СООБЩЕНИЯ Объединенного института ядерных исследований дубна

1101/2-80

18/3-80 P2 - 12942

М.Гмитро, С.С.Камалов, Т.В.Москаленко, Р.А.Эрамжян

РАДИАЦИОННЫЙ ЗАХВАТ **µ**⁻-МЕЗОНОВ НА ЯДРАХ. МИКРОСКОПИЧЕСКИЙ РАСЧЕТ ДЛЯ ¹⁶0 И ⁴⁰Са

P2 - 12942

Гмитро М. и др.

Радиационный захват µ[—] -мезонов на ядрах. Микроскопический расчет для ¹⁸О и ⁴⁰Са

На основе оболочечных волновых функций анализируются скорости радиационного захвата остановившихся мюонов и спектр излучаемых у -квантов в ядрах ¹⁸0 и ⁴⁰Са. Выявлен вклад скоростных /по импульсу нуклона/ членов эффективного гамильтониана при переходе от ⁴⁰Са к более легким ядрам.

Работа выполнена в Лаборатории теоретической физики ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1979

P2 - 12942

Gmitro M. et al.

Radiative Muon Capture on Nuclei. Microscopic Calculation for ¹⁶ O and ⁴⁰Ca

Radiative muon capture rates of stopped muons and spectrum of emitted γ -quanta in ¹⁶O and ⁴⁰Ca are analysed using the shell-model nuclear wave functions. The contributions of the nucleon-velocitydependent terms of effective Hamiltonian have been shown to be different in ⁴⁰Ca and in lighter nuclei.

The investigation has been performed at the Laboratory of Theoretical Rhysics, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1979

С 1979 Объединенный институт ядерных исследований Дубна

I. Введение

Возможность детектирования i - kвантов с энергией порядка100 МзВ с высокой степенью точности путем их конвертирования вэлектрон-позитронную пару, продемонстрированная при исследованиипроцесса радиационного захвата пионов атомными ядрами /1/, открывает новые пути и в исследовании радиационного захвата мюонов(<math>f', f'). Такая методика позволит избежать целый ряд трудностей, присуцих прежней методике и связанных с необходимостью различать сигналы от быстрых нейтронов и i - kвантов. В конечном итоге это приведет к значительному повышению надежности извлекаемой информации.

При экспериментальном исследовании процесса (M, V) обычно измеряются энергетический спектр испущенных V — квантов и энергетическая зависимость асимметрии углового распределения V квантов при захвате поляризованных мюонов. Эти характеристики являются интегральными в том смысле, что конечное состояние ядра не регистрируется. В связи с этим основной аппарат, используемый для интерпретации результатов измерений, базируется на теореме полноты, по зволяющей свести сумму по конечным состояниям ядерной системы к среднему по основному состоянию от конкретного двухчастичного оператора /2/. При этом, однако, в теории возникают свободные параметры, как, например, средняя энергия возбуждения ядра, нахождение которых сопряжено с трудностями.

В то же время при описании процессов поглощения различных частиц легкими ядрами широко используется микроскопический подход к структуре ядра. Он позволяет проследить за динамикой процесса и выявить состояния ядерной системы, на которые приходится основная интенсивность возбуждения. С целью выявления диналики

радиационного захвата мвонов и сопоставления ее с динамикой обычного захвата в настоящей работе эти оба процесса исследуются на основе микроскопического описания ядерной структуры.

В соответствии с этим планом во второй части нашей работы даны основные положения формализма, используемого для описания реакции (\mathcal{M} , \mathcal{V}) в рамках импульсного приближения, в третьей части приведены некоторые детали численного расчета для радиационного \mathcal{M} -захвата на 16 О и 40 Са. Основные результаты и их обсуждения проводятся в четвертой части работы.

2. Энергетический спектр У-квантов в радиационном <u>M</u> - захвате на сложных ядрах.

