} (\bar{q}_{a}^{1} \gamma_{\mu} q_{a}^{1} + \bar{q}_{a}^{2} \gamma_{\mu} q_{a}^{2}) / 4 / \\ \mathfrak{L}_{I}^{em} &= eA_{\mu} (\ell_{\mu} + J_{\mu q}^{em}). \end{aligned}$$

Здесь

а = 1, 2, 3 -цветовой индекс;

ℓ_µ - лептонный электромагнитный ток;

 $J_{\mu q}^{\text{sm}}$ - кварковый электромагнитный ток, который в регуляризованной форме имеет вид:

$$(J_{\mu q}^{em})^{\delta} = \sum_{j=1}^{\infty} (-1)^{j} (\overline{q}_{ja}^{\delta} \frac{1}{2} [\lambda^{3} + \frac{1}{\sqrt{3}} \lambda^{8}] \gamma_{\mu} q_{ja}^{\delta}).$$
 (6/

Параметры модели & и L равны следующим значениям /11/ :

$$\xi = \frac{2\ell}{L} = 1,45 \pm 0,05$$
, $L = 3,12$ F3B⁻¹.

Эффективная константа разложения в ряд по теории возмущений

$$\lambda = \frac{h^2}{16\pi^2} \simeq 0,13$$
,

т.е. при расчетах можно ограничиться низшими порядками теории возмущений.

3. Диаграммы, описывающие распад /1/ в нелокальной модели кварков, показаны на рис.1. Стандартные вычисления дают для ширины распада π°→у 0⁻0⁺ следующее выражение ^{/5/}:

$$\frac{\mathrm{d}\Gamma(1)}{\mathrm{ds}} = \frac{4\alpha}{3\pi} \Gamma\left(\pi^{\circ} \to 2\gamma\right) f(s^2) |F_{\pi}(s^2)|^2.$$
 (7/

Здесь

$$f(s^2) = \frac{(1-s^2)^3}{2s^4} \sqrt{s^2-r^2} (2s^2+r^2) -$$

модельнонезависимый множитель, $r = \frac{2m}{m_{\pi}}$

Ширина $\Gamma(\pi^{\circ} \rightarrow 2\gamma)$ в рассматриваемом случае равна

$$\Gamma(\pi^{\circ} \rightarrow 2\gamma) = \frac{\pi}{4} a^2 g_{\pi^{\circ} \gamma \gamma}^2 m_{\pi}^3 , \qquad /8/$$

где

 $g_{\pi^{\circ}\gamma\gamma}^{2} = \lambda L^{2} \frac{1}{2\pi^{2}},$ а формфактор $F_{\pi}(s^{2})$ дается формулой /2/.

2

2. В данной работе мы вычисляем параметр а в нелокальной модели кварков $^{11/}$. Модель, представляющая собой самосогласованную схему квантовополевого релятивистского мешка, позволяет с единой точки зрения описывать сильные, слабые и электромагнитные взаимодействия адронов при энергиях \leq 2 ГэВ. В модели имеется лишь два свободных параметра ξ и L, характеризующих кварковые поля, которые определяются путем фитирования по экспериментальным данным. В работах $^{11-13/}$ был рассмотрен широкий круг характеристик сильных, слабых и электромагнитных распадов псевдоскалярных, векторных мезонов и барионов и получено согласие с экспериментом в рамках 10 - 30% - точности.

Для описания распада ^{ио}→уе⁻е⁺ нам понадобится следующий лагранжиан взаимодействия ^{/11/} :

$$\mathcal{L}_{I} = \mathcal{L}_{I}^{s} + \mathcal{L}_{I}^{em} , \qquad (3)$$

$$\begin{aligned} & \hat{\mathbb{L}}_{I}^{s} = \frac{ih}{\sqrt{2}} \pi^{\circ} (\bar{q}_{a}^{1} \gamma_{5} q_{a}^{1} - \bar{q}_{a}^{2} \gamma_{5} q_{a}^{2}) + \\ & + \frac{h}{\sqrt{2}} \rho_{\mu}^{\circ} (\bar{q}_{a}^{1} \gamma_{\mu} \bar{q}_{a}^{1} - \bar{q}_{a}^{2} \gamma_{\mu} q_{a}^{2}) + \frac{h}{\sqrt{2}} \omega_{\mu} (\bar{q}_{a}^{1} \gamma_{\mu} q_{a}^{1} + \bar{q}_{a}^{2} \gamma_{\mu} q_{a}^{2}) / 4 / \\ & \hat{\mathbb{L}}_{I}^{em} = e A_{\mu} (\ell_{\mu} + J_{\mu q}^{em}). \end{aligned}$$

Здесь

а = 1, 2, 3 -цветовой индекс;

 ℓ_{μ} - лептонный электромагнитный ток;

Ј^{ет}_{µq} - кварковый электромагнитный ток, который в регуляризованной форме имеет вид:

$$(\mathbf{J}_{\mu \mathbf{q}}^{\text{em}})^{\delta} = \sum_{j=1}^{\infty} (-1)^{j} \left(\overline{\mathbf{q}}_{j\mathbf{a}}^{\delta} \frac{1}{2} \left[\lambda^{3} + \frac{1}{\sqrt{3}} \lambda^{8} \right] \gamma_{\mu} \mathbf{q}_{j\mathbf{a}}^{\delta} \right).$$
 (6/

Параметры модели ξ и L равны следующим значениям ^{/11/} :

$$\xi = \frac{2\ell}{L} = 1,45 \pm 0,05$$
, $L = 3,12$ $\Gamma \Rightarrow B^{-1}$.

