ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

> P2 - 11805 15/1-79

С.Г.Коваленко

103/2-79

K-562

ГЛУБОКОНЕУПРУГОЕ е(µ)d -РАССЕЯНИЕ И ПАРТОННАЯ МОДЕЛЬ С НАРУШЕННЫМ СКЕЙЛИНГОМ

P2 - 11805

С.Г.Коваленко

ГЛУБОКОНЕУПРУГОЕ е(µ)d -РАССЕЯНИЕ И ПАРТОННАЯ МОДЕЛЬ С НАРУШЕННЫМ СКЕЙЛИНГОМ

Направлено в ЯФ

05%	, ,		\$2	TRAT
÷.				<u>्र</u> भुष ग्रह्य
		dire a		

Коваленко С.Г.

Kovalenko S.G.

Глубоконеупругое е(µ́d-рассеяние и партокная модель с нарушенным скейлингом

В рамках кварк-партопной модели с нарушенным скейлингом получены структурные функции глубоконеупругого $e(\mu)d$ -рассеяния с учетом эффектов фермиевского движения нуклонов в дейтоне. В качестве дейтонной волновой функции использована функция "Reid hard-core". Приведен удобный вид параметризации этой функции в импульсном пространстве. Обсуждается процедура извлечения нейтронных данных из дейтонных, и демонстрируется существенная зависимость ее результатов от выбора параметризации нуклонных структурных функций. Найденные структурные функции дейтона хорошо согласуются с экспериментальными данными.

Работа выполнена в Лаборатории теоретической физики ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1978

P2 - 11805

Deep Inelastic $e(\mu)d$ -Scattering and Quark-Parton Model with Broken Scaling

The structure functions of deep inelastic $e(\mu)d$ -scattering are found in the frame of the quark-parton model with broken scaling. The effects of a nucleon Fermi-motion inside deuteron are taken into account by using Reid hard-core ware functions as deuteron one. We give a convenient form of the parametrization for this wave function in momentum space representation. The procedure of extracting neutron structure functions from a deuteron data is discussed and strong model dependence of its results on the type of parametriza-

tion for nucleon structure functions is demonstrated. The obtained deuteron structure functions are in a good agreement with experimental data.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Preprint of the Joint Institute for Nuclear Research.

Dubna 1978

ВВЕ ДЕНИЕ

В настоящей статье мы продолжим сравнение с экспериментальными данными результатов кварк-партонной модели с нарушенным скейлингом, предложенной нами в работе /1/.Как было показано ранее, она находится в довольно хорошем согласии с экспериментальными данными по глубоконеупругому ер -рассеянию. С целью дальнейшей проверки нашей модели мы намерены предпринять анализ как можно более широкого класса процессов с большими переданными импульсами.

Следующий естественный шаг (после уже проведенного анализа реакции e + p - e + X) - это описание сечения реакции $e+n \rightarrow e+X$, т.е. получение и проверка структурных функций нейтрона. Нейтронные данные могут быть извлечены из процессов глубоконеупругого электрон-дейтонного рассеяния. Дейтон, как известно, представляет собой связанную систему нейтрона и протона с энергией связи ~2,2 МэВ. Несмотря на малость этой величины по сравнению с энергиями налетающих частиц (~10 ГэВ), мы не можем пренебречь эффектами доплеровского смещения, возникающего из-за наличия фермиевского движения нуклонов внутри дейтона. Примечательно, что этот эффект оказывается значительным не только в резонансной области, где сечение есть быстроменяющаяся функция энергии, но также и в области больших значений инвариантной массы конечных продуктов, где оно является медленноменяющейся функцией энергии.

Для учета влияния фермиевского движения нуклонов на процесс рассеяния необходимо знать релятивистскую

