ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

5-441

11 11 11

P2 - 12023

19/11-29

948/2-79 А.А.Бельков, С.А.Бунятов. В.Н.Первушин

ДИСПЕРСИОННЫЙ МЕТОД САМОСОГЛАСОВАННОГО ОПИСАНИЯ **π** - РАССЕЯНИЯ В КИРАЛЬНОЙ ТЕОРИИ

P2 - 12023

А.А.Бельков, С.А.Бунятов, В.Н.Первушин

ДИСПЕРСИОННЫЙ МЕТОД САМОСОГЛАСОВАННОГО ОПИСАНИЯ тат -РАССЕЯНИЯ В КИРАЛЬНОЙ ТЕОРИИ

Направлено в ЯФ

*Институт физики высоких энергий /Серпухов/

and the group of the group

Бельков А.А., Бунятов С.А., Первушин В.Н.

P2 - 12023

Дисперсионный метод самосогласованного описания *пп* -рассеяния в киральной теории

Получено безмодельное описание низкоэнергетического рассеяния пионов на основе дисперсионного метода эффективных лагранжнанов лл – рассеяния. Описанный метод приводит к большим поправкам к значениям s -волновых длин лл -рассеяния в борновском приближении. Полученные феноменологические предсказания длин s -волнового лл -рассеяния хорошо согласуются с результатами анализа данных из реакции лN + ллN и K_{e4} -распадов.

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1978

P2 - 12023

Belkov A.A., Bunyatov S.A., Pervushin V.N.

Dispersion Method of Selfconsistent Description of $\pi\pi$ -Scattering in Chiral Theory

An unmodel description of the low energy scattering of massive pions is obtained. This description is based on dispersion method of the effective Lagrangian of $\pi\pi$ -scattering. It results in a considerable corrections to the Born value of s-wave scattering lengths. The obtained phenomenological predictions of $\pi\pi$ -scattering s-wave lengths are in good accordance with the data on $\pi N \rightarrow \pi\pi N$ reactions and K_{e4}-decay.

The investigation has been performed at the Laboratory of Nuclear Problems JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1978

1. ВВЕДЕНИЕ

Алгебра токов и гипотеза о частичном сохранении аксиального тока /ЧСАТ/ дают ограничения на амплитуду лл -рассеяния в нефизической точке, где 4-импульс пиона равен нулю. Для вычисления длин рассеяния необходимо экстраполировать эти результаты к физическому порогу.

Если амплитуда не имеет особенностей в области энергий π -мезонов $E_{\pi} \sim m_{\pi}$ или вклад таких особенностей в амплитуду мал, то при нулевой массе пиона амплитуда представима в виде разложения по 4-импульсам π -мезонов. В частности, для амплитуды $\pi\pi$ -рассеяния в s-канале имеет место разложение, удовлетворяющее требованиям бозе-статистики и кроссинг-симметрин:

$$\begin{aligned} A(s, t, u; p_1^2, p_2^2, p_3^2, p_4^2) &= a + b(t + u) + cs + \\ &+ d(t + u)^2 + etu + fs^2 + g(t + u)s + h \sum_{i \le j} p_i^2 p_j^2 + \dots, \\ s &= (p_1 + p_2)^2, \quad t = (p_1 - p_3)^2, \quad u = (p_1 - p_4)^2. \end{aligned}$$

Ввиду "малости" массы *п*-мезонов предполагалось, что экстраполяционная формула /1/ применима и к случаю реальных массивных пионов.

Вайнберг ^{/1/} рассмотрел первый порядок экстраполяционного разложения. Три неопределенных параметра, возникающих при этом, фиксировались с помощью условия самосогласованности Адлера и низкоэнергетических теорем для *пп* - рассеяния.