Энергетический спектр 8 — квантов в рассматриваемом процессе при переходе ядра из состояния 12 в состояние 15 определяется выражением

$$N_{fi}(k) = \frac{2(\alpha \Xi)^3 \alpha}{(2\pi)^6 \pi} m_{\mu} R_{\mu} (G \cos \theta_e)^2 k (k_m^{fi} - k)^2 \sum_{\lambda} \int \frac{d\Omega_{E}}{4\pi} P_{fi}^{(1)}(\vec{k}),$$
(I

где $\vec{K} = \vec{k} \cdot \vec{K}$ - вектор импульса, λ -циркулярная поляризация δ - кванта, \ll и G - соответственно константы электромагнитного и слабого взаимодействий, Θ_c - угол Кабиббо, R_m характеризует эффективный заряд ядра. Через k_m^{fi} обозначена максимальная энергия, уносимая δ -квантом при переходе ядра в состояние |f>:

$$k_m^{fi} = m_m - (E_f - E_i).$$

Полный энергетический спектр получается из (I) путем суммирования его по всем конечным состояниям ядерной системы:

$$\mathcal{N}(k) = \sum_{f} \mathcal{N}_{fi}(k). \tag{2}$$

Динамика процесса (14.7 V 8) полностью содержится в матричных элементах эффективного гамильтониана Heff, из которого строится вкражение:

$$P_{fi}^{(\lambda)}(\vec{k}) = m_{pi}^{2} \sum \int d\Omega_{\vec{v}} \left\langle f, \vec{k}, \vec{v} \right| \left| H_{eff}^{2\mu} \left| i, m_{pi} \right\rangle \right|^{2}, \qquad (3)$$

где знак ∑ означает усреднение и суммирование по поляризациям частиц в начальном и конечном состояниях. Плоские волны нейтрино и фотона характеризуются импульсами $\vec{y} = v \cdot \hat{v}$ и $\vec{k} = k \cdot \hat{k}$ соответственно.

В данной работе используется нерелятивистский эффективный гамильтониан радиационного захвата моонов ядрами H_{eff}^{eff} , полученный в работе ²². Как и в ²², в качестве пропагаторов моона и нуклона брались пропагаторы свободных частиц. Члены гамильтониана, расходящиеся при $k \rightarrow O$ (инфракрасная расходимость), опускались. Из соображений удобства целесообразно записать H_{eff}^{eff} в несколько ином, чем в ²², виде, разделив адронную и лептонную части. С этой целью воспользуемся следующим резложением скалярного произведения по циклическим ортам $\vec{K} = \vec{e}_n$, $\vec{e}^{k} = (\vec{e}_{x} - i \hat{\lambda} \vec{e}_{y})/\sqrt{2}$:

$$(\vec{\alpha} \cdot \vec{b}) = (\vec{\alpha} \cdot \vec{\epsilon}^{\lambda})(\vec{b} \cdot \vec{\epsilon}^{\lambda^{*}}) + (\vec{\alpha} \cdot \vec{\epsilon}^{\lambda^{*}})(\vec{b} \cdot \vec{\epsilon}^{\lambda}) + (\vec{\alpha} \cdot \vec{k})(\vec{b} \cdot \vec{k}), \qquad (4)$$

где а и 6 - произвольные векторы. Тогда эффективный гамильтониан можно свести к следующему виду:

$$H_{eff}^{2M} = \frac{4}{\sqrt{2} m_{M}} (1 - \vec{e} \cdot \vec{v}) \sum_{j=1}^{A} [H_{A}(j) + H_{B}(j) + H_{c}(j) + \Delta(j)] \delta(\vec{r} - \vec{r}_{j}) \mathbf{r}_{j}^{(-)}, \qquad (5)$$

$$\begin{aligned} \mathbf{T}_{A}e^{(j)} &= H_{A}^{(i)}(j)(\vec{e}\cdot\vec{e}^{\lambda}) + H_{A}^{(2)}(j)(\vec{v}\cdot\vec{e}^{\lambda}); \\ H_{B}(j) &= H_{B}^{(4)}(j)(\vec{e}\cdot\vec{e}^{\lambda}) + H_{B}^{(2)}(j)(\vec{v}\cdot\vec{e}^{\lambda}); \\ H_{c}(j) &= H_{c}^{(4)}(j) + H_{c}^{(2)}(j)\vec{e}\cdot[\vec{v}\times\vec{k}]. \end{aligned}$$

$$(6)$$

Значком \int помечены операторы, действующие на переменные jго нуклона. Для адронных операторов введены обозначения $H_{X}^{(\alpha)}(j) [X = A, B, C; \alpha = 1, 2];$