волновую функцию дейтона. В настоящее время теория Дейтона еще далека от своего завершения, и точный вид его волновой функции пока неизвестен. Поэтому процедура извлечения нейтронных данных из взаимодействий с дейтоном наталкивается на серьезные трудности. Существенный прогресс в этой области наметился после появления работ Атвуда и Веста /2,3/, которые предложили достаточно корректный метод учета ферми-движения нуклонов в дейтоне. Разработанный ими метод используется в большинстве экспериментальных работ при извлечении нейтронных структурных функций из данных по глубоконеупругому ed -рассеянию. По своему существу процедура извлечения является некоторым алгоритмом восстановления подынтегральной структурной функции в "smearing'"-интеграле по его значению и требует задания определенного вида параметризации структурных функций нейтрона и протона. Существенно, что конечные результаты такой процедуры, как показано в разд. 2, находятся в сильной зависимости от типа выбираемой параметризации. Таким образом, известные нейтронные данные несут на себе некоторый отпечаток обычно используемых параметризаций типа параметризации Баргера-Филмипса. В такой ситуации нам кажется благоразумным сравнивать результаты модели непосредственно для структурных функций дейтона, учитывая соответствующим образом фермиевское движение нуклонов в дейтоне, с экспериментальными данными по глубоконеупругому ed -рассеянию /4/. Такое сравнение, проведенное нами в разделе 2, указывает на хорошее согласие предсказаний нашей модели с этими экспериментальными данными. Отсюда делается вывод и о соответствии эксперименту полученных нами структурных функций нейтрона.

План данной заметки таков. В разделе 1 мы приводим основные сведения о методе учета фермиевского движения нуклонов в дейтоне при построении структурных функций дейтона по структурным функциям нейтрона и протона.

В разделе 2 данная процедура применяется к результатам нашей модели и проводится сравнение с экспериментальными данными по глубоконеупругому ер – и ed -рассеянию^{/4/}. Кроме того, здесь мы обсуждаем степень влияния усреднения по ферми-движению на конечные результаты, а также касаемся некоторых аспектов извлечения нейтронных данных из дейтонных с точки эрения полученных нами результатов.

\$1. УЧЕТ ФЕРМИЕВСКОГО ДВИЖЕНИЯ НУКЛОНОВ В ДЕЙТОНЕ

Приведем некоторые основные сведения о методе учета ферми-движения нуклонов в дейтоне /2/.

Воспользуемся некогерентным импульсным приближением, ограничиваясь случаем однофотонного обмена. Тогда процесс рассеяния электрона на дейтоне будет описываться двумя диаграммами рис. 1. В этом при-

Рис. 1.

ближении нуклоны в дейтоне считаются свободными и взаимодействуют с налетающим электроном независимо:

$$\sigma^{d} = \sigma^{n} + \sigma^{p}.$$

•

Согласно работе ^{/2/}, где обсуждаются различные типы поправок к данному приближению, наиболее значительными, по-видимому, оказываются поправки ферми-движения нуклонов в дейтоне.

Очевидно, что верхние блоки диаграмм рис. 1 описываются структурными функциями нуклонов и зависят от импульсов их фермиевского движения в дейтоне. Распределение по импульсам \vec{p} нуклонов задается сферически симметричной релятивистской волновой функцией дейтона $\psi(|\vec{p}|)$. Зная эту функцию, можно провести усреднение по импульсам ферми-движения нуклонов и получить структурные функции дейтона:

$$W_{\mu\nu}^{d} = \int \frac{d^{s} p_{s}}{\epsilon_{s}/M_{s}} |\psi(|\vec{p}_{s}|)|^{2} [W_{\mu\nu}^{n} + W_{\mu\nu}^{p}] \equiv W_{\mu\nu}^{ns} + W_{\mu\nu}^{ps} , \quad (1.1)$$

где $W_{\mu\nu}^{n,p}$ - структурные функции нейтрона и протона соответственно; $\dot{\mathbf{p}}_{s}$, ϵ_{s} и M_{s} - 3-импульс, энергия и масса вылетающего из нижнего блока диаграмм рис.1 свободного нуклона (spectator). Интеграл по $d^{3}\mathbf{p}_{s}$ в (1.1) часто называют интегралом "размазывания".

Направляя q - З-импульс виртуального фотона вдоль оси z и переписывая инвариантный фазовый объем $M_s d^3 p_s / \epsilon_s$ в системе центра масс виртуального фотона и дейтона, получим следующие выражения для инвариантных структурных функций дейтона W_1^d , W_2^d через инвариантные структурные функции нуклонов $W_{1,2}^{n,p}$:

$$W_{1}^{d}(\nu, Q^{2}) = \int_{\omega_{T}}^{\omega_{m}} d\omega Q^{2}[(W_{1}^{n}(Q^{2}, \omega) + W_{1}^{p}(Q^{2}, \omega))j_{1}(Q^{2}, \omega, \nu) + (W_{2}^{n}(Q^{2}, \omega) + W_{2}^{p}(Q^{2}, \omega))j_{2}(Q^{2}, \omega, \nu)], \qquad (1.2)$$

$$W_{2}^{d}(\nu,Q^{2}) = \int_{\omega_{T}}^{\omega_{m}} d\omega \cdot Q^{2} [W_{2}^{n}(\omega,Q^{2}) + W_{2}^{p}(\omega,Q^{2})] j_{3}(Q^{2},\omega,\nu). \quad (1.3)$$