Однако совсем не очевидно, что экстраполяционное разложение сходится у порога и можно ограничиться только членами первого порядка. Малость длин рассеяния, полученных Вайнбергом, должна указывать, казалось бы, на справедливость разложения /1/ по крайней мере в нефизической подпороговой области. Однако это справедливо лишь в том случае, если можно пренебречь членами высшего порядка, то есть если учет последних не приводит к существенному изменению предсказаний для длин рассеяния.

Коэффициенты экстраполяцнонного разложения, включающего члены второго порядка, можно связать с параметрами нарушенной киральной SU(2) \otimes SU(2) алгебры с помощью кроссингсимметричного формализма Хури ^{2,3}. Поправки к длинам рассеяния, обусловленные членами второго порядка, составляют несколько процентов. Поэтому может показаться, что экстраполяционное разложение /1/ может претендовать на описание фаз $n\pi$ -рассеяния по крайней мере в припороговой физической области⁴. Однако это предположение не подтверждается расчетами.⁵.

Строго говоря, переход к массивным пионам должен приводить дополнительно к переразложению коэффициентов экстраполяционной формулы по степеням параметра типа E_{π} м π . Однако в рамках алгебры токов и ЧСАТ определить такое переразложение невозможно. Кроме того, амплитуда /1/ не удовлетворяет условию унитарности и поэтому теряет смысл при больших энергиях. В настоящей работе развивается дисперсионный метод эффективных лагранжианов $\pi\pi$ -рассеяния с нарушенной киральной симметрией, который позволяет преодолеть указанные выше трудности.

Первый порядок разложения амплитуды рассеяния по 4-импульсам пионов в алгебре токов воспроизводится в методе эффективных лагранжианов борновским приближением, учитывающим древесную днаграмму. Исходное предположение дисперсионного метода феноменологических лагранжианов заключается в том, чтобы учесть переразложение коэффициентов экстраполяционной формулы унитаризацией амплитуды рассеяния с помощью соотношения упругой унитарности, которое выражает мнимую часть амплитуды рассеяния через произведение борновских амплитуд.

Дисперсионный метод позволяет учесть разные способы нарушения киральной симметрии и тем самым обеспечивает возможность отбора вариантов нарушения киральной симметрии по степени согласия с экспериментальными данными рассеяння и поведением фаз парциальных амплитуд вблизи порога. В феноменологическом подходе неопределенные параметры можно зафиксировать по экспериментальным значениям длин рассеяния в p-и d-состояниях. Как будет показано ниже, наш метод приводит к большим поправкам к значениям s-волновых длин $\pi\pi$ -рассеяния в борновском приближении.

Отметим, что дисперсионные соотношения 6 естественным образом возникают из квантовой теории поля. Указанием на возможность эффективного применения описанного дисперсионного метода именно для $\pi\pi$ -рассеяния являются результаты вычисления высших поправок в киральной теории поля $^{7, 8/}$ и $^{9, 10/}$.

2. АМПЛИТУДА РАССЕЯНИЯ ПИОНОВ

Рассмотрим эффективный лагранжиан *пп* - рассеяния с нарушенной киральной симметрией:

$$\mathcal{L}_{\pi\pi} = -\frac{1}{4F_{\pi}^2} [\vec{\pi}^2(\partial_{\mu}\vec{\pi}\partial^{\mu}\pi) - \beta m_{\pi}^2(\vec{\pi}^2)^2].$$

Параметр β принимает разные значения в зависимости от способа нарушения киральной симметрии: $\beta = 1/2$ в σ -модели Вайнберга^{/11}, $\beta = 1/3$ в экспоненциальной модели нарушения Гюрсея и Чанга.¹², $\beta = 1/4$ в модели Швингера /13.

Амплитуда рассеяния имеет вид:

$$(2\pi)^{6} 4 \sqrt{p_{1}^{0} p_{2}^{0} p_{3}^{0} p_{4}^{0}} < i_{1} i_{2} |S| i_{3} i_{4} > =$$

$$= 1 + i(2\pi)^{4} \delta^{(4)} (p_{1} + p_{2} - p_{3} - p_{4}) \times [\delta_{i_{1} i_{2}} \delta_{i_{3} i_{4}} A(s, t, u) + \delta_{i_{1} i_{3}} \delta_{i_{2} i_{4}} A(t, s, u) + \delta_{i_{1} i_{4}} \delta_{i_{2} i_{3}} A(u, t, s)],$$

где I - единичная матрица; і к - изотопические индексы пиона.