$$\begin{split} H_{A}^{(a)}(j) &= A_{1}^{(a)} \cdot \underline{1}_{j} + A_{2}^{(a)} \left(\frac{\vec{P}_{j}}{M} \cdot \hat{\vec{k}} \right) + A_{3}^{(a)} \cdot \left[\vec{e}_{j} \times \frac{\vec{P}_{j}}{M} \right] \cdot \hat{\vec{k}} ; \qquad (7) \\ H_{B}^{(a)}(j) &= B_{1}^{(a)} (\vec{e}_{j} \cdot \hat{\vec{k}}) + B_{2}^{(a)} (\vec{e}_{j} \cdot \frac{\vec{P}_{j}}{M}) + B_{3}^{(a)} (\vec{e}_{j} \cdot \hat{\vec{k}}) \left(\frac{\vec{P}_{j}}{M} \cdot \hat{\vec{k}} \right) ; \\ H_{e}^{(a)}(j) &= C_{1}^{(a)} (\vec{e}_{j} \cdot \vec{\epsilon}^{\lambda}) + C_{2}^{(a)} \left(\frac{\vec{P}_{j}}{M} \cdot \vec{\epsilon}^{\lambda} \right) + C_{3}^{(a)} (\vec{e}_{j} \cdot \hat{\vec{k}}) \left(\frac{\vec{P}_{j}}{M} \cdot \vec{\epsilon}^{\lambda} \right) . \end{split}$$

В выражениях (5)-(7) б и б; -матрицы Паули для лептонов и нуклонов, \vec{P}_i - импульс нуклона, M - его масса.

Запись эффективного гамильтониана в виде (5) удобна в том плане, что в выражении для $P_{ii}^{(X)}(\vec{x})$ не возникают интерференционные члены между матричными элементами, отвечающими различным индексам χ . Основной вклад в полный матричный элемент дают первые три члена выражения (5). Член $\Delta(j)$ представляет малую поправку. Его явный вид дан в приложении A совместно с выражением для числовых коэффициентов $A_i^{(a)}$, $B_i^{(a)}$ и $C_i^{(a)}$. Обозначим через

$$M_{x}^{(a)} = \langle f | \sum_{j=1}^{A} \tau_{j}^{(-)} e^{-i(\vec{k}+\vec{v})\vec{r}_{j}} H_{x}^{(a)}(j) S(\vec{r}-\vec{r}_{j}) | i \rangle$$
(8)

ядерный матричный элемент, соответствующий одному из операторов $H_X^{(\alpha_2)}(j)$. Для его вычисления обычно производится мультипольное разложение (см. приложение Б). После проведения такого разложения легко видеть, что величина $P_{fi}^{(\Lambda)}(\vec{\kappa})$ выражается через интеграл по Θ_{VK} – углу между направлениями вылета χ -кванта и нейтрино:

$$P_{\pm i}^{(\lambda)}(k) = 2\pi \int_{-1}^{1} dy \left(S_{1}^{(\lambda)} + S_{2}^{(\lambda)} + S \right), \qquad (9)$$

$$\mathcal{S}_{4}^{(\lambda)} = \left(\left| M_{A}^{(\lambda)} \right|^{2} + \left| M_{B}^{(\lambda)} \right|^{2} \right) (1 + \lambda y) - \left(M_{A}^{(\lambda)} M_{A}^{(2)^{w}} M_{B}^{(\lambda)} M_{B}^{(2)^{w}} \right) (1 - y^{2});$$

$$\mathcal{S}_{2}^{(\lambda)} = \left| M_{c}^{(\lambda)} \right|^{2} + \left| M_{c}^{(\lambda)} \right|^{2} (1 - y^{2}).$$
(10)

Интегрирование в (9) приводится численно.

Слагаемое §, входящее в (9), пропорционально (1/2M), и поэтому им можно пренебречь.

Подставим результаты мультипольного разложения из приложения Б в формулу (IO). Затем, исходя из (IO) и (9), получим окончательное соотношение для величины $N_{41}(k)$.

При расчете скорости обычного мю-захвата использовались хорошо известные выражения (см., например, ^{/3/}), и поэтому мы их не будем приводить.

<u>3. Спектр 6 — квантов и скорость ралиационного 6 — захвата</u> в 160 и 40 са

В работе непосредственно рассчитывался энергетический спектр в парциальных переходах. После интегрирования $N_{fi}(k)$ по k получаем парциальную скорость радиационного M захвата:

$$\Lambda_{fi}^{en} = \int N_{fi}(k) dk .$$

Полная скорость $\Lambda^{\text{км}}$ получается в результате суммирования по всем конечным состояниям ядерной системы.

Для ядра ¹⁶0 исследованы отдельно переходы в связанные состояния дочернего ядра ¹⁶ N . Выделение переходов в связанные состояния позволяет исследовать зависимость энергетического спектра от структуры гамильтониана, не вдаваясь в динамику процесса.