Здесь

$$\mathbf{x}^{-1} = \omega = \frac{W^2 - M^2}{Q^2} + 1, \qquad (1.4)$$

$$W^2 = (\mathbf{p}_i + \mathbf{q})^2 = \mathbf{p}_i^2 + 2\mathbf{p}_i \mathbf{q} - Q^2, \quad \omega_{\mathrm{T,m}} = \frac{W_{\mathrm{T,m}}^2 - M^2}{Q^2} + 1,$$

$$W_{T}^{2} = (M + M_{\pi})^{2}, \quad W_{m}^{2} = (\sqrt{S} - M)^{2}$$

 $p_i = (p_0, p_x, p_y, p_z) - 4$ -импульс взаимодействующего с γ^* -квантом нуклона; $q = (\nu, q) - 4$ -импульс виртуального фотона в системе покоя дейтона; $Q^2 = -q^2$; М -масса нуклона;

$$S = (p_{d} + q)^{2} = M_{d}^{2} + 2M_{d}\nu - G^{2}; \qquad (1.5)$$

$$j_{1}(Q^{2},\omega,\nu) = \pi M \frac{\tilde{p}_{s}}{\sqrt{S}-1} \int_{-1}^{+1} d\cos\tilde{\theta}_{s} |\psi(|\vec{p}_{s}|)|^{2}, \qquad (1.6)$$

$$j_{2}(Q^{2},\omega,\nu) = \pi M \frac{\tilde{p}_{s}}{\sqrt{s}} \int_{-1}^{+1} d\cos \tilde{\theta}_{s} |\psi(|\vec{p}_{s}|)|^{2} \frac{p_{x}^{2}}{M^{2}}; \qquad (1.7)$$

$$j_{3}(Q^{2},\omega,\nu) = \pi M \frac{\bar{p}_{s}}{\sqrt{S}} \int_{-1}^{+1} d\cos\tilde{\theta}_{s} |\psi(|\vec{p}_{s}|)|^{2} \mathcal{F}(p_{i},\nu,\vec{q}); \quad (1.8)$$

$$\mathcal{F}(\mathbf{p}_{i},\nu,\vec{q}) = \mathbf{M}^{-2}[(\mathbf{p}_{0} - (\nu/|\vec{q}|)\mathbf{p}_{z})^{2} + (\mathbf{Q}^{2}/|\vec{q}|)\mathbf{p}_{z}^{2}]; \quad (1.9)$$

$$\tilde{p}_{s}^{2} = S/4 - (W^{2} + M^{2})/2 + (W^{2} - M^{2})^{2}/4S; \qquad (1.10)$$

$$\widetilde{\epsilon}_{s} = \sqrt{\widetilde{p}_{s}^{2} + M^{2}} , p_{x}^{2} = (1 - \cos^{2}\widetilde{\theta}_{s}) \cdot \widetilde{p}_{s}^{2}/2; \qquad (1.11)$$

$$\mathbf{p}_{z} = \left[(\mathbf{M} + \nu) \widetilde{\mathbf{p}}_{s} \cdot \cos \widetilde{\theta}_{s} - |\vec{\mathbf{q}}| \cdot \widetilde{\epsilon}_{s} \right] / \sqrt{\mathbf{S}}; \qquad (1.12)$$

$$\mathbf{p}_{s} = \sqrt{2\mathbf{p}_{x}^{2} + \mathbf{p}_{z}^{2}}, \ \cos \tilde{\theta}_{s} = \vec{\mathbf{p}}_{s} \cdot \vec{\mathbf{q}} / |\vec{\mathbf{q}}| \cdot \vec{\mathbf{p}}_{s}.$$
 (1.13)

В написанных выше формулах предполагалось, что структурные функции нуклонов W $_{1,2}^{n,p}(\omega,Q^2)$ зависят только от двух переменных ω и Q^2 . Поскольку, все же, взаимодействующий нуклон находится вне массовой поверхности, его структурные функции должны зависеть также и от ν . Однако трудности учета такого эффекта столь велики, что единственной возможностью преодолеть их является предположение о малости данного эффекта и принебрежение ν -зависимостью в W $_{1,2}^{n,p}$. Такая точка зрения принята в работах $^{2,3/}$, хотя она и оспаривается рядом авторов, в частности в работе $^{5/2}$.