4

Борновскому приближению соответствует древесная диаграм-

ма / рис. 1а/, и борновская часть амплитуды имеет вид

$$\frac{\mathbf{A}^{\mathbf{b}}(\mathbf{\bar{s}},\kappa)}{32\pi} = \frac{\pi}{2} a_0 (3 \mathbf{\bar{s}} - \kappa),$$

где

Рис.1. Древесная диаграмма /а/ и унитарное рассечение однопетлевой диаграммы /б/.

Унитарное рассечение '14.'однопетлевой диаграммы / рис. 16/ позволяет связать мнимую часть вклада пнонной петли в амплитуду пп - рассеяния с ее борновской частью:

$$\operatorname{Im} \mathbf{A}^{[1]}(\overline{\mathbf{s}}) = (1 - \frac{1}{\overline{\mathbf{s}}})^{\frac{1}{2}} [\mathbf{A}^{[1]}(\overline{\mathbf{s}})]^2 \theta(\overline{\mathbf{s}} - 1)$$

Это соотношение обеспечивает унитарность амплитуды пл - рассеяния

A(s) = A (s) + A (s)

с точностью до членов порядка a^3 .

Восстановим реальную часть амплитуды А по ее мнимой части. Для этого воспользуемся дисперсионным соотношением с тремя вычитаниями:

где a, b и с - вычитательные константы. Полная амплитуда пп - рассеяния примет вид:

$$\frac{\mathbf{A}(\mathbf{\bar{s}})}{32\pi} = \frac{\pi}{2} a_0 (3\mathbf{\bar{s}} - \kappa) + \frac{\pi}{2} a_0^2 \Pi(\mathbf{\bar{s}}, \kappa),$$
$$\Pi(\mathbf{\bar{s}}, \kappa) = \mathbf{A} + \mathbf{B} \mathbf{\bar{s}} + \mathbf{C} \mathbf{\bar{s}}^2 - \mathbf{J}(\mathbf{\bar{s}})(3\mathbf{\bar{s}} - \kappa)^2$$

где А, В. С - неизвестные параметры, и

$$J(\xi) = 1 - \frac{1}{2} \sum_{1}^{\infty} (4\xi)^{n} \frac{n!(n-1)!}{(2n+1)!} =$$

$$= \begin{cases} \tilde{y} \arctan y = (\frac{1}{\xi} - 1)^{\frac{1}{2}}, & 0 < \xi < 1 \\ \frac{y}{2} [\ln(\frac{1+y}{1-y}) - i\pi], & y = (1 - \frac{1}{\xi})^{\frac{1}{2}}, & \xi > 1 \\ \frac{y}{2} \ln(\frac{y+1}{y-1}), & \xi < 0. \end{cases}$$

Амплитуды А в канале с изоспином I и парциальные амплитуды A^I определнм следующим образом:

$$\begin{aligned} A^{0} &= 3A(s, t, u) + A(t, s, u) + A(u, t, s), \\ A^{1} &= A(t, s, u) - A(u, y, s), \\ A^{2} &= A(t, s, u) + A(u, t, s), \\ A^{I}_{\rho}(\vec{s}) &= \frac{1}{2} \int_{-1}^{1} dx P_{\rho}(x) A^{I}(\vec{s}, x), \\ (\vec{t} &= (1 - \vec{s}) - \frac{1 - x}{2}, \ \vec{u} &= (1 - \vec{s}) - \frac{1 + x}{2}). \end{aligned}$$

Дополним полученное выше выражение для амплитуды пл рассеяния зависимостью от t и u. При этом наряду с кроссинг-симметрией потребуем, чтобы парциальные амплитуды А₀,