Обычно принято приводить не абсолютные значения характеристик радиационного β^4 —захвата, а отнесенные к полной скорости Λ^M обычного β^4 —захвата:

$$R(k) = N(k) / \Lambda^{M}$$
.

З.І. Входные данные

В работе использовались следующие значения констант слабого взаимодействия:

$$G \cos \theta_c = 1,40 \cdot 10^{-49} \text{ pr} \cdot cm^3;$$

 $g_A(0) = -1,24;$

$$g_{\nu} = 0,97 ; \quad g_{M} = 3,79\nu;$$

$$g_{\rho}^{\nu} = \infty \frac{m_{\pi}^{2} + m_{\mu}^{2}}{m_{\pi}^{2} - m_{\mu}^{2} + 2m_{\mu}\nu} \cdot g_{A}(o);$$

$$g_{\rho}^{L} = \infty \frac{m_{\pi}^{2} + m_{\mu}^{2}}{m_{\pi}^{2} + 2m_{\mu}(\kappa + \nu) + 2k\nu(\gamma - 1) - m_{\mu}^{2}} \cdot g_{A}(o).$$

Расчеты проводились при трех значениях величины ЭС : ЭС = 4,6; 7,5 и I2 . Как для обычного, так и для радиационного Л -захвата учитывались скоростные члены (пропорциональные импульсу нуклона в ядре) гамильтониана.

3.2. Модели ядер

Как было показано в работе ^{/4/}, вклад переходов второго запрета в обычный ^{/4} - захват в ¹⁶0 не превышал 10%. Поэтому мы ограничились расчетом только переходов первого запрета и в радиационном захвате мюонов. Для описания состояний ядерной системы, возбуждающихся в результате переходов первого запрета в ¹⁶0, использовались два набора волновых функций. В первом наборе ос-

новное состояние этого ядра описывалось как дважды магическое, а состояние ^{16}N - в виде суперпозиции частично-дырочных возбуждений. Во втором наборе учитывался вклад (2p-2h)-конфигураций как в основное (44 компоненты), так и в возбужденные состояния. Соответствующие волновые функции приведены в Приложении В. Волновые функции второго набора (модель С) отличаются от ранее приводимых нами в работе 74 . При проведении расчетов последние в некоторых случаях были получены неверно. В настоящей работе даются исправленные функции и соответствующие им результаты для обычного 74 -захвата. Для описания дипольных состояний ядер 40 Са использовались волновые функции работы 57 , построенные на бази се частично-дырочных возбуждений.

4. Результаты расчетов

Результаты расчетов парциальных скоростей переходов приведены в табл. I и в табл.2 для ядра ¹⁶0. Скорости обычного - M захвата даны в единицах IO³ с - I, а радиационного - в с-I.

Ţ	аблица	Скорос: 16 Л Л ^м (1) в един	ти переходов для радиацис М - захва ицах с ^{-I} д		остояния ядра и обычного , $g_P = 7.5 g_A$) $0^3 c^{-I}$ для $\Lambda^{n}(L)$	
J#	J# 0		I	2-		
12m(1)	12m(1) 0,68		0,62	2,79	4,09 .	
A*(1)	I,	73	2,67	I0, 78	15,18	
J#	Λ ^M (2)	спект таяд едини 	ра для радие ром ^{I6} 0. (Мо цах с ^{-I} , Л ^м (Y)	ационного и обы одель С, 9р= 7, аля Д ³ м и 10 ³ Д ^м (5)	чного М -захва- 59а) в с-I для Л ^М .	
0	8,17				8,17	
I-	3,70	2,32	13,61	16,38	36,01	
2-	0,17	0,09	18,38	5,08	23,72	
J [#]	A2M(2)	A2m(3)	A2M(4)	Arm(5) Arm		
0-	2,03				2,03	
I	0,50	0,39	2,68	I,70	5,27	
2	0,04	0,01	4,2I	I,06	5,32	

При этом вклад в полную скорость обычного захвата мюнов от ципольных переходов оказался равным 84,10³ с⁻¹. С учетом квадрупольных переходов, скорость которых равна 9,3×10³ с⁻¹, полная скорость составляет 93,3×10³ с⁻¹. Для сравнения приведем экспериментальную величину

В обоих процессах одни и те же состояния вносят основной вклад в полную скорость перехода, хотя распределение по скоростям различных парциальных переходов не совпадает. Последнее относится к переходам на уровни $\mathbf{J}^{V} = \underline{1}^{-}$, где в обычном f^{U} -захвате интенсивность возбуждения двух последних состояний почти равна, а в радиационном захвате более интенсивным оказывается переход на уровень $\underline{1}_{U}^{U}$. Как показывают результаты расчета, оба набора волновых функций приводят к близким значениям величины R (отличие составляет около 5%), хотя абсолютные значения скоростей различаются сильно.