Согласно общепринятому мнению, предложенное в работе Веста ^{/2/} приближение релятивистской волновой функции дейтона в его системе покоя нерелятивистской оказывается в большинстве случаев удовлетворительным. Таким образом, можно воспользоваться одной из известных модельных нерелятивастских волновых функций дейтона с целью учета рассматриваемого эффекта ^{/2,3/}.

§2. АНАЛИЗ ДЕЙТОННЫХ ДАННЫХ В РАМКАХ КВАРК-ПАРТОННОЙ МОДЕЛИ С НАРУШЕННЫМ СКЕЙЛИНГОМ

Воспользуемся найденными нами ранее структурными функциями нуклонов $^{/1/}$ и описанной выше техникой учета фермиевского движения нуклонов в дейтоне для определения структурных функций дейтона $\mathbb{W}_{1,2}^d$.

Выпишем явный вид структурных функций нуклонов:

$$W_1^p(Q^2, x) = (G_{2V}(x, Q^2) + \frac{2}{3}G_{1c}(x, Q^2))/2M,$$
 (2.2)

$$W_{2}^{n,p}(Q^{2},x) = \frac{4M^{2}x}{(\vec{p}_{1}\vec{q})}W_{1}^{n,p}(Q^{2},x), W_{1}^{n} = \frac{2}{3} \frac{G_{2}(x,Q^{2}) + G_{1c}(x,Q^{2})}{M}.$$
 (2.3)

Функции распределения "валентных" и "морских" партонов G_{2V} и G_{1c} имеют в нашей модели следующий вид:

$$G_{2V}(\mathbf{x}, Q^{2}) = \frac{\mathbf{x}^{-\frac{1}{2}} (1-\mathbf{x})^{2\overline{g}(Q^{2})}}{B(\frac{1}{2}, 2\overline{g}(Q^{2}) + 1)} \times (2.4)$$

$$\times \frac{\phi(\overline{g}(Q^{2}), 2\overline{g}(Q^{2}) + 1, -\beta(1-\mathbf{x}))}{\phi(\overline{g}(Q^{2}), 2\overline{g}(Q^{2}) + \frac{3}{2}, -\beta)} ,$$

$$G_{1c}(\mathbf{x}, Q^{2}) = \frac{\overline{g}(Q^{2})(1-\mathbf{x})^{2\overline{g}(Q^{2}) + \frac{3}{2}}, -\beta)}{3 \cdot \mathbf{x}} \times (2.5)$$

$$\times \frac{\phi(\overline{g}(Q^{2}), 2\overline{g}(Q^{2}) + \frac{3}{2}, -\beta)}{\phi(\overline{g}(Q^{2}), 2\overline{g}(Q^{2}) + \frac{3}{2}, -\beta)} ,$$

$$(2.5)$$

где $\vec{g}(\mathbf{Q}^2) = \frac{g}{1-a\ln Q^2}$ – инвариантный Заряд партонглюонного взаимодействия (\mathbf{Q}^2 -измеряется в ГэВ²); β – глюонный статистический фактор (см. /1/). В качестве волновой функции дейтона мы используем "Reid hard-core " – волновую функцию /6/, которая представляет собой смесь 3S_1 -и 3D_1 состояний и обращается в нуль в координатном пространстве при $\mathbf{r} \leq \mathbf{r}_p$ ~5,48 Фм. В приложении мы приводим удобный вид параметризации этой функции в импульсном пространстве, а также график ее зависимости от импульса р. Проводя интегрирование структурных функций (2.1)-(2.3), согласно формулам (1.2)-(1.3) с указанной выше волновой функцией дейтона, получим искомые структурные функции дейтона. Численные результаты этого интегрирования приведены на рис. 4.5.

Рис. 2. Дифференциальное сечение глубоконеупругого ер -рассеяния. Сплошные кривые - предсказания нашей модели. Точки - эксперимент /4/.

Рис. 3. Дифференциальное сечение глубоконеупругого ер -рассеяния. Сплошные кривые - предсказания нашей модели. Кривые - эксперимент /4/.