Эффективная константа разложения в ряд по теории возмущений

$$\lambda = \frac{h^2}{16\pi^2} \simeq 0.13$$
,

т.е. при расчетах можно ограничиться низшими порядками теории возмущений.

3. Диаграммы, описывающие распад /1/ в нелокальной модели кварков, показаны на рис.1. Стандартные вычисления дают для ширины распада п°→у e⁻e⁺ следующее выражение ^{/5/}:

$$\frac{\mathrm{d}\Gamma(1)}{\mathrm{ds}} = \frac{4\alpha}{3\pi} \Gamma(\pi^{\circ} \rightarrow 2\gamma) f(s^2) |F_{\pi}(s^2)|^2.$$
 (7/

Здесь

 $f(s^2) = \frac{(1-s^2)^3}{2s^4} \sqrt{s^2-r^2} (2s^2+r^2) -$ -модельнонезависимый множитель, $r = \frac{2m_e}{m_{\pi}}$

Ширина Г(π°→2γ) в рассматриваемом случае равна

$$\Gamma(\pi^{\circ} \rightarrow 2\gamma) = \frac{\pi}{4} a^2 g_{\pi^{\circ} \gamma \gamma}^2 m_{\pi}^3 , \qquad /8/$$

где

 $g_{\pi^{o}\gamma\gamma}^{2} = \lambda L^{2} \frac{1}{2\pi^{2}},$ а формфактор $F_{\pi}(s^{2})$ дается формулой /2/.

2

Для данной модели параметр $a(\xi)$ представляется как сумма двух слагаемых

$$a(\xi) = a_{\gamma}(\xi) + a_{\gamma}(\xi).$$
 (9)

Первый член в правой части, равный

$$a_{\gamma}(\xi) = \frac{\mu^2}{12} \left(1 + \frac{\xi^2}{2}\right),$$
 /10/

определяет вклад однофотонного обмена /диаграмма /а/ на рис.1/, пропорциональный s² , тогда как

$$a_{v}(\xi) = 8\lambda \frac{m_{\pi}^{2}}{m_{\rho}^{2}} (1 + \frac{m_{\rho}^{2}}{m_{\omega}^{2}}) b(\xi) S_{0}(\xi)$$
 /11/

характеризует вклад в том же порядке по s от диаграммы /б/ на рис.1.

Здесь

$$\mathbf{b}(\xi) = \frac{\xi}{2} + \frac{1}{\sqrt{2}} \mathbf{S}_1(\sqrt{2}\xi) - \frac{\xi}{2} \mathbf{C}_0(\sqrt{2}\xi), \qquad /12/$$

где

$$S_n(\xi) = \frac{2}{n!} \int_0^{\infty} dt t^{2n} \sin \xi t e^{-t^2}$$
, /13/

$$C_{n}(\xi) = \frac{2}{n!} \int_{0}^{\infty} dt \ t^{2n+1} \cos \xi t \ e^{-t^{2}} \ . \qquad (14)$$

Поведение $a(\xi)$ в зависимости от параметра ξ показано на рис.2. Как видим, зависимость достаточно устойчива для широкой области изменения ξ $(1,0 \le \xi \le 2,0)$.

Значение а в интересующей нас точке $\xi = 1, 4$, что, как видно из таблицы 1, хорошо согласуется с результатом последних опытов, проведенных Фишером и др.^{2/}. Такое значение величины а приводит к увеличению отношения ширин распадов

$$\pi^{\circ} \rightarrow \gamma e^{-} e^{+} \mu \pi^{\circ} \rightarrow 2 \gamma$$

$$R(s,\xi) = \frac{1}{\Gamma(\pi^{\circ} + 2\gamma)} \frac{d\Gamma(1)}{ds}$$
(15)

примерно на 8% по сравнению со случаем a=0.

Авторы выражают благодарность С.Б.Герасимову за полезные обсуждения.

ЛИТЕРАТУРА

- Fiecher J. et al Phys. Lett., 1976, 62B, p.485, Phys. Lett., 1978, 73B, p.364.
 Буднев В.М., Карнаков В.А. Письма в ЖЭТФ, 1979, 29, с.439. Иванов М.А., Охлопкова В.А. ОИЯИ, P4-12509, Дубна, 1979. Rafutt B., Schulke L. Nuovo Cim., 1978, 46A, c.235.
 Fischer J. et al. Phys. Lett., 1978, 73B, p.359.
- 3. Dalitz R.H. Proc. Phys. Soc., 1951, 64A, p.667.
- 4. Berman S.M. Geffen D.A. Nuovo Cimento, 1960, 28, p.1192.
- 5. Kroll N.M. Wada W. Phys. Rev., 1955, 98, p.1355.
- 6. Gell-Mann M., Zachariasen Phys. Rev., 1961, 124, p.953.
- 7. Samios N.P. Phys. Rev., 1961, 121, p.275.
- 8. Kobrak H. Nuovo Cimento, 1961, 20, p.1115.
- 9. Barton G., Anith B. Nuovo Cimento, 1965, 36, p.436.

4

- 10. Devons et al. Phys. Rev., 1969, 184, p.1356.
- Dubnickova A.Z., Efimov G.V., Ivanov M.A. Fortsch. der Phys., 1979, 27, p.377.
- 12. Динейхан М., Ефимов Г.В., Лобанов Ю.Ю. ОИЯИ, Р2-12430, Дубна, 1979.
- 13. Иванов М.А., Охлопкова В.А. ОИЯИ, Р2-12638, Дубна, 1979.

Рукопись поступила в издательский отдел 17 декабря 1979 года.