

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

F-616

5427/4-79

P2 - 12693

С.В.Голоскоков, А.В.Кудинов, С.П.Кулешов

ПРЕДАСИМПТОТИЧЕСКИЕ ЭФФЕКТЫ В АДРОН-АДРОННОМ РАССЕЯНИИ НА БОЛЬШИЕ УГЛЫ И ОПИСАНИЕ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ

P2 - 12693

С.В.Голоскоков, А.В.Кудинов, С.П.Кулешов

ПРЕДАСИМПТОТИЧЕСКИЕ ЭФФЕКТЫ В АДРОН-АДРОННОМ РАССЕЯНИИ НА БОЛЬШИЕ УГЛЫ И ОПИСАНИЕ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ

06121 SUMATON enali arech ENanco TEMA

Голоскоков С.В., Кудинов А.В., Кулешов С.П. Р2 - 12693

Предасимптотические эффекты в адрон-адронном рассеянии на большие углы и описание экспериментальных данных

Проведено сравнение предасимптотических формул для дифференциальных сечений высокоэнергетического рассеяния на большие углы с экспериментальными данными. Исследованы реакции упругого $\pi^{\pm}p$ -, pp- и pn -рассеяния, для каждой из которых использованы различные асимптотические амплитуды. При этом анализировалось как качество получающегося описания, так и количественные характеристики предсказываемых предасимптотических эффектов. Показано, что эффективные степени, описывающие отклонения от строгой автомодельности, мало зависят от конкретного вида асимптотической амплитуды. Это свидетельствует о самосогласованности использованной схемы учета предасимптотических эффектов.

Работа выполнена в Лаборатории теоретической физики ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1979

Goloskokov S.V., Koudinov A.V., Kuleshov S.P. p2 - 12693

Preasymptotic Effects in Large-Angle Hadron Scattering and Description of Experimental Data

Preasymptotic formulas for differential cross sections of high-energy large-angle hadron scattering are compared with experimental data. The reactions of elastic π^+p -,pp- and pn-scattering with the use of different asymptotic amplitude for each of them are investigated. Both the quality of description obtained and qualitative characteristics of predicted preasymptotic effects are analysed. It is shown that effective degrees, which describe the deviations from strict automodelity, depend weakly on a specific type of an asymptotic amplitude. This provides evidence in favor of self-consistency of the used scheme for preasymptotic effects consideration.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1979

В настоящей работе мы проведем сравнение предасимптотических формул для дифференциальных сечений адрон-адронного рассеяния, полученных в рамках квазипотенциального подхода Логунова-Тавхелидзе, с экспериментальными данными. Описание высокоэнергетического рассеяния на большие углы возможно с помощью различных феноменологических квазипотенциалов. Это приводит к необходимости сравнения полученных формул с точки зрения соответствия экспериментальным данным, а также выяснения степени модельной зависимости предасимптотических эффектов. Их учет был проведен в работе /1/и основан на возможности выделения "мягкой" и "жесткой" компонент квазипотенциала, определяющих асимптотики высокоэнергетического рассеяния на малые и большие углы соответственно. При конечных энергиях наличие "мягкой" компоненты квазипотенциала приводит к появлению поправок к главному асимптотическому члену амплитуды рассеяния на большие углы, определяемой "жесткой" компонентой.

Мезон - нуклоннное и нуклон-нуклонное рассеяние на малые углы хорошо описывается чисто мнимыми гауссовыми квазипотенциалами с одними и теми же значениями эйкональной фазы в нуле и радиуса ^{/2,3/}

 $2i_{\chi}(0) = -1; a = 2.5 (\Gamma_{3}B/c)^{2}$ /1/

Отметим, что детали возможной структуры "мягкой" компоненты квазипотенциала несущественны, так как величины поправочных коэффициентов определяются его усредненными характеристиками.