Мы провели сравнение результатов нашей модели с одними и теми же значениями параметров для случая дейтонной и протонной мишени с соответствующими экспериментальными данными /4/. При значениях параметров g = 0,66449; a = 0,15175; β = -2,5 величина $\chi^2/\bar{\chi}^2 \simeq$ $\simeq 269,9/283$. Данное значение $\chi^2/\bar{\chi}^2$ получено после отбрасывания из 290 экспериментальных точек четырех, обладающих большими парциальными $\chi^2(W < 2 \ \Gamma_{9}B)$. Для иллюстрации влияния эффекта ферми-движения на конечные результаты мы также провели анализ без уче-

та этого эффекта, т.е. выбирали структурные функции дейтона в виде

$$W_{1}^{d}(\mathbf{x},\mathbf{Q}^{2}) = W_{1}^{p}(\mathbf{x},\mathbf{Q}^{2}) + W_{1}^{n}(\mathbf{x},\mathbf{Q}^{2}) = \frac{5}{3}G_{2V}(\mathbf{x},\mathbf{Q}^{2}) + \frac{4}{3}G_{1c}(\mathbf{x},\mathbf{Q}^{2}).$$
(2.6)

В этом случае величина $\chi^{2}/\chi^{2} = \frac{400}{283}$ (здесь мы отбросили те же точки с большими парциальными χ^{2}). При обработке данных мы учитывали как случайные, так и систематические ошибки эксперимента. Окончательные результаты выполненного анализа приведены на графиках рис. 2-5.

Рис. 4. Дифференциальное сечение глубоконеупрегого ed -рассеяния. Сплошные кривые - предсказания нашей модели. Точки - эксперимент./4/.

Рис. 5. Дифференциальное сечение глубоконеупругого ed -рассеяния. Сплошные кривые - предсказания нашей модели. Точки - эксперимент^{/4/}.

Рассмотрим теперь вопрос об извлечении нейтронных структурных функций из дейтонных. Так, в работе /4/ используется процедура извлечения, схематически представленная на рис. 6. Как уже отмечалось во введении, всякая процедура подобного рода, в том числе и эта, по-существу, является алгоритмом восстановления подын тегральной функции Wⁿ_{1,2} по значению ее "smeating''"-интеграла W^{n,s}_{1,2} (см. 1.1) и требует дополнительной информации о характере х-зависимости Wⁿ_{1,2} и W^p_{1,2}. В данном случае такая информация закладывается в первый и шестой блоки схемы рис. 6 в виде параметризации следующего типа:

$$W_{2,Mog}^{P} \stackrel{\Psi uT}{\longrightarrow} W_{2,3Kcn}^{P}$$

$$W_{2,Mog}^{PS} = \int d^{3}P F(P) W_{2,Mog}^{P}$$

$$W_{2}^{NS} = W_{2}^{d} - W_{2,Mog}^{PS}$$

$$W_{2}^{n} = W_{2,Mog}^{P} / W_{2,Mog}^{PS}$$

$$W_{2}^{n} = W_{2}^{n} S S^{n}$$

$$W_{2,Mog}^{n} \stackrel{\Psi uT}{\longrightarrow} W_{2}^{n}$$

$$W_{2,Mog}^{n} = \int d^{3}P F(P) \overline{W}_{2,Mog}^{n}$$

$$S^{n} = W_{2,Mog}^{n} / W_{2,Mog}^{nS}$$

$$S^{n} = W_{2,Mog}^{n} / W_{2,Mog}^{nS}$$

$$S^{n} = W_{2,Mog}^{n} / W_{2,Mog}^{nS}$$

$$HeT$$

$$Boixod da$$

Рис. 6. Схема извлечения нейтронных данных из дейтонных /4/.

$$\nu W_{2}^{p,n} = x \sum_{i=3}^{5} a_{i}^{p,n} (1-x')^{i}, x'^{-1} = \omega' = \omega + \frac{M^{2}}{Q^{2}}.$$
 (2.7)

Если же теперь мы попытаемся сравнить нейтронные данные, полученные по процедуре, представленной на рис. 6, с использованием параметризации (2.7), и соответствующие значения структурной функции νW_2 (2.1), то получим существенные расхождения между ними (рис.7).