 A_1^1 и A_0^2 были унитарны в приближенин a_0^2 Оба условия определяют общий вид зависящей от t и u добавки к II(s):

$$\Pi(\bar{t}, \bar{u}) = d(\bar{t}^2 + \bar{u}^2) - J(\bar{t})P(\bar{t}, \bar{u}) - J(\bar{u})P(\bar{u}, \bar{t}),$$

$$P(\bar{t}, \bar{u}) = a_1\bar{t} + a_2\bar{t}^2 + a_3\bar{t}\bar{u} + a_4\bar{u}^2 + a_5\bar{u} + a_6.$$

Условне унитарности парциальных амплитуд накладывает ограничения на полиномы $P(\tilde{t},\tilde{u})$

$$P(\vec{s}, \vec{u}) + P(\vec{s}, \vec{t}) + 3(3\vec{s} - \kappa)^{2} = 6\vec{s} + 3 - 5\kappa \qquad (A_{0}^{0})$$

$$P(\vec{s}, \vec{u}) + P(\vec{s}, \vec{t}) = (3\vec{s} - 3 + 2\kappa)^{2} \qquad (A_{0}^{2})$$

$$P(\vec{s}, \vec{u}) - P(\vec{s}, \vec{t}) = 3(\vec{s} - 1)^{2}x \qquad (A_{1}^{1}).$$

Первые два условия совместны лишь при $\kappa \sim 1$ ($\beta = 1$ '3). В общем случае одновременно унитарными могут быть либо $A_1^1 \mu A_0^0$, либо $A_1^1 \mu A_0^2$. В каждом отдельном случае условие унитарности парциальных амплитуд позволяет однозначно зафиксировать коэффициенты полинома $P(\bar{t}, \bar{u})$.

Окончательное выражение для амплитуды *пп*-рассеяния имеет вид:

$$\frac{A(\overline{s}, \overline{t}, \overline{u})}{32\pi} = \frac{\pi}{2}\alpha_0(3\overline{s} - \kappa) + \frac{\pi}{2}\alpha_0^2 II(\overline{s}, \overline{t}, \overline{u}, \kappa),$$

$$II(\overline{s}, \overline{t}, \overline{u}, \kappa) = A + B\overline{s} + C\overline{s}^2 + D(\overline{t}^2 + \overline{u}^2) - J(\overline{s})(3\overline{s} - \kappa)^2 - J(\overline{t})(4\overline{t} + 3\overline{t}(\overline{t} - \overline{u}) + 3\overline{u} + b) - J(\overline{u})(4\overline{u} + 3\overline{u}(\overline{u} - \overline{t}) + 3\overline{t} + b).$$

При а $21(1-\kappa)$. b $11\kappa^2 - 15\kappa + 3$ унитарны парциальные амплитуды A_0^0 и A_1^1 : при а $-6(\kappa - 1)$, b $2\kappa^2 - 6\kappa + 3$ унитарны амплитуды A_0^2 и A_1^1 . При $\kappa - 1$ ($\beta = 1/3$) неоднозначность в определении а и b устраняется / a=O, b=-1/ и в приближении a_0^2 унитарны все три s- и р-волновые амплитуды.

3. ДЛИНЫ РАССЕЯНИЯ ПИОНОВ

Амплитуды *пп*-рассеяния с изотопнческим спином I имеют вид:

$$A^{1}(\tilde{s}, x, \kappa) = \frac{\pi}{2}a_{0}B^{1}(\tilde{s}, x, \kappa) - \frac{\pi}{2}a_{0}^{2}l^{1}[\tilde{s}, x, \kappa).$$
3gecb B¹ - вклад от борновского члена, П¹ - вклад от однопетле-
вой диаграммы:
B⁰ = [6 $\tilde{s} \cdot (3 - 5\kappa)$], B¹ - 3($\tilde{s} - 1$)x, B² - [3 $\tilde{s} - (3 - 2\kappa)$],
II⁰ = 5A - B + 2B $\tilde{s} + (2D + 3C)\tilde{s}^{2} + \frac{(C + 4D)}{2}(\tilde{s} - 1)^{2}(1 + x^{2}) - J(\tilde{s})$][6 $\tilde{s} + (3 - 5\kappa)$]² · R⁰ + 12G⁰(x),
II¹ = B($\tilde{s} - 1$)x + (D - C)($\tilde{s} - 1$)²x - 3($\tilde{s} - 1$)²xJ(\tilde{s}) + 2G¹(x).
II² = 2A + B(1 - \tilde{s}) + 2D $\tilde{s}^{2} + \frac{(C + D)}{2}(\tilde{s} - 1)^{2}(1 + x)^{2} - J(\tilde{s})$][3 $\tilde{s} - (3 - 2\kappa)$]² · R² + 6G²(x).
G⁰ = J((1 - \tilde{s}) - $\frac{1 - x}{2}$]]($\tilde{s} - 1$)²[5($\frac{1 + x}{2}$)² - $\frac{1 + x}{2}$] · + ($\tilde{s} - 1$)[($\kappa - \frac{2}{3}a + 2$) $\frac{1 + x}{2} - 1$] + $\frac{\kappa^{2} + 4b + 3}{2}$] ,
G¹ = J((1 - \tilde{s}) $\frac{1 + x}{2}$]]($\tilde{s} - 1$)²[6($\frac{1 + x}{2}$)² - 3 $\frac{1 + x}{2}$] + 3($\tilde{s} - 1$)]($2\kappa + \frac{1}{3}a - 1$) $\frac{1 + x}{2} - 1$] + ($\kappa^{2} - b - 3$]],
G² = J((1 - \tilde{s}) $\frac{1 + x}{2}$]]($\tilde{s} - 1$)²[4($\frac{1 + x}{2}$)² + $\frac{1 + x}{2}$] + ($\tilde{s} - 1$)[($2\kappa - \frac{a}{3} + 1$) $\frac{1 + x}{2} + 1$] + $\frac{\kappa^{2} + b + 3}{3}$ }.
R⁰ = 2 \tilde{s} [a - 21(1 - κ)] + 2[b - (11 $\kappa^{2} - 15\kappa + 3$)],
B² = 2 \tilde{s} [a - 6($\kappa - 1$)] + 2[b - (2 $\kappa^{2} - 6\kappa + 2$)]

Длины пп - рассеяния определим следующим образом:

$$\mathbf{a}_{\ell}^{\mathbf{I}} = \lim_{\overline{\mathbf{s}} \to 1} \frac{\mathbf{A}_{\ell}^{\mathbf{I}}(\overline{\mathbf{s}})}{(\overline{\mathbf{s}} - 1)^{\ell}}$$

Воспользовавшись формулой

$$\frac{1}{2} \int_{-1}^{1} dx P_{\ell}(x) (\frac{1+x}{2})^{\ell} = \frac{(\ell!)^{2}}{(2\ell+1)!}$$

получим выражения для s- и р-волновых длин рассеяния:

$$a_{0}^{0} = \frac{\pi}{2} a_{0} (9 - 5\kappa) + \frac{\pi}{2} a_{0}^{2} [5A + 3B + 2D + 3C - 6(\kappa^{2} + 4b + 3)],$$

$$a_{0}^{2} = -\frac{\pi}{2} a_{0} 2\kappa + \frac{\pi}{2} a_{0}^{2} [2A + 2D - 2(\kappa^{2} + b + 3)],$$

$$a_{1}^{1} = \frac{\pi}{2} a_{0} + \frac{\pi}{2} a_{0}^{2} \frac{1}{3} [B + (6\kappa + a - 3) + \frac{\kappa^{2} - b - 3}{3}].$$

В борновском приближении s- и p-волновые длины рассеяния связаны соотношением:

 $2a_0^0 - 5a_0^2 = 18a_1^1$,

причем

$$a_0^0/a_0^2 = -(1+5\beta)/(2-2\beta).$$

Для d-волновых длии рассеяния получим выражения

$$a_{2}^{0} = \frac{\pi}{2} \alpha_{0}^{2} \left[\frac{1}{15} (C + 4D) - \frac{2}{5} (5 + \frac{3\kappa - 2a + 6}{9} - \frac{-\kappa^{2} + 4b + 3}{15}) \right],$$

$$a_{2}^{2} = \frac{\pi}{2} \alpha_{0}^{2} \left[-\frac{1}{15} (C + D) - \frac{1}{5} (4 + \frac{6\kappa - a + 3}{9} - \frac{2}{45} (\kappa^{2} + b + 3)) \right].$$

4. ФЕНОМЕНОЛОГИЧЕСКИЕ РАСЧЕТЫ

Заметим, что вычитательная константа А приводит к перенормировке параметра нарушения киральной симметрии к'=к-а 0А в борновской части амплитуды $\pi\pi$ -рассеяния. Соответствующие поправки к длинам рассеяния составляют несколько процентов, и мы будем пренебрегать ими. Пренебрежем также несущественными поправками, обусловленными неоднозначностью определения параметра а и b, и для определенности положим $a = 21(1 - \kappa)$ и $b = 11\kappa^2 - 15\kappa + 3$.

Свободные параметры B,C и D зафиксируем из экспериментальных значений p- и d-волновых длин *пп*-рассеяния:

$$a_{1}^{1} = 0.040 \pm 0.004^{-115/},$$

$$a_{2}^{0} = (1.1 \pm 0.6) \cdot 10^{-3/16/},$$

$$a_{2}^{2} = -(0.4 \pm 0.1) \cdot 10^{-3/16/}.$$

Таким образом, можно получить оценки длин ^S-волнового рассеяния для разных значений параметра нарушения киральной симметрии β . Точность таких феноменологических предсказаний определяется ошибками экспериментальных значений p-и dволновых длин $\pi\pi$ -рассеяния.

Значения длин ^S-волнового *пп* - рассеяния в борновском приближении и результаты дисперсионного метода приводены в *таблице*.

На рис. 2 показано поведение разности фаз $(\delta_0^0 - \delta_1^1)$ при разных значениях параметра нарушения кнральной симметрии. Для вычисления фаз рассеяния использовалась формула

$$(\operatorname{ctg} \delta {}_{\ell}^{\mathrm{I}} - \mathrm{i})^{-1} = (1 - \frac{1}{\mathrm{s}})^{\frac{1}{2}} A {}_{\ell}^{\mathrm{I}}.$$

Теоретические кривые сравниваются с экспериментальными точками, полученными из К_{е4}-распадов /17/.

В работе ^{/5}' мы провели анализ K_{e4} -данных совместно с данными по фазе δ_0^0 из реакцин $\pi^- p \to \pi^+ \pi^- n$ /17 ГэВ/с/ ^{/18/} с учетом подпорогового нуля в амплитуде s-волнового рассеяния. Для величины a_0^0 было получено значение $a_0^0 = (0,23\pm0,05)m_{\pi}^{-1}$. Аналогичный анализ на основе уравнений Роя ^{/19/}дает величину $a_0^0 = /0,26\pm0,05/m_{\pi}^{-1}$. Оба значения хорошо согласуются с феноменологическими предсказаниями, полученными в настоящей работе.

- ¥
2
2
.5
S S
o.
_

результаты Я борновском приближении **m** Длины *пп* - рассеяния в дисперсионного метода.