Структура "жесткой" компоненты квазипотенциала, которая должна приводить к степенным автомодельным асимптотикам высокоэнергетического рассеяния на большие углы /4/:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}t} \sim \frac{1}{\mathrm{s}^{\mathrm{N}}} \mathbf{f}(\frac{\mathrm{t}}{\mathrm{s}}); \quad \mathrm{s, t} \to \infty; \quad \frac{\mathrm{t}}{\mathrm{s}} = \mathrm{const}, \qquad /2/$$

была рассмотрена в работе ^{/5/}. Там было показано, что этому условию удовлетворяют квазипотенциалы, представимые в виде суперпозиции гауссовых, причем функция плотности должна вести себя в нуле степенным образом. Асимптотика же амплитуды рассеяния и поправки низших порядков определяются борновским приближением по "жесткой" компоненте, от выбора которой и зависит конкретный вид формул для дифференциальных сечений.

Перейдем теперь к рассмотрению конкретных реакций. Для описания $\pi^{\pm}p$ - рассеяния нами было использовано два набора предасимптотических формул. Ниже мы приведем асимптотики матричных амплитуд рассеяния, соответствующие же полные предасимптотические формулы приведены в цитируемых работах.

В работе ^{/6/} были использованы следующие феноменологические представления асимптотических мезон - нуклонных амплитуд:

$$\hat{T}_{\pi+p}(s, t) = \frac{\gamma_0}{s^4} \left[A_1 \left(\frac{s}{|t|+b} \right)^{n'1} + A_2 \left(\frac{s}{|u|+b} \right)^{n'2} \right],$$

$$\hat{T}_{\pi-p}(s, t) = \frac{\gamma_0}{s^4} \left[A_3 \left(\frac{s}{|t|+b} \right)^{n'3} + A_4 \left(\frac{s}{|u|+b} \right)^{n'4} \right].$$
(3)

Второй набор формул можно получить исходя из полученных в работе ^{/7/} асимптотических амплитуд, построенных с учетом свойств аналитичности, кроссинг-симметрии и SU(3) -симметрии:

$$\hat{T}_{\pi^+ p} (s, t) = \hat{T}_{\pi^- p} (s, t) = \frac{\gamma_0}{s^4} [2A_1(\frac{s}{|t|+b})^3 + A_1(\frac{s}{|t|+b})^2 - A_2 \frac{s}{|t|+b} - \frac{A_2}{2} (\frac{s}{|u|+b})^3 - \frac{A_1 + A_2}{2} (\frac{s}{|u|+b})^2].$$

Предасимптотические формулы для амплитуд /4/ строятся так же, как в работе ^{/6/}.

Представления /3/ и /4/ были использованы для описания экспериментальных данных по упругому $\pi^{\pm}p$ -рассеянию для энергий $p_{\pi C} \geq 8$ /ГэВ/с/ ^{/8,9/}. Соответствующие обработки будем в дальнейшем обозначать I и II, их результаты приведены в <u>табл. 1</u> и показывают количественное согласие с экспериментальными данными.

Отметим, что в модели II заложена зарядовая независимость $\pi^{\pm}p$ -рассеяния, являющаяся приближенной. Это проявляется, в частности, в том, что при обработке данных для каждой из реакций в отдельности мы получаем различные значения параметров.

Проведем сравнение предсказаний моделей I и II. Учет предасимптотических эффектов приводит к тому, что показа-4