Вклад скоростных членов гамильтониана в величины $\mathcal{N}(k)$ и $\Lambda^{\mathbb{Z}^M}$ составляет около 10%. Наиболее чувствительными к этим членам оказываются переходы на уровни $\mathbb{T}^{\mathbb{F}} = \mathbb{O}^{-}$. Однако их вклад в полную сумму не очень велик.

Полный относительный энергетический спектр $\begin{cases} - \kappa вантов \\ R(k) = N(k) / \Lambda^{M} \\ \mu & cnextp, обусловленный переходами в связан$ ные состояния ядра ¹⁶ <math>N в зависимости от g_{P} , приведены на рис. I и 2, а скорости переходов – в табл. 3.

Рис.І

Полный спектр $\begin{pmatrix} & - & \text{квантов} \\ (R(k) = N(k) / M^4), \\$ испускаемых при радиационном захвате мпонов ядром I_{60}^{-} . Кривые I,П,Ш соответствуют $\mathcal{X} = 4,6; 7,5; I2.$

Полный выход X — квантов в ядре ⁴⁰Са в зависимости од \mathcal{G}_{ρ} приведен в табл.4, а энергетический спектр – на рис.3. На рисунке также приводятся имеющиеся экспериментальные данные. Эти данные противоречивы, поэтому трудно отдать предпочтение одному из наборов.

Располагая спектрами гамма-квантов, рассчитанными в настоящей работе, можем извлечь средние значения $\langle k_m \rangle = 95$ МэВ

Рис.2 Спектр δ' — квантов ($R_{cs}(k) = N_{cs}(k)/\Lambda_{cs}^{M}$), обусловленный переходами в связанные состояния при радиационном захвате мюонов ядром 16_0 .

1	1		
0 10	30 50 70	90 k (MaB)	
и <v>=94 пр. I,08 R(Ро</v>	мэВ; подст иведенное в од и Толхук)	авляя эти величи работе /2/ наход для Са.	ны в выражение для R(k), им: R (данная работа)=
<u>Таблица</u>	<u>3</u> . Относите с возбуж R – с в от ЭС	льный выход б дением связанных озбуждением всех в единицах 10 ⁻⁴	- квантов $R_{cd} = \Lambda_{cd}^{2A} / \Lambda_{cd}^{A}$ состояний ядра $I_{0}^{6} N$ и состояний в зависимости . Ядро I_{0}^{6} .
	x	Ree	R
	4,6 7,5	2,14 2,69	I,68 2,0I
	12	3,90	2,72
Таблица	4. Относите возбужде ности в (в едини	альный выход нием всех состоя ⁴⁰ Са в зависимос ицах 10 ⁻⁴).	У — квантов с ний отрицательной чет- ти от ЭС.
20	4,6	7,5	12
R	2,39	2,70	3,36

ПРИЛОЖЕНИЕ А

Рис.3

Полный спектр б — квантов, испускаемых при радиационном захвате мронов ядром ⁴⁰Са: ♥,●,▲ экспериментальные данные соответственно из работ /6,8,7/.

Заключение

Проведенное исследование динамики радиационного захвата мюонов показало, что в этом процессе определяющую роль играют те же состояния ядерной системы, что и в обычном мю-захвате. Основная сила переходов приходится на уровни с $\mathcal{J}^{W} = 2^{-}$ и частично I^{-} . Относительные характеристики процесса R оказались слабо чувствительными к модели, используемой для описания структуры возбужденных состояний ядерной системы.

Вклад скоростных членов эффективного гамильтониана в характеристики $\mathcal{N}(k)$ и $\mathcal{\Lambda}^{\mathcal{L}\mathcal{M}}$ пренебрежимо мал в ⁴⁰Са, но возрастает с уменьшением атомного номера . В ¹⁶О он достигает уровня 10%.

На переходы в связанные состояния приходится около 25.8 интенсивности. Выделение таких переходов в эксперименте позволило бы получить информацию о структуре гамильтониана радиационного рузахвата.