Рис. 7. Иллюстрация модельной зависимости извлеченных нейтронных данных. Точки - данные, извлеченные с использованием параметризации (2.7).

14

В то же время мы видели, что дейтонные данные хорошо описываются при использовании νW_{p}^{n} (2.1) в формулах (1.2)-(1.3). Таким образом, процедура извлечения нейтронных данных из дейтонных существенно зависит от модели. Поэтому нам представляется более оправданным проводить проверку моделей нейтрона не на извлеченных нейтронных данных, а непосредственно на дейтонных, используя технику учета фермиевского движения нуклонов в дейтоне, предложенную в работе /2/. Если необходимость в извлечении нейтронных данных все же возникает, то производить это извлечение, по нашему мнению, следует с привлечением тех или иных физических соображений относительно используемого типа параметризации структурных функций свободных нуклонов, которые, кроме того, должны приводить к возможно лучшему описанию протонных и дейтонных данных. С этой точки эрения формулы (2.1)-(2.2) для процедуры извлечения оказываются более предпочтительными по сравнению с (2.7).

Возвращаясь к следствиям нашей модели для структурных функций нейтрона и протона, отметим следующее соотношение:

$$\mathbf{R} = \mathbf{W}_{2}^{n} / \mathbf{W}_{2}^{p} \xrightarrow[\mathbf{x} \to 1]{} \frac{2}{3} .$$
 (2.8)

Оно имеет место в большинстве партонных моделей, использующих точную SU(3)-симметрию. Часто указывается на то, что для данного отношения эксперимент дает скорее 1/3, чем 2/3, и это связывается обычно с необходимостью введения в различные модели параметров нарушения SU(3)-симметрии. Однако выводы о предельном значении R, как правило, делаются на основании того или иного вида параметризации. Хорошее согласие с экспериментальными данными /4/ наших функций W_2^n и W_2^p позволяет сделать вывод о том, что соотношение (2.8) этим данным не противоречит. Таким образом, в данном случае нет необходимости нарушать SU(3)-симметрию. Для иллюстрации зависимости отношения R от x в нашей модели приводим график (рис. 8-9).

Рис. 8. Кривые предсказания модели для $R = W^n / W^p$ (Сверху вниз E = 19.5; 16; 13.3; 7.0 ГэВ).

Рис. 9. Кривые предсказания модели для $R = W_2^n / W_2^p$ (Сверху вниз E = 19.5; 16; 13,3; 10,4; 6,5 ГэВ).

ЗАКЛЮЧЕНИЕ

Итак, мы показали, что предложенная нами в работе /1/ кварк-партонная модель с нарушенным скейлингом находится в хорошем согласии с экспериментальными данными по глубоконеупругому рассеянию электронов на протоне и дейтоне

 $e + p \rightarrow e + X$,

 $e + d \rightarrow e + X$

и не требует введения нарушенной SU(3)-симметрии.

Было также подчеркнуто, что учет поправок, связанных с эффектом фермиевского движения нуклонов в дейтоне, приводит к значительному улучшению согласия с этими экспериментальными Данными.

Кроме того, мы хотим подчеркнуть, что при использовании имеющихся в настоящее время нейтронных данных, извлеченных из рассеяния на дейтонах, следует соблюдать известную осторожность, поскольку они несут на себе отпечаток используемого при их получении типа параметризации структурных функций.

В заключение автор выражает глубокую благодарность П.С.Исаеву за научное руководство и В.А.Мещерякову за внимание к данной работе. Автор благодарит также В.Г. Малышкина за помощь в численных расчетах на ЭВМ и В.И.Иноземцева за полезные обсуждения.

ПРИЛОЖЕНИЕ

Приведем некоторые сведения о "Reid hard-core"волновой функции дейтона $\psi(|\vec{p}|)$, используемой в разд.2. Как отмечалось, она является ${}^{3}S_{1} - {}^{3}D_{1}$ -смесью состояний, т.е.

$$f^{M}(\vec{p}) = f_{s}(\vec{p}) \mathcal{Y}_{110}^{M} + f_{D}(\vec{p}) \mathcal{Y}_{112}^{M},$$
 (1)

$$|f(\vec{p})|^{2} = \sum_{M} |f^{M}(\vec{p})|^{2} = f_{s}^{2} + f_{D}^{2},$$
 (2)