ſ												
	4 4	Aa	A ₃	Å،	nء	Ча	Ns	Й	ڡ	م	χ²	x2/x2
19	₽,7 <u>±</u> 0,	5,65 [±] 1,31	I49,2 [±] I2,5	2,76±1,22	3	4	\$	4	2,91±0,33	73,7	64	I,I5
9	,8±1,4	-19,6±1,7	1	ð	i	1	1	4.5	6I'0 1 06'I	100 . 7	70	I,44
12	I,I±∂,	-15,93±1,7		B	· 1	1	ı	1	1,33±0,17	26,7	31	0,86
4	3,2 [±] 14,3	-26,5±4,7	I	-	1	1	а Т	L.	4,65 [±] 1,04	44,0	36	I,22
	еакция 194 р 194 р 197 р	^{реакциия} А. ⁹¹⁴ р 61,9±7,4 ⁹¹⁴ р 16,8±1,4 ⁹¹⁴ р 12,6±1,1 ⁹¹⁷ р 48,2±14,3	Реакция А. А. А. А. А. М.	Реакции А. <	Реакциия А. А. А. Реакциия А. А. А. А. Вакциия А. А. А. А. Вакциия 61.9±7.4 5.65±1.31 149.2±12.5 2.76±1.22 Вакции 5.65±1.31 149.2±12.5 2.76±1.22 Вакции 16.8±1.4 -19.6±1.7 - - Вакр 12.6±1.1 -15.93±1.7 - - Вакр 48.2±14.3 -26.5±4.7 - -	Реакции А. А. А. А. М. М. Реакции А. А. А. А. А. М. М. Вакции 61.9±7.4 5.65±1.31 149.2±12.5 2.76±1.22 3 М*р 16.6±1.4 -19.6±1.7 - - - - - М*р 16.6±1.4 -19.6±1.7 - - - - - - М*р 12.6±1.1 -15.93±1.7 -	Реакциия А. А. А. А. М. М.	Реактиия А. А. А. М. М.	Реакции А. А. А. А. И. <	Реактими А. А. А. И. И. И. b Реактими А. А. А. А. А. И. И. b Вактими А. А. А. И. И. И. b Вактими A. Б. Б. В. В. <td>Peakuuur A1 A1 M1 M1 M1 M2 x^2 Peakuuur A1 A2 A3 A3 A4 M1 M1 M1 M1 M2 x^2 Stat E1,9±7,4 5,65±1,31 149,2±12,5 2,76±1,22 3 4 2 4 2,91±0,33 73,7 Stat E6,8±1,4 -19,6±1,7 - - - - 1,90±0,19 100,7 Stat I2,6±1,1 -15,93±1,7 - - - - 1,33±0,17 26,7 Stat 48,2±14,3 -26,5±4,7 - - - - 4,65±1,04 44,0</td> <td>Peakuust A1 A2 A3 A4 N1 N1 N1 N1 N1 N2 $\overline{\chi}^2$ Peakuust A1 A2 A3 A4 N1 N1 N1 N1 N1 N1 N2 $\overline{\chi}^2$ <</td>	Peakuuur A1 A1 M1 M1 M1 M2 x^2 Peakuuur A1 A2 A3 A3 A4 M1 M1 M1 M1 M2 x^2 Stat E1,9±7,4 5,65±1,31 149,2±12,5 2,76±1,22 3 4 2 4 2,91±0,33 73,7 Stat E6,8±1,4 -19,6±1,7 - - - - 1,90±0,19 100,7 Stat I2,6±1,1 -15,93±1,7 - - - - 1,33±0,17 26,7 Stat 48,2±14,3 -26,5±4,7 - - - - 4,65±1,04 44,0	Peakuust A1 A2 A3 A4 N1 N1 N1 N1 N1 N2 $\overline{\chi}^2$ Peakuust A1 A2 A3 A4 N1 N1 N1 N1 N1 N1 N2 $\overline{\chi}^2$ <

je no

тель N в /2/ начинает зависеть от энергии и угла рассеяния. Величина этой эффективной степени служит естественной количественной характеристикой предасимптотических эффектов. Соответствующие графики для эффективных степеней $\pi^+ p$ -рассеяния приведены на рис. 1, $z = \cos\theta$ - косинус

угла рассеяния в с.ц.м., пунктиром показаны предсказания правил кваркового счета^{/4/}. Для энергий р_{лс} ≥ 20 /ГэВ/с/ величина предасимптотических эффектов является в достаточной мере модельно-независимой.