Из-за отсутствия надежных экспериментальных данных пока трудно судить, насколько хорошо теория описывает основные закономерности процесса (M, V Y). I. Поправка $\Delta(j)$ состоит из двух частей, интерференции между которыми не дают вклада в $P_{i}^{(\lambda)}(\vec{\kappa})$:

$$\Delta(j) = \Delta_{\mathfrak{a}}(j) + \Delta_{\mathfrak{a}}(j),$$

где в обозначениях работы / 2/

$$\Delta_{\mathfrak{z}}(j) = \left(\frac{\vec{y}}{2M}; \vec{\varepsilon}^{\lambda}\right) \left[(g_{\mathfrak{y}} + g_{\mathfrak{g}})(\vec{\varepsilon} \cdot \vec{\varepsilon}^{\lambda}) + g_{\mathfrak{g}}(\vec{y} \cdot \vec{\varepsilon}^{\lambda}) \right] (\vec{\varepsilon}_{j} \cdot \vec{\varepsilon}^{\lambda*});$$

$$\Delta_{\mathfrak{z}}(j) = \frac{m_{\mu}}{k} \left[g_{\mathfrak{g}}(\vec{\varepsilon} \cdot \vec{\varepsilon}^{\lambda*}) + g_{\mathfrak{g}}^{\mathcal{H}}(\frac{\vec{y}}{2M}; \vec{\varepsilon}^{\lambda*}) \right] (\vec{\varepsilon}_{j} \cdot \vec{\varepsilon}^{\lambda}) (\frac{\vec{P}_{j}}{M}; \vec{\varepsilon}^{\lambda}).$$

2. Выражение для коэффициентов $A_i^{(a)}$, $B_i^{(a)}$, $C_i^{(a)}$ в обозначениях работы /2/

а) для не зависящих от скорости членов

 $\begin{array}{l} A_{1}^{(2)} = g_{1} + g_{5} \frac{\vee}{2M} (y - \lambda) ; & A_{1}^{(2)} = (g_{6} - \lambda g_{5}) \frac{\vee}{2M} ; \\ B_{1}^{(2)} = -\lambda g_{3} + g_{4} \left(\frac{\vec{s}}{2M} \cdot \vec{k} \right) + g_{g} \frac{\vee}{2M} (y - \lambda) ; \\ B_{1}^{(2)} = \lambda (g_{7} - g_{g}) \frac{\vee}{2M} + g_{10} \left(\frac{\vec{s}}{2M} \cdot \vec{k} \right) ; \\ C_{1}^{(2)} = g_{2} - \lambda g_{3} \psi - \lambda g_{7} \left(\frac{\vec{s}}{2M} \cdot \vec{k} \right) - g_{8} \left(\frac{\vec{s}}{2M} \cdot \vec{\nu} \right) - \frac{1}{2} (g_{4} + g_{g}^{-} g_{m}) (1 - y^{2}) \frac{\vee}{2M} ; \\ C_{1}^{(2)} = -\lambda g_{3} + \frac{\sqrt{2}}{2} g_{4} (\psi + \lambda) \frac{\sqrt{2}}{2M} - g_{8} \frac{\vec{s}}{2M} + \frac{1}{2} (\psi - \lambda) g_{g} \frac{\sqrt{2}}{2M} , \end{array}$

б) для скоростных членов:

 $\begin{array}{l} A_{2}^{(i)} = \mathcal{C}_{2}^{(2)} = g_{v} \lambda_{+} \quad ; \qquad A_{2}^{(2)} = 0 \; ; \\ A_{3}^{(i)} = \lambda \, B_{3}^{(i)} = \frac{1}{2} \, \lambda \, \mathcal{C}_{3}^{(2)} = - \, \lambda \, 2g_{A} \frac{M}{k} \; ; \\ A_{3}^{(2)} = \, \lambda \, B_{3}^{(2)} = - \, \lambda \, B_{2}^{(2)} = - \, \lambda \, 2g_{P} \frac{M}{2k} \; ; \\ B_{2}^{(i)} = -g_{A} \lambda_{+} + \, \lambda g_{A} \frac{M}{k} \; ; \qquad \mathcal{C}_{2}^{(i)} = g_{v} \lambda_{+} (y - \lambda) + \, \lambda g_{v} \frac{2M}{k} \; ; \\ \mathcal{C}_{3}^{(i)} = \, \lambda g_{P}^{\mu} - \, \lambda g_{A} \frac{2M}{k} \, y + \, 2 \, 2 \, g_{P}^{\mu} \frac{M}{k} \; (\frac{\vec{s}}{2M} \cdot \vec{k} \;). \end{array}$