где

$$\mathcal{Y}_{jsL}^{M} = \sum_{M_{s},M_{L}} (s,M_{s},L,M_{L}|jM) Y_{LM_{L}}(\theta,\phi)^{2s+1} (\sigma)_{M_{s}}, \quad (3)$$

$$f_{\rm D}(\vec{p}) = \frac{1}{\sqrt{2}\pi} \int_{0}^{\infty} \frac{\omega(r)}{r} j_2(pr) r^2 dr$$
, (4)

$$f_{s}(\vec{p}) = \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} \frac{u(r)}{r} j_{0}(pr) r^{2} dr,$$
 (5)

u(r) и ω(r) – радиальные части S – и D – волн, соответственно, нормированные:

$$\int_{0}^{\infty} \left[u^{2}(\mathbf{r}) + \omega^{2}(\mathbf{r}) \right] d\mathbf{r} = 1$$
 (6)

и затобулированные вместе со своими первыми производными в работе $^{/6/}$. Параметризуя u(r) и ω (r) в каждом заданном интервале полиномом третьей степени, найдем с помощью (4) и (5) $f_s(p)$ и $f_D(p)$. После этого будем иметь параметризацию волновой функции дейтона в импульсном представлении:

$$\phi(\mathbf{p}) = \mathbf{p}^{2} |\psi(\mathbf{p})|^{2} = \sum_{i=1}^{4} a_{i}^{k} \mathbf{p}^{i-1}$$
(7)

на каждом интервале $p_k . Коэффициенты <math>a_i^k$ Заданы таблицей 1. Условие нормировки для $\phi(p)$ имеет вид:

$$4\pi \int_{0}^{\infty} d\mathbf{p} \,\phi(\mathbf{p}) = 1 \,. \tag{8}$$

График ф приведен на рис. 10.

Продолжение таблицы 1.

Таблица 1

k	$\frac{P_{k}/0,7}{(F^{-1})}$	$a_1^k \times 10^\ell$	٤	$a_{g}^{k} \times 10^{m}$	m	$a_3^k \times 10^n$	n	$a_4^k \times 10^r$	r	
I	.001	 I29476	+05	.170183	+04	3 837 I 6	-01	.143524	-04	
2	.003	247952	÷05	.160786	+04	354352	+00	.328380	-03	
3	.005	345880	+05	.195377	+04	107 900	+0I	.152795	-02	
4	.007	416514	÷05	.2I009I	+04	210069	+0I	.389250	-02	
5	.009	456515	+05	.220766	+04	305016	+0I	.670705	-02	
6	.0II	465045	+05	.223792	+04	337 000	+0I	.783200	-02	
7	.013	448233	+05	.216745	+04	244034	+0I	.374912	-02	
8	.015	409334	+05	.198715	+04	.275087	+00	988749	-02	Ĺ
9	.017	320708	+05	.153012	+04	.821702	+0I	558684	-0I	ł
IO	.021	187037	+05	.637793	+03	.259100	+02	179748	+C0	
II	.025	667124	+04	2I252I	+03	.483 649	+02	36643I	÷CO	ļ
12	.029	.212031	+04	 97449I	+03	.7037 80	+02	5784I3	+60	
13	.033	.7339I0	+04	149345	+04	.874163	+02	764872	+C D	
14	.037	.975775	+04	 17544I	+04	.969989	+02	C8216I	÷CƏ	ĺ
15	.04I	.101324	+05	179926	+04	.987871	+02	905907	+00	ł
16	.045	.934316	+04	169205	+04	•9393 37	+02	832668	÷00	
17	.049	.726434	+04	 I33I76	+04	.784989	+02	578300	+00	
18	.057	.448029	+04	906522	+03	. 5I4576	+02	639144	-0I	
19	.065	.243222	+04	5CS49I	+03	.256728	+02	.492862	+00	
20	.073	.II5047	+04	228859	+03	•533780	+0I	.985 7 8I	+00	!
21	.031	.419428	+03	519132	+02	893820	+0I	.126971	+0I	
22	.089	.321791	÷02	.5I 0668	+02	180664	+02	.163941	+0I	ļ
23	.097	155764	+03	.105524	+03	233262	+02	.180874	+01	
24	.105	233793	+03	.129978	+03	258806	+02	.189769	-⊦0I	-
25	.113	250598	+03	.135567	+03	264999	+02	.192056	+0I	ĺ
26	.129	211166	+03	.120200	+03	245037	+02	.183412	+0I	
27	.145	160009	+03	.979574	+02	212802	+02	.167840	+0I	
28	.16I	 II6985	+03	.772115	+02	179457	+02	.149975	+0I	ĺ
29	.177	725529	+02	•533635	+02	136796	+02	.124539	+01	
30	.209	383257	+02	.320490	+02	925532	+0I	.939289	+00	
31	.241	207753	+02	.194334	+02	623264	+01	.697887	1+-00	
32	.273	II5484	+02	.119132	+02	418960	+0I	.512879	C0+	