Учет поправок нарушает y_5 -инвариантность исходных асимптотических амплитуд, что приводит к появлению ненулевой поляризации. Однако в отличие от эффективных степеней величина поляризации сильно зависит от используемой модели. Это связано с тем обстоятельством, что в отличие от нарушений автомодельности /2/, учет которых проведен последовательно, нарушения y_5 -инвариантности учтены частично. Так, полностью отброшены y_5 -неинвариантные компоненты "жесткого" взаимодействия, подавленные по отношению к главной y_5 -инвариантной компоненте.

Прёдсказываемые моделями I и II асимптотические угловые зависимости $\pi^{\pm}p$ -рассеяния приведены на рис. 2.

Перейдем теперь к рассмотрению реакций упругого ppи pn-рассеяния, для которых воспользуемся тремя наборами предасимптотических формул.

В работе ^{/6/} была использована следующая асимптотическая амплитуда pp -рассеяния:

$$\hat{T}(s, t) = \frac{\gamma_{\mu}^{(1)} \gamma^{(2)\mu}}{s^{5}} \left[A_{1}\left(\frac{s}{|t| + b}\right)^{n_{1}} + \gamma_{5}^{(1)} \gamma_{5}^{(2)} A_{2}\left(\frac{s}{|t| + b}\right)^{n_{2}}\right],$$
(5/

причем дифференциальное сечение рассеяния выражается через амплитуду следующим образом:

$$\frac{d\sigma_{pp}}{dt} = \sum_{C\Pi UH} M_{pp}(s, t) M_{pp}^{+}(s, t);$$

$$M_{pp}(s, t) = \langle \bar{\psi}_{1}^{\sigma_{1}'}(\vec{k}) \bar{\psi}_{2}^{\sigma_{2}'}(-\vec{k}) | \hat{T}(s, t) | \psi_{1}^{\sigma_{1}}(\vec{p}) \psi_{2}^{\sigma_{2}}(-\vec{p}) \rangle - \langle \bar{\psi}_{1}^{\sigma_{2}'}(-\vec{k}) \bar{\psi}_{2}^{\sigma_{1}'}(\vec{k}) | \hat{T}(s, u) | \psi_{1}^{\sigma_{1}}(\vec{p}) \psi_{2}^{\sigma_{2}}(-\vec{p}) \rangle, \qquad (6/2)$$

где \vec{p} и k - импульсы начальной и конечной частиц в с.ц.м.

6

В работе /10/ представление /5/ было модифицировано таким образом, чтобы получить совместное описание pp- и pn-рассеяния с учетом зарядовой независимости этих реакций:

 $\hat{T}(s, t) = \frac{\gamma_{\mu}^{(1)} \gamma^{(2)\mu}}{s^5} [\gamma_5^{(1)} \gamma_5^{(2)} A_1 (\frac{s}{|t| + b})^{n_1} + A_2 (\frac{s}{|u| + b})^{n_2}].$

/7/

/9/

Дифференциальное сечение pp -рассеяния задается формулами /6/, а для pn -рассеяния имеем:

$$\frac{d\sigma_{pn}}{dt} = \sum_{C\Pi \mu H} M_{pn}(s, t) M_{pn}^{\dagger}(s, t) ,$$

$$M_{pn}(s,t) = \langle \overline{\psi}_{1}^{\sigma_{1}}(k) \overline{\psi}_{2}^{\sigma_{2}}(-k) | \widehat{T}(s,t) | \psi_{1}^{\sigma_{1}}(p) \psi_{2}^{\sigma_{2}}(-p) \rangle .$$
/8