ПРИЛОЖЕНИЕ Б

В настоящем приложении воспроизводим некоторые детали мультипольного разложения матричного элемента $\mathcal{M}_X^{(a)}$ (уравнение (8))

Воспользуемся следующим разложением:

$$e^{-i(R+\overline{V})\overline{F}} = 4\pi \sum_{em} (-i)^{e} j_{e}(sr) Y_{em}^{*}(\hat{s}) Y_{em}(\hat{F}), \quad (5.1)$$

где $\vec{S} = \vec{K} + \vec{V}_{J}$ $j_{e}(Sr) - сферическая функция Бесселя.$ $Условно считаем <math>G^{\circ} = p^{\circ} = I$ (единичный оператор), и $G^{4} = \vec{G}$, $p^{4} = \vec{p}$. Тогда наиболее общий одночастичный оператор, который может встретиться в ядерном матричном элементе (8), запишем в виде

 $\mathcal{G}_{M_{1}}^{\mathbf{I}_{2}} \mathcal{P}_{M_{2}}^{\mathbf{I}_{2}} \Upsilon_{\ell m}(\hat{F}) = \sum_{\mathbf{I} \wedge \mathbf{J} \wedge \mathbf{N}} \begin{bmatrix} \mathbf{I}_{1} \mathbf{I}_{2} \mathbf{I} \\ M_{1} M_{2} M_{2} \end{bmatrix} \begin{bmatrix} \mathbf{I} \ell \mathbf{J} \\ M \mathbf{M} N \end{bmatrix} \begin{bmatrix} \mathbf{G}^{\mathbf{I}_{1}} \otimes \mathbf{P}^{\mathbf{I}_{2}} \end{bmatrix} \otimes \Upsilon_{\ell} \end{bmatrix}_{N, (\mathbf{B}, 2)}^{\mathbf{J}}$

где $\begin{bmatrix} r \ \ell \ J \\ M \ M \ N \end{bmatrix}$ - коэффициент Клебша-Гордана, $I_4 = I_2 = O_1 I_4$. Введем следующее обозначение для приведенного ядерного матричного элемента:

$$T_{\alpha}(\boldsymbol{e}^{\mathbf{I}_{4}}\boldsymbol{p}^{\mathbf{I}_{2}}) = \sqrt{\frac{(2\mathbf{I}+1)}{4\pi(2\mathbf{J}_{4}+1)}} \langle \mathbf{J}_{4} \| \sum_{j=1}^{A} \mathcal{T}_{j}^{(*)} j_{\ell}(\boldsymbol{sr}) [[\boldsymbol{e}^{\mathbf{I}_{4}}\boldsymbol{p}^{\mathbf{I}_{2}}] \otimes \boldsymbol{Y}_{\ell}]^{T} \| J_{\ell} \rangle, \tag{E.3}$$

где \mathcal{A} соответствует комбинации $\{I, \ell, J\}$, $J_{L, M}$ J_{J} – спины начального и конечного состояний ядра, $S = [k_{+}^{2}v_{+}^{2}k_{+}v_{J}]_{(a)}^{(a)}$. Тогда $\mathcal{M}_{X}^{(a)} \cdot \mathcal{M}_{X}^{(a')^{*}}$ можно представить через комбинации $\mathcal{M}_{X}^{(a)}$ (\mathcal{A}) (Б.6) матричных элементов $\mathcal{T}_{\mathcal{A}}(\mathfrak{S}^{\mathcal{I}_{4}}, \mathfrak{p}^{\mathcal{I}_{2}})$, как

$$M_{X}^{(a)}M_{X}^{(a')*} = \frac{2J_{+}+1}{2J_{i}+1} \sum_{dd'} Q^{(P)}(d_{i}d') M_{X}^{(a)}M_{X}^{(a')}(d'), \qquad (5.4)$$

где $\mathcal{P} = \mathcal{O}$ для $\mathcal{X} = A, B$ и $\mathcal{P} = -\lambda$ для $\mathcal{X} = C$ Проводя суммирование по проекциям на чального и конечного состояний ядра, для $Q^{(\mathbf{P})}(\alpha, \alpha')$ получаем

$$Q^{(P)}(a,a') = (\Psi_{TT})^{2}(-1)^{T+P} S_{JJ'} 2^{\ell'\ell} \sqrt{\frac{(2\ell+1)(2\ell'+1)}{(2I+1)(2I'+1)}} \times (5.5)$$

$$\sum_{L} (-1)^{L} \sqrt{\frac{\Psi_{TT}}{2L+1}} \begin{bmatrix} \ell \ell' L \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} I & I' & L \\ P & -P & 0 \end{bmatrix} \begin{cases} \ell' \ell & L \\ I & I' & J \end{cases} Y_{L0}(\hat{S}).$$

Так как $\vec{k} = \vec{e}_{z}$, то сферическая функция $\Upsilon_{LO}(\hat{s})$ зависит только от $\cos \theta_{sk} = (k+\sqrt{y})/S$.