k	P _k /0,7 (F ⁻¹)	$a_1^k \times 10^\ell$	e	$a_2^k \times 10^m$	m	$a_3^k \times 10^n$	n	$a_4^k \times 10^r$	r
33	.305	654146	+01	.735089	+0I	280393	+0I	. 37 2595	+00
34	.337	376038	+0I	.45 4929	+01	186319	+0I	.267200	+00
35	.369	215153	+0I	. 27737I	+0I	 I20999	+0I	.187200	+00
36	.401	I20044	+0I	. 163272	+0I	753744	+00	. I26337	÷00
37	.433	469305	+00	.677430	+00	337415	+00	.659094	-0I
38	.497	625359	-01	.752390	-0I	406360	-0I	.171 53 7	-0I
39	.56I	.66776I	-0I	 I39574	+00	.782920	-0ĩ	478503	-02
40	.625	.830872	-0I	169738	+00	.968825	-01	860343	-02
41	. 689	.516975	-0I	I0257I	+00	. 4903I0	-0I	.27 4787	-02
42	.817	.341034	-02	.I5700I	-0I	475205	-01	.2 90268	-0I
43	.945	2I3 545	-0I	.854043	-0I	 II2898	+00	.494590	-01
44	1.073	 2I7353	-0I	859778	-0I	II2848	+00	.492032	-0I
45	1.201	 I36959	-0I	.558660	-01	753074	-01	.336236	-0I
46	1.329	716147	-02	. 29588I	-0I	400847	-0I	. 178873	-0I
47	I.457	905370	-03	.229141	-02	384509	-03	 I35923	-02
48	I.585	.254933	-02	140498	-0I	.253802	-0I	148995	-0I
49	1.713	.196776	-02	 II0050	-0I	.200682	-0I	 II8II6	-0I
50	I.959	132985	-03	.146520	-02	460580	-02	.446169	02
51	2.225	8I7057	-03	.602462	-02	 I47354	-0I	.II963 3	~0I
52	2.48I	192696	-03	.I3 6960	-02	 3I6678	-02	.237986	-02
53	2.737	.198627	-03	180903	-02	.543416	-02	537676	-02
54	3.249	965223	-04	.104813	-02	377856	-02	.4 52458	-02
8	3.76I	.403277	-04	511924	-03	.212771	-02	2 92865	-02
56	4.273	164543	-04	.23 9128	03	 II53I3	-02	.184532	-02
57	4.785	.829799	-05	133392	-03	.711688	-03	 125934	-02
58	5.809	.273986	-05	526457	-04	.336243	-03	713614	-03
59	6.833	.356275	-06	822139	-05	.630085	-04	160330	-03
60	7.857	597594	-06	.149178	04	12394 9	-03	.342807	-03
EI	B.88I	293854	-06	.922042	-05	934362	-04	.311939	-03
62	9.1608	191832	-05	.535017	-04	 49702 3	-03	.153303	-02
63	9.4405	.172948	06	584509	05	.643544	-04	232104	03
64	9.7203	.150729	-05	445833	-04	.439237	-03	144130	-02

÷

Рис. 10. Волновая функция дейтона в импульсном представлении /3/.

ЛИТЕРАТУРА

- 1. Коваленко С.Г., Малышкин В.Г., ОИЯИ, Р2-11674, Дубна, 1978.
- 2. Wes G.B. Ann. Phys., 74, No.2, 464 (1972).
- 3. Atwood W.B., West G.B. Phys.Rev., D7,773, (1973).
- 4. Atwood W.B. Electron Scattering aff Hydrogen and Deuterium at 50 and 60, SLAC-185, 1975.
- 5. Bodek A. Phys. Rev., D7, 2331 (1973).
- 6. Reid R.V. Ann. Phys., 50, No.3, 441 (1968).

Рукопись поступила в издательский отдел 26 июля 1978 года.