И, наконец, подход, основанный на использовании свойств аналитичности, кроссинг-симметрии и SU(3)-симметрии, приводит к представлению ^{/7/}, также пригодному для описания обеих реакций:

$$\widehat{T}(s, t) = \frac{\gamma_{\mu}^{(1)} \gamma^{(2)\mu}}{s^5} [(3A_1 - 3A_2 + A_3)(\frac{s}{|t| + b})^4 + (A_1 - 2A_2 + A_3)(\frac{s}{|t| + b})^3 + (A_3 - A_2)(\frac{s}{|t| + b})^2 + A_3\frac{s}{|t| + b} + (A_1 - 2A_2 + A_3)(\frac{s}{|t| + b})^3 + (A_3 - A_2)(\frac{s}{|t| + b})^2 + A_3\frac{s}{|t| + b} + (A_3 - A_3)(\frac{s}{|t| + b})^2 + A_3\frac{s}{|t| + b} + (A_3 - A_3)(\frac{s}{|t| + b})^2 + A_3\frac{s}{|t| + b} + (A_3 - A_3)(\frac{s}{|t| + b})^2 + A_3\frac{s}{|t| + b} + (A_3 - A_3)(\frac{s}{|t| + b})^2 + A_3\frac{s}{|t| + b} + (A_3 - A_3)(\frac{s}{|t| + b})^2 + A_3\frac{s}{|t| + b} + (A_3 - A_3)(\frac{s}{|t| + b})^2 + A_3\frac{s}{|t| + b} + (A_3 - A_3)(\frac{s}{|t| + b})^2 + A_3\frac{s}{|t| + b} + (A_3 - A_3)(\frac{s}{|t| + b})^2 + A_3\frac{s}{|t| + b} + (A_3 - A_3)(\frac{s}{|t| + b})^2 + A_3\frac{s}{|t| + b} + (A_3 - A_3)(\frac{s}{|t| + b})^2 + A_3\frac{s}{|t| + b} + (A_3 - A_3)(\frac{s}{|t| + b})^2 + A_3\frac{s}{|t| + b} + (A_3 - A_3)(\frac{s}{|t| + b})^2 + A_3\frac{s}{|t| + b} + (A_3 - A_3)(\frac{s}{|t| + b})^2 + A_3\frac{s}{|t| + b} + (A_3 - A_3)(\frac{s}{|t| + b})^2 + A_3\frac{s}{|t| + b} + (A_3 - A_3)(\frac{s}{|t| + b})^2 + ($$

$$+A_{1}\left(\frac{s}{|u|+b}\right)^{3}+A_{2}\left(\frac{s}{|u|+b}\right)^{2}+A_{3}\frac{s}{|u|+b}].$$

Сравнение представлений /5/, /7/ и /9/ /модели I, II, III / с экспериментальными данными по упругому pp- и pn-рассеянию для энергий $p_{\rm AC} \geq 8$ /ГэВ/с/ /11,12,13/ приводит к результатам, представленным в табл. 2. Сравнение с более обширным набором экспериментальных данных, чем в работах ^{/6/} и ^{/10/},позволяет достаточно четко проследить различие моделей. При этом наилучшей оказывается модель III, для которой форма X 1/X 2 3,60 2,29 1,17 I,43 I,58 0,71 2,8I à 118 218 118 18 2**I**8 118 8 8 499,3 33I,I 112.7 424,9 312,9 I87,4 68,0 N X $2,34^{\pm}0,03$ 2,34±0,03 2,15±0,21 2,II±0,04 2,56±0,05 2,49±0,07 2,76±0,17 م ų, н н н 1 1 н I ร้ 4 4 4 4 1706,4[±]108,1 2147,6[±]29,6 2106, 3[±]44,7 Å 1572,0[±]116,9 -6839,9±275,3 I536,2[±]36,3 1478,8±28,9 -8023, 3447,5 -8074,8[±]48,0 6595,7±42,4 A٤ 587,6[±]14,7 595,0[±]14,8 545,7±29,9 454, 3[±]15,8 456,5±79,7 629,9±51,I 789,9494,7 ŕ hd Hdd Реакция he . pn 5 6 ЪР 5 a. ۵. <u>a</u> н Ħ

9

Таблица

2

8

асимптотического квазипотенциала не выбрана произвольно, а получена с использованием общих принципов теории поля.