β	Бо	рновское	приближение		Резу	льтаты	дисперсион	ного ме т ода
	a ⁰	a 2 0 2	a_0^0/a_0^2	в	U	۵	\mathbf{a}_{0}^{0}	a_0^2
1/2	0,16	-0,046	-7/2	42+20	-16 <u>-</u> 5	19+5	0,24 <u>+</u> 0,04	-0,025 <u>+</u> 0,006
1/3	0,12	-0,061	-2	16 <u>+</u> 20	-15±5	20+5	0,20 <u>+</u> 0,04	-0,041+0,006
1/4	0,10	- 0 ,0 69	-3/2	48+20	-15+5	20+5	0,18+0,04	-0,050+0,006
	Анали. подпор ттрр	з экспери оогового ассеяния	ментальных данных нуля в амплитуде /5/	с учет S-волн	om oboro		0,23 <u>+</u> 0,05	-0,06 <u>-</u> 0,07

Рис.2. Поведение разности фаз $(\delta_0^0 - \delta_1^1)$] при разных значениях параметра нарушения киральной симметрии β . Экспериментальные точки - данные из К _{е4} - распадов ⁽¹⁷⁷⁾.

5. ЗАКЛЮЧЕНИЕ

Рассмотрен дисперсионный метод эффективных лагранжианов *пп* - рассеяния, который позволяет получить безмодельное описание низкоэнергетического рассеяния массивных пионов. Полученная амплитуда рассеяния удовлетворяет условию унитариости, что обеспечивает самосогласованность описания фаз парциальных амплитуд *пп* - рассеяния вблизи порога.

Получены феноменологические предсказания длин s-волнового $\pi\pi$ -рассеяния. Показано, что учет переразложения коэффициентов экстраполяционной формулы /1/ дисперсионным методом приводит к увеличению длины рассеяния a_0^0 на 50-80% по сравнению с борновским значением. Полученные предсказания хорошо согласуются с результатами анализов К_{е4}-данных совместно с данными о фазе δ_0^0 при М_{$\pi\pi$}> 500 *МэВ*, выполненных в работах ^{/5/} н ^{/19.}

ЛИТЕРАТУРА

- 1. Weinberg S. Phys. Rev. Lett., 1966, 17, p. 616.
- 2. Khuri N.N. Phys. Rev. 1967, 153, p. 1477.
- 3. Bars I. Phys. Rev. 1970, D2, p. 1630.
- 4. Serebryakov V.V. Hadron Interactions at Low Energies. Proc. of the Triangle Meeting, VEDA Pub.Hause, Bratislava, 1975.
- 5. Бельков А.А., Бунятов С.А. ОИЯИ, Р2-11879, 1978.
- 6. Ширков Д.В., Серебряков В.В., Мещеряков В.А. Дисперсионные теории сильных взаимодействий при низких энергиях, "Наука", М., 1967.
- 7. Lehman H., Trute H. H.Nucl. Phys. 1973, B52, p. 280.
- 8. Lehman H. Phys.Lett., 1972, 41B, p. 529.
- 9. Волков М.К., Первушин В.Н. ЯФ, 1974, 20, с. 762.
- 10. Volkov M.K., Pervushin V.N. Nuovo Cim. 1975, 27A, p. 277.
- 11. Weinberg S. Phys. Rev. Lett., 1967, 18, p. 188.
- 12. Chang P., Gursey F. Phys. Rev. 1967, 164, p. 1752.
- 13. Schwinger J. Phys.Lett. 1967, 24B, p. 473.
- 14. Ахиезер А.И., Берестецкий В.Б. Квантовая электродинамика. "Наука", М., 1964, с. 609.
- 15. Basdevant J.L., Fragatt C.D., Peterson J.L. Nucl. Phys. 1974, B72, p. 413.
- 16. Baton J.P., Lourens G., Reignier J. Phys.Lett., 1970, 33B, p. 528.
- 17. Rosselet L. et al. Phys. Rev. 1977, D15, p. 574.
- 18. Estabrooks P., Martin A.D. Nucl. Phys. 1974, D79, p. 301.
- 19. Peterson J.L. The $\pi\pi$ -Interaction, 1977, CERN, p. 77-40.

Рукопись поступила в издательский отдел 14 ноября 1978 года.