Выражения для $M_X^{(a)}(\mathcal{A})$ можно получить, используя соотношения (7), (8) и (Б.2)

$$\begin{split} \mathcal{M}_{A}^{(a)}(\boldsymbol{\lambda}) &= A_{1}^{(a)} T_{a}(1) S_{or}^{+} \left[A_{2}^{(a)} T_{a}(\vec{p}) + \sqrt{2} A_{3}^{(a)} T_{a}(\vec{e},\vec{p}) \right] S_{1T} ; \\ \mathcal{M}_{B}^{(a)}(\boldsymbol{\lambda}) &= B_{1}^{(a)} T_{a}(\vec{e}) S_{1T}^{-} \left[\sqrt{3} B_{2}^{(a)} + \frac{1}{\sqrt{3}} B_{3}^{(a)} \right] T_{a}(\vec{e},\vec{p}) S_{or}^{+} \\ &+ \sqrt{\frac{2}{3}} B_{3}^{(a)} T_{a}(\vec{e},\vec{p}) S_{2T} ; \\ \mathcal{M}_{c}^{(a)}(\boldsymbol{\lambda}) &= \left[C_{1}^{(a)} T_{a}(\vec{e}) + C_{2}^{(a)} T_{a}(\vec{p}) + \frac{\mathcal{H}}{\sqrt{2}} C_{3}^{(a)} T_{a}(\vec{e},\vec{p}) S_{2T} ; \\ &+ \frac{1}{\sqrt{2}} C_{3}^{(a)} T_{a}(\vec{e},\vec{p}) S_{2T} ; \end{split}$$

Следует заметить, что полученные конечные выражения справедливы не только в выбранной нами, но и в любой системе координат. В этом можно убедиться, если воспользоваться свойствами функций Вигнера, но при этом не нарушая, конечно, условия градиентной инвариантности эффективного гамильтониана.

<u>Приложение В</u> Волновые функции якра ¹⁶

в, Мэв	d 5/2 P3/2	S' Pra	dy Pyz	dsh Para	S1/2 PV2	das Pra
10,52			0,03I8 0,9509	•	0,9598 -0,0508	
11,98	-0,1585	-0,0627	0,0418		0,9648	0,1384
16,27	-0,2060	-0,1167	0,2736		-0,1865	0,8905
20,10	-0,4883	0,8365	0,1666		-0,0267	-0,0629
21,89	0,7922	0,4912	0,0102		0,1212	0,2663
25,49	0,1462	-0,1183	0,9116		0,0184	-0,2532
13,02	0,1976	-0,0216	0,0540	0,9663		0,0273
14,99	-0,0148	0,2213	-0,0582	-0,0180		0,9582
18,24	-0,5738	0,7633	0,1325	0,1309		0,1682
19,63	0,7518	0,5871	-0,1541	-0,1291		-0,1400
23,29	0,1899	0,0041	0,9512	-0,0964		0,0604

Литература

I.	Baer H.W., Crowe C.M., Trüol P. Adv. Nucl. Phys., 1977, 9, p.177.
2.	Rood H.A., Tolhoek H.A. Nucl. Phys., 1965, 70, p.658.
3.	Балашов В.В., Коренман В.Я., Эрамжян Р.А. Поглощение мезонов атомными ядрами, Атомиздат, М., 1978. Eramzhyan R.A., Gmitro M., Sakaev R.A., Tosunjan L.A.
	Nucl.Phys., 1977, A290, p.294.
5.	Donnely T.W., Walker G.E. Ann. Phys., 1970, 60, p.209.
6.	Conversi G.M., Diebold R. and Dilella L. Phys.Rev., 1964,
	136, BL077.
7.	Rosenstein L.M., Hammerman I.S. Phys.Rev., 1973, 8, p.603.
8.	Hart R.D. et al. Phys.Rev.Lett., 1977, 39, p.399.
	the second s

Рукопись поступила в издательский отдел 21 ноября 1979 года.