Величины эффективных степеней N_{pp} и N_{pn} , предсказываемые моделями I, II, III, приведены на <u>рис. 3, 4</u>, где пунктиром снова показаны предсказания правил кваркового счета. Из рисунков видно, что предасимптотические эффекты в достаточной мере устойчивы по отношению к выбору конкретного представления "жесткого" квазипотенциала.

Что касается предсказываемых моделями поляризаций, они оказываются сильно модельно-зависимыми, что обусловлено отмеченным выше неполным учетом нарушений у₅-инвариантности.

Продолжения предсказаний моделей в асимптотическую область приведены на <u>рис. 5</u>. Для случая <u>PP</u>-рассеяния предсказания всех трех моделей достаточно близки. Предсказания же моделей II и III для <u>pn</u>-рассеяния близки для углов рассеяния $\theta < 90^{\circ}$ и сильно различаются при $\theta \ge 90^{\circ}$, где асимптотическая амплитуда модели III проходит через 0. Одним из источников этого различия является, в частности, малое число и большие ошибки экспериментальных точек для <u>pn</u>-рассеяния на углы, большие 90°, что не позволяет достаточно надежно восстановить угловые зависимости в этой области.

10

11

Интересен и сам факт появления нуля у асимптотической амплитуды модели III, наличие которого проявляется лишь при очень высоких.энергиях. При конечных энергиях соответствующий провал дифференциального сечения полностью заполняется поправками и различие кривых для моделей II и III не столь резко выражено.

Таким образом, приведенный выше анализ показывает, что величина предасимптотических эффектов, характеризуемая эффективными степенями, является модельно-независимой по отношению к используемым асимптотическим амплитудам. Что же касается самих асимптотических амплитуд, более предпочтительными являются амплитуды, построенные с учетом свойств аналитичности и SU(3)-симметрии.

В заключение авторы, пользуясь случаем, благодарят В.А.Матвеева и А.Н.Тавхелидзе за плодотворные обсуждения.

ЛИТЕРАТУРА

- 1. Голоскоков С.В., Кулешов С.П., Кудинов А.В. ТМФ, 1979, 39, с. 185.
- Dzhgarkava M.I. et al. Nucl.Phys., 1973, B67, p. 232; Гарсеванишвили В.Р. и др. ОИЯИ, Р2-9947, Дубна, 1976.
- 3. Гарсеванишвили В.Р., Матвеев В.А., Слепченко Л.А. ЭЧАЯ, 1970, 1, с. 91.
- 4. Matveev V.A., Muradyan R.M., Tavkhelidze A.N. Lett. Nuovo Cimento, 1973, 7, p. 719.
- 5. Голоскоков С.В. и др. ТМФ, 1975, 24, с. 24.
- Голоскоков С.В., Кудинов А.В., Кулешов С.П. ЯФ, 1979, 29, с. 1070.
- 7. Goloskokov S.V., Koudinov A.V., Kuleshov S.P. JINR, E2-12627, Dubna, 1979.
- 8. Bracci E. et al. Compilation of Differential Cross Sections π -Induced Reactions.CERN preprint, CERN-HERA, 75-2, 1975.
- 9. Baglin C. et al. Nucl. Phys., 1975, B98, p. 365.
- Goloskokov S.V., Koudinov A.V., Kuleshov S.P. JINR, E2-12328, Dubna, 1979.
- 11. Benary O. et al. NN and ND Interactions. A Compilation. Berkeley preprint UCRL-20000, 1970.
- 12. Cocconi G. et al. Phys.Rev., 1965, 138B, p. 165.
- 13. Stone J.L. et al. Nucl. Phys., 1979, B143, p. 1.

Рукопись поступила в издательский отдел 26 июля 1979